Skip to main content
Log in

Convergence rates for direct transcription of optimal control problems using collocation at Radau points

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present convergence rates for the error between the direct transcription solution and the true solution of an unconstrained optimal control problem. The problem is discretized using collocation at Radau points (aka Gauss-Radau or Legendre-Gauss-Radau quadrature). The precision of Radau quadrature is the highest after Gauss (aka Legendre-Gauss) quadrature, and it has the added advantage that the end point is one of the abscissas where the function, to be integrated, is evaluated. We analyze convergence from a Nonlinear Programming (NLP)/matrix algebra perspective. This enables us to predict the norms of various constituents of a matrix that is “close” to the KKT matrix of the discretized problem. We present the convergence rates for the various components, for a sufficiently small discretization size, as functions of the discretization size and the number of collocation points. We illustrate this using several test examples. This also leads to an adjoint estimation procedure, given the Lagrange multipliers for the large scale NLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, W.: On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Optim. 12, 15–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  3. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  4. Bader, G., Ascher, U.: A new basis implementation for a mixed order boundary value ODE solver. SIAM J. Sci. Comput. 8, 483–500 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bausa, J., Tsatsaronis, G.: Dynamic optimization of startup and load-increasing processes in power plants—Part I: Method. ASME J. Eng. Gas Turbines Power 123, 246–250 (2001)

    Article  Google Scholar 

  6. Betts, J.T.: Practical methods for optimal control using nonlinear programming. In: Advances in Design and Control. SIAM, Philadelphia (2001)

    Google Scholar 

  7. Betts, J.T., Huffman, W.P.: Estimating adjoint variables from a direct transcription solution. M&CT-TECH-04-001, Technical document Series, Phantom Works, Mathematics and Computing Technology, Seattle, WA (2004)

  8. Biegler, L.T., Cervantes, A.M., Wächter, A.: Advances in simultaneous strategies for dynamic process optimization. Chem. Eng. Sci. 57, 575–593 (2002)

    Article  Google Scholar 

  9. Cervantes, A.M.: Stable large-scale DAE optimization using simultaneous approaches. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (2000)

  10. Cuthrell, J.E., Biegler, L.T.: Simultaneous optimization and solution methods for batch reactor control profiles. Comput. Chem. Eng. 13, 49–62 (1989)

    Article  Google Scholar 

  11. Dontchev, A.L.: Discrete approximations in optimal control. In: Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control. IMA Vol. Math. Appl., vol. 78, pp. 59–80. Springer, New York (1996)

    Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Grimm, W., Markl, A.: Adjoint estimation from a direct multiple shooting method. J. Optim. Theory Appl. 92, 263–283 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hager, W.W.: Rates of convergence for discrete approximations to unconstrained control problems. SIAM J. Numer. Anal. 13, 449–472 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  17. Kameswaran, S., Biegler, L.T.: Convergence rates for direct transcription of optimal control problems with final-time equality constraints using collocation at Radau points. In: Proceedings of 2006 American Control Conference, pp. 165–171 (2006)

  18. Logsdon, J.S.: Efficient determination of optimal control profiles for differential algebraic systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (1990)

  19. Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8, 69–95 (1981)

    Article  MathSciNet  Google Scholar 

  20. Malanowski, K., Büskens, C., Maurer, H.: Convergence of approximations to nonlinear optimal control problems. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations. Lecture Notes in Pure and Applied Mathematics, vol. 195, pp. 253–284. Marcel Dekker, New York (1997)

    Google Scholar 

  21. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  22. Pietz, J.A.: Pseudospectral collocation methods for the direct transcription of optimal control problems. Masters thesis, Rice University, Houston, TX (2003)

  23. Raghunathan, A.U., Gopal, V., Subramanian, D., Biegler, L.T., Samad, T.: Dynamic optimization strategies for three-dimensional conflict resolution of multiple aircraft. AIAA J. Guid. Control Dyn. 27, 586–594 (2004)

    Article  Google Scholar 

  24. Reddien, G.W.: Collocation at Gauss points as a discretization in optimal control. SIAM J. Control Optim. 17, 298–306 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schwartz, A.L., Polak, E.: Consistent approximations for optimal control problems based on Runge-Kutta. SIAM J. Control Optim. 34, 1235–1269 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tanartkit, P.: Stable computational procedures for dynamic optimization in process engineering. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA (1996)

  27. von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37, 357–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz T. Biegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameswaran, S., Biegler, L.T. Convergence rates for direct transcription of optimal control problems using collocation at Radau points. Comput Optim Appl 41, 81–126 (2008). https://doi.org/10.1007/s10589-007-9098-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9098-9

Keywords

Navigation