Skip to main content
Log in

A new fictitious domain method in shape optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The present paper is concerned with investigating the capability of the smoothness preserving fictitious domain method from Mommer (IMA J. Numer. Anal. 26:503–524, 2006) to shape optimization problems. We consider the problem of maximizing the Dirichlet energy functional in the class of all simply connected domains with fixed volume, where the state equation involves an elliptic second order differential operator with non-constant coefficients. Numerical experiments in two dimensions validate that we arrive at a fast and robust algorithm for the solution of the considered class of problems. The proposed method can be applied to three dimensional shape optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babuška, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belov, S., Fujii, N.: Symmetry and sufficient condition of optimality in a domain optimization problem. Control Cybern. 26, 45–56 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Bramble, J., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55, 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  5. Delfour, M., Zolesio, J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  6. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Nonlinear Equations and Unconstrained Optimization Techniques. Prentice-Hall, Englewood Cliffs (1983)

    Google Scholar 

  7. Eppler, K., Harbrecht, H.: 2nd order shape optimization using wavelet BEM. Optim. Method. Softw. 21, 135–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eppler, K., Harbrecht, H.: Exterior electromagnetic shaping using wavelet BEM. Math. Method. Appl. Sci. 28, 387–405 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eppler, K., Harbrecht, H.: Fast wavelet BEM for 3d electromagnetic shaping. Appl. Numer. Math. 54, 537–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eppler, K., Harbrecht, H.: Efficient treatment of stationary free boundary problems. Appl. Numer. Math. 56, 1326–1339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eppler, K., Harbrecht, H.: Coupling of FEM and BEM in shape optimization. Numer. Math. 104, 47–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968)

    MATH  Google Scholar 

  13. Fletcher, R.: Practical Methods for Optimization, vols. 1, 2. Wiley, New York (1980)

    Google Scholar 

  14. Haslinger, J., Neitaanmäki, P.: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley, Chichester (1996)

    MATH  Google Scholar 

  15. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization. Theory, Approximation and Computation. Advances in Design and Control, vol. 7. SIAM, Philadelphia (2003)

    Google Scholar 

  16. Glowinski, R., Pan, T.W., Wells, R.O. Jr., Zhou, X.: Wavelet and finite element solutions for the Neumann problem using fictitious domains. J. Comput. Phys. 126, 40–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glowinski, R., Pan, T.W., Periaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Method. Appl. Mech. Eng. 111(3–4), 283–303 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grossmann, Ch., Terno, J.: Numerik der Optimierung. Teubner, Stuttgart (1993)

    MATH  Google Scholar 

  19. Harbrecht, H., Hohage, T.: Fast methods for three-dimensional inverse obstacle scattering. J. Integral Equ. Appl. 19(3), 237–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kunisch, K., Peichl, G.: Shape optimization for mixed boundary value problems on an embedding domain method. Dyn. Contin. Discret. Impuls. Syst. 4, 439–478 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Mommer, M.S.: A smoothness preserving fictitious domain method for elliptic boundary value problems. IMA J. Numer. Anal. 26, 503–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mommer, M.S.: Towards a fictitious domain method with optimally smooth solutions. Ph.D. thesis, RWTH-Aachen, published online by the RWTH-Aachen (2005)

  23. Murat, F., Simon, J.: Étude de problémes d’optimal design. In: Céa, J. (ed.) Optimization Techniques, Modeling and Optimization in the Service of Man. Lecture Notes on Computer Science, vol. 41, pp. 54–62. Springer, Berlin (1976)

    Google Scholar 

  24. Neitaanmäki, P., Tiba, D.: An embedding of domain approach in free boundary problems and optimal design. SIAM J. Control Optim. 33, 1587–1602 (1995)

    Article  MathSciNet  Google Scholar 

  25. Novruzi, A., Roche, J.R.: Newton’s method in shape optimisation: A three-dimensional case. BIT 40, 102–120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pierre, M., Roche, J.-R.: Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer. Math. 65, 203–217 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, New York (1983)

    Google Scholar 

  29. Roche, J.-R., Sokolowski, J.: Numerical methods for shape identification problems. Control Cybern. 25, 867–894 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Simon, J.: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2, 649–687 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Slawig, T.: Domain optimization for the stationary Stokes and Navier–Stokes equations by an embedding domain technique, Ph.D. thesis, TU Berlin (1998)

  32. Slawig, T.: A formula for the derivative with respect to domain variations in Navier–Stokes flow based on an embedding domain method. SIAM J. Control Optim. 42, 495–512 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer, Berlin (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Harbrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppler, K., Harbrecht, H. & Mommer, M.S. A new fictitious domain method in shape optimization. Comput Optim Appl 40, 281–298 (2008). https://doi.org/10.1007/s10589-007-9076-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9076-2

Keywords

Navigation