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ELLIPTIC OPTIMAL CONTROL PROBLEMS WITH
L1-CONTROL COST AND APPLICATIONS FOR THE

PLACEMENT OF CONTROL DEVICES

GEORG STADLER

Abstract: Elliptic optimal control problems with L1-control cost are analyzed.
Due to the nonsmooth objective functional the optimal controls are identically zero
on large parts of the control domain. For applications, in which one cannot put
control devices (or actuators) all over the control domain, this provides information
about where it is most efficient to put them. We analyze structural properties of L1-
control cost solutions. For solving the non-differentiable optimal control problem we
propose a semismooth Newton method that can be stated and analyzed in function
space and converges locally with a superlinear rate. Numerical tests on model
problems show the usefulness of the approach for the location of control devices
and the efficiency of our algorithm.
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1. Introduction
In this paper, we analyze elliptic optimal control problems with L1-control

cost and argue their use for the placement of actuators (i.e. control devices).
Due to the non-differentiability of the objective functional for L1-control
cost (in the sequel also called L1-regularization), the structure of optimal
controls differs significantly from what one obtains for the usual smooth
regularization. If one cannot or does not want to distribute control devices
all over the control domain, but wants to place available devices in an optimal
way, the L1-solution gives information about the optimal location of control
devices. As model problems, we consider the following constrained elliptic
optimal control problems with L1 control cost.



















minimize J(y, u) := 1
2‖y − yd‖

2
L2 + α

2‖u‖
2
L2 + β‖u‖L1

over (y, u) ∈ H1
0(Ω) × L2(Ω)

subject to Ay = u + f ∈ Ω,

a ≤ u ≤ b almost everywhere in Ω,

(P)
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2 G. STADLER

where Ω ⊂ IR
n is a bounded domain with sufficiently smooth boundary Γ =

∂Ω, yd, f ∈ L2(Ω), a, b ∈ L2(Ω) with a < 0 < b almost everywhere and
α, β > 0. Moreover, A : H1

0(Ω) 7→ H−1(Ω) is a second-order linear elliptic
differential operator, and ‖·‖L2 and ‖·‖L1 denote the L2(Ω) and L1(Ω)-norm,
respectively. In the sequel, y is called state and u the control variable, and yd

is referred to as desired stated. Note that the novelty in the above problem
is the introduction of the L1-regularization term β‖u‖L1.

Nonsmooth regularization for PDE-constrained optimization has mainly
been used for inverse problems, see e.g. [2,5,21,22,26]. In particular, the use
of the L1-norm of the gradient as regularization has led to better results for
the recovery of data from noisy measurements than smooth regularization.
As mentioned above, our main motivation for the use of nonsmooth regular-
ization for optimal control problems is a different one, namely its ability to
provide information about the optimal location of control devices and actua-
tors. Although intuition and experience might help in this design issue, this
approach fails when prior experience is lacking or the physical system mod-
elled by the PDE is too complex. Provided only a finite number of control
locations is possible, one might use a discrete method for the location prob-
lem, but clearly the number of possible configurations grows combinatorially
as the number of devices or the number of possible locations increase. To
overcome these problems, we propose the use of a L1-norm control cost. As
will be shown in this paper, this results in optimal controls that are identi-
cally zero in regions where they are not able to decrease the cost functional
significantly (this significance is controlled by the size of β > 0); we may think
of these sets as sets where no control devices need to be put. By these means,
using the nonsmooth L1-regularization term (even if in combination with the
squared L2-norm such as in (P)), one can treat the somewhat discrete-type
question of where to place control devices and actuators.

An application problem that has partly motivated this research is the op-
timal placement of actuators on piezoelectric plates [8, 11]. Here, engineers
want to know where to put electrodes in order to achieve a certain dis-
placement of the plate. For linear material laws, this problem fits into the
framework of our model problem (P). Obviously, there are many other ap-
plications in which similar problems arise.

