Skip to main content
Log in

Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We implement several warm-start strategies in interior-point methods for linear programming (LP). We study the situation in which both the original LP instance and the perturbed one have exactly the same dimensions. We consider different types of perturbations of data components of the original instance and different sizes of each type of perturbation. We modify the state-of-the-art interior-point solver PCx in our implementation. We evaluate the effectiveness of each warm-start strategy based on the number of iterations and the computation time in comparison with “cold start” on the NETLIB test suite. Our experiments reveal that each of the warm-start strategies leads to a reduction in the number of interior-point iterations especially for smaller perturbations and for perturbations of fewer data components in comparison with cold start. On the other hand, only one of the warm-start strategies exhibits better performance than cold start in terms of computation time. Based on the insight gained from the computational results, we discuss several potential improvements to enhance the performances of such warm-start strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71(2), 221–245 (1995)

    Article  MathSciNet  Google Scholar 

  2. Benson, H.Y., Shanno, D.F.: An exact primal-dual penalty method approach to warmstarting interior-point methods for linear programming. Comput. Optim. Appl. (2007, in press). doi:10.1007/s10589-007-9048-6

    MathSciNet  Google Scholar 

  3. Benson, H.Y., Shanno, D.F.: Interior-point methods for nonconvex nonlinear programming: Regularization and warmstarts. Comput. Optim. Appl. (2007, in press). doi:10.1007/s10589-007-9089-x

    MathSciNet  Google Scholar 

  4. Curtis, A.R., Reid, J.K.: On the automatic scaling of matrices for Gaussian elimination. J. Inst. Math. Appl. 10, 118–124 (1972)

    Article  MATH  Google Scholar 

  5. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx: An interior-point code for linear programming. Optim. Methods Softw. 11–2(1–4), 397–430 (1999)

    Article  MathSciNet  Google Scholar 

  6. Elhedhli, S., Goffin, J.L.: The integration of an interior-point cutting plane method within a branch-and-price algorithm. Math. Program. 100(2), 267–294 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fliege, J.: An efficient interior-point method for convex multicriteria optimization problems. Math. Oper. Res. 31, 825–845 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fliege, J., Heseler, A.: Constructing approximations to the efficient set of convex quadratic multiobjective problems. Technical report, Dortmund University, Dortmund, Germany (2002)

  9. Forsgren, A.: On warmstarts for interior methods. In: Ceragioli, F., Dontchev, A., Furuta, H., Marti, K., Pandolfi, L. (eds.) System Modeling and Optimization. IFIP International Federation for Information Processing, vol. 199, pp. 51–66. Springer, Boston (2006)

    Chapter  Google Scholar 

  10. Freund, R.M.: A potential function reduction algorithm for solving a linear program directly from an infeasible “warm start”. Math. Program. 52, 441–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freund, R.M.: Theoretical efficiency of a shifted-barrier-function algorithm for linear programming. Linear Algebra Appl. 152(1), 19–41 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goffin, J.-L., Haurie, A., Vial, J.-P.: Decomposition and nondifferentiable optimization with the projective algorithm. Manag. Sci. 38, 284–302 (1992)

    Article  MATH  Google Scholar 

  13. Goffin, J.L., Vial, J.P.: Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method. Optim. Methods Softw. 17(5), 805–867 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6, 137–156 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Gondzio, J.: Warm start of the primal-dual method applied in the cutting-plane scheme. Math. Program. 83, 125–143 (1998)

    MathSciNet  Google Scholar 

  16. Gondzio, J., Grothey, A.: Re-optimization with the primal-dual interior point method. SIAM J. Optim. 13(3), 842–864 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gondzio, J., Vial, J.-Ph.: Warm start and epsilon-subgradients in the cutting plane scheme for block-angular linear programs. Comput. Optim. Appl. 14(1), 17–36 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. John, E.: Implementation of warm-start strategies in interior-point methods for linear programming. PhD thesis, Department of Applied Mathematics and Statistics, Stony Brook University (2005)

  19. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: Computational state of the art. ORSA J. Comput. 6, 1–14 (1994)

    MATH  MathSciNet  Google Scholar 

  21. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mitchell, J.E.: Computational experience with an interior-point cutting plane algorithm. SIAM J. Optim. 10(4), 1212–1227 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mitchell, J.E., Borchers, B.: Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Ann. Oper. Res. 62, 253–276 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mitchell, J.E., Todd, M.J.: Solving combinatorial optimization problems using Karmarkar’s algorithm. Math. Program. 56, 245–284 (1992)

    Article  MathSciNet  Google Scholar 

  25. Nesterov, Y.E., Nemirovskii, A.S.: Interior Point Polynomial Methods in Convex Programming. SIAM, Philadelphia (1994)

    Google Scholar 

  26. Ng, E., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14, 1034–1056 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Polyak, R.: Modified barrier functions (theory and methods). Math. Program. 54, 177–222 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. MPS/SIAM Series on Optimization, vol. 3. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  29. Todd, M.J.: Detecting infeasibility in infeasible-interior-point methods for optimization. In: Cucker, F., De Vore, R., Olver, P. (eds.) Foundations of Computational Mathematics, pp. 157–192. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  30. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  31. Yıldırım, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming. Math. Oper. Res. 28(4), 649–676 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yıldırım, E.A., Todd, M.J.: Sensitivity analysis in linear programming and semidefinite programming using interior-point methods. Math. Program. 90(2), 229–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yıldırım, E.A., Todd, M.J.: An interior-point approach to sensitivity analysis in degenerate linear programs. SIAM J. Optim. 12(3), 692–714 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yıldırım, E.A., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming. SIAM J. Optim. 12(3), 782–810 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Alper Yıldırım.

Additional information

This research was supported in part by NSF through CAREER grant DMI-0237415.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, E., Yıldırım, E.A. Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension. Comput Optim Appl 41, 151–183 (2008). https://doi.org/10.1007/s10589-007-9096-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9096-y

Keywords

Navigation