Additional motivation for considering (P) is due to the fact that in certain
applications the L1-norm has a more interesting physical interpretation than
the squared L2-norm. For instance, the total fuel consumption of vehicles
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corresponds to a L1-norm term, see [27]. We remark that the L1-term ‖u‖L1

is nothing else than the L1(Ω)-norm of u, while the L2-term ‖u‖2
L2 (which is

the squared L2-norm) is not a norm.
As mentioned above, the use of nonsmooth functionals in PDE-constrained

optimization not standard and has mainly been used in the context of edge-
preserving image processing (see [22, 26]) and other inverse problems where
nonsmooth data have to be recovered (see e.g. [2,5]). An interesting compar-
ison of the properties of various nonsmooth regularization terms in finite di-
mensions is given [9,20]. One of the few contributions using L1-regularization
in optimal control is [27]. Here, a free-flying robot whose dynamical behav-
ior is governed by a system of nonlinear ordinary differential equations is
navigated to a given final state. The optimal control is characterized as min-
imizer of an L1-functional, which corresponds to the total fuel consumption.
Finally, we mention the paper [14] that deals with elliptic optimal control
problems with supremum-norm functional.

Clearly, the usage of a nonsmooth cost functional introduces severe difficul-
ties into the problem, both theoretically as well as for a numerical algorithm.
As mentioned above, a solution of (P) with β > 0 obeys properties signifi-
cantly different from the classical elliptic optimal control model problem



















minimize J2(y, u) := 1
2‖y − yd‖

2
L2 + α

2‖u‖
2
L2

over (y, u) ∈ H1
0(Ω) × L2(Ω)

subject to Ay = u + f ∈ Ω,

a ≤ u ≤ b almost everywhere in Ω,

(P2)

with α > 0. One aim of this paper is to compare the structure of solutions
of (P) to those of (P2) and to explore their different properties. Moreover,
we propose and analyze an algorithm for the efficient solution of (P).

Clearly, setting α := 0 in (P) results in the problem


















minimize J1(y, u) := 1
2‖y − yd‖

2
L2 + β‖u‖L1

over (y, u) ∈ W 1,1
0 (Ω) × L1(Ω)

subject to Ay = u + f ∈ Ω,

a ≤ u ≤ b almost everywhere in Ω.

(P1)

Now, the optimal control has to be searched for in the larger space L1(Ω).
The smoothing property of the elliptic operator A guarantees that the state y
corresponding to u ∈ L1(Ω) is an element in L2(Ω), provided n ≤ 4. However,
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for the above problem to have a solution, the inequality constraints on the
control are essential. In absence of (one of) the box constraints on u, (P1)
may or may not have a solution. This is due to the fact that L1(Ω) is not a
reflexive function space.

As a remedy for the difficulties that arise for (P1), in the sequel we focus
on (P) with small α > 0. Note that whenever β > 0, the cost functional in
(P) obeys a kink at points where u = 0 independently from α ≥ 0. In par-
ticular, α > 0 does not regularize the non-differentiability of the functional
J(· , ·). However, α influences the regularity of the solution and also plays an
important role for the numerical method we propose for the solution of (P).
This algorithm is based on the combination of semismooth Newton methods,
a condensation of Lagrange multipliers and certain complementarity func-
tions. Moreover, it is related to the primal-dual active set method [3,15]. Its
fast local convergence can be proved in function space, which allows certain
statements about the algorithm’s dependence (or independence) of the fine-
ness of the discretization [17]. We remark that the analysis of algorithms for
PDE-constrained optimization in function space has recently gained a con-
siderably amount of attention; we refer for instance to [15,16, 23–25,28, 29].

This paper is organized as follows. In the next section, we derive necessary
optimality conditions for (P) using Lagrange multipliers. In Section 3, we
study structural properties of solutions of (P). The algorithm we propose
for solving elliptic optimal control problems with L1-control cost is presented
and analyzed in Section 4. Finally, in the concluding section, we report on
numerical tests, where we discuss structural properties of the solutions as
well as the performance of our algorithms.

2. First-order optimality system
In this section, we derive first-order necessary optimality conditions for (P).

For that purpose, we replace (P) by a reduced problem formulation. This
reduction to a problem that involves the control variable u only is possible
due to the existence of the inverse A−1 : H−1(Ω) → H1

0(Ω) of the differential
operator A. The reduced problem is

{

minimize Ĵ(u) := 1
2‖A

−1u + A−1f − yd‖
2
L2 + α

2‖u‖
2
L2 + β‖u‖L1

over u ∈ Uad := {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω}.
(P̂)

This is a convex optimization problem posed in the Hilbert space L2(Ω). Its
unique solvability follows from standard arguments [13, 24], and its solution
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ū ∈ Uad is characterized (see e.g. [7, 10, 18]) by the variational inequality
(

A−⋆(A−1ū + A−1f − yd) + αū, u − ū
)

+ϕ(u)−ϕ(ū) ≥ 0 for all u ∈ Uad, (1)

where A−⋆ denotes the inverse of the transposed operator, i.e. A−⋆ = (A⋆)−1;
moreover, ϕ(v) := β

∫

|v(x)| dx = β‖v‖L1. In the sequel, we denote by ∂ϕ(ū)
the subdifferential of ϕ at ū, i.e. ∂ϕ(ū) = {u ∈ L2(Ω) : ϕ(v) − ϕ(ū) ≥
(u, v − ū) for all v ∈ L2(Ω)}. It follows from results in convex analysis that,
for λ̄ ∈ ∂ϕ(ū), the equation (1) implies

(

A−⋆(A−1ū + A−1f − yd) + αū + λ̄, u − ū
)

≥ 0 for all u ∈ Uad. (2)

The differential inclusion λ̄ ∈ ∂ϕ(ū) yields, in particular, that

λ̄ ∈ Λad := {λ ∈ L2(Ω) : |λ| ≤ β a.e. in Ω}. (3)

A pointwise (almost everywhere) discussion of the variational inequality (2)
such as in [24, p. 57] allows to show that there exist nonnegative functions
λ̄a, λ̄b ∈ L2(Ω) that act as Lagrange multipliers for the inequality constraints
in Uad. Moreover, evaluating the differential inclusion λ̄ ∈ ∂ϕ(ū) relates λ̄ to
the sign of ū (see also [10, 18, 23]). This leads to the optimality system for

the reduced problem (P̂) summarized in the next theorem.

Theorem 1. The optimal solution ū of (P̂) is characterized by the existence

of (λ̄, λ̄a, λ̄b) ∈ Λad × L2(Ω) × L2(Ω) such that

A−⋆(A−1ū + A−1f − yd) + αū + λ̄ + λ̄b − λ̄a = 0, (4a)

λ̄b ≥ 0, b − ū ≥ 0, λ̄b(b − ū) = 0, (4b)

λ̄a ≥ 0, ū − a ≥ 0, λ̄a(ū − a) = 0, (4c)

λ̄ = β a.e. on {x ∈ Ω : ū > 0}, (4d)

|λ̄| ≤ β a.e. on {x ∈ Ω : ū = 0}, (4e)

λ̄ = −β a.e. on {x ∈ Ω : ū < 0}. (4f)

Above, (4b) - (4c) are the complementarity conditions for the inequality
constraints in Uad. Moreover, λ̄ ∈ Λad together with (4d) - (4f) is an equiva-
lent expression for λ̄ ∈ ∂ϕ(ū).

Next, we derive an optimality system for (P) using (4), i.e. the optimality

conditions for (P̂). We introduce the adjoint variable p̄ by

p̄ := −A−⋆(A−1ū + A−1f − yd). (5)
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Then, (4a) becomes

−p̄ + αū + λ̄ + λ̄b − λ̄a = 0. (6)

Applying the operator A⋆ to equation (5) and using the state variable ȳ :=
A−1(ū + f), we obtain the adjoint equation

A⋆p̄ = yd − ȳ. (7)

Next, we study the complementarity conditions (4b)–(4f). Surprisingly, it
will turn out that we can write these conditions in a very compact form,
namely as one (non-differentiable) operator equation. To do so, first we
condense the Lagrange multipliers λ̄, λ̄a and λ̄b into one multiplier

µ̄ := λ̄ − λ̄a + λ̄b. (8)

Now, we utilize a complementarity functions to reformulate the system (4b)–
(4f) together with the condition λ̄ ∈ Λad. Namely, we use

C(ū, µ̄) := ū − max(0, ū + c(µ̄ − β)) − min(0, ū + c(µ̄ + β))

+ max(0, (ū− b) + c(µ̄ − β)) + min(0, (ū− a) + c(µ̄ + β)) = 0
(9)

for some c > 0. Above, the min- and max-functions are to be understood
pointwise. In the next lemma we clarify the relationship between (9) and
(4b)–(4f).

Lemma 2. For (ū, λ̄, λ̄a, λ̄b) ∈ (L2(Ω))4, the following two statements are

equivalent:

(1) The quadruple (ū, λ̄, λ̄a, λ̄b) satisfies the conditions (4b)–(4f), and λ̄ ∈
Λad.

(2) There exists a function µ̄ ∈ L2(Ω) such that (µ̄, ū) satisfies (9) and

the functions λ̄, λ̄a and λ̄b can be derived as follows:










λ̄ = min(β, max(−β, µ̄)),

λ̄a = −min(0, µ̄ + β),

λ̄b = max(0, µ̄− β).

(10)

Proof : First, we prove that 1 ⇒ 2. We set µ̄ := λ̄ + λ̄b − λ̄a. It requires
a straightforward calculation to deduce from (4b)-(4f) and the assumption
a < 0 < b that (10) holds. It remains to show that (ū, µ̄) satisfies C(ū, µ̄) = 0.
To prove that, we separately discuss subsets of Ω where µ(x) > β, µ(x) = β,
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|µ(x)| < β, µ(x) = −β and µ(x) < −β. The argumentation below is to be
understood in a pointwise almost everywhere sense.

◦ µ̄ > β: From the construction of µ̄ we obtain, using (4b)-(4f) that
µ̄ > β is only possible if λ̄ = β, λ̄a = 0 and λ̄b > 0. Thus, from (4b)
we get ū = b. Therefore,

C(ū, µ̄) = ū − (ū + c(µ̄ − β)) + ((ū − b) + c(µ̄ − β)) = 0.

◦ µ̄ = β: Again, from (4b)-(4f) it follows that λ̄ = β and λ̄a = λ̄b = 0.
The conditions (4b) and (4d) imply that 0 ≤ ū ≤ b and thus

C(ū, µ̄) = ū − (ū + c(µ̄ − β)) = 0.

◦ |µ̄| < β: In this case we deduce from (4b)-(4f) that λ̄ = µ̄ and λ̄a =
λ̄b = 0. From (4e) we obtain ū = 0 and C(ū, µ̄) = 0 is trivially
satisfied.

◦ Since the verification of the condition C(ū, µ̄) = 0 for the two remain-
ing sets where µ = −β or µ < −β is very similarly to the cases µ = β
and µ > β, it is skipped here.

This ends the first part of the proof.
Now, we turn to the implication 2 ⇒ 1. We suppose given (ū, µ̄) ∈ (L2(Ω))2

that satisfy C(ū, µ̄) = 0 and derive λ̄, λ̄a and λ̄b from (10). By definition, it
follows that λ̄ ∈ Λad and that µ̄ = λ̄− λ̄a + λ̄b holds. To prove the conditions
(4b)-(4f), we again distinguish different cases:

◦ ū+c(µ̄−β) > b: In this case, only the two max-terms in (9) contribute
to the sum. We obtain

0 = C(ū, µ̄) = ū − b

and thus ū = b. Now, from ū + c(µ̄ − β) > b we obtain µ̄ > β, which
implies that λ̄ = β, λ̄b > 0 and λ̄a = 0 and the conditions (4b)-(4f)
are satisfied.

◦ 0 < ū + c(µ̄− β) ≤ b: Here, only the first max-term in (9) is different
from zero. Hence,

0 = C(ū, µ̄) = µ̄ − β.

This implies µ̄ = β and 0 < ū ≤ b. Clearly, λ̄ = β and λ̄a = λ̄b = 0,
and again (4b)-(4f) hold.
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◦ |ū+ cµ̄| ≤ cβ: In this case, all the max and min-terms in (9) are equal
to zero, which implies ū = 0. This shows that |µ̄| ≤ β, and thus λ̄ = µ̄
and λ̄a = λ̄b = 0 which proves the conditions (4b)-(4f).

◦ a ≤ ū + c(µ̄ + β) < 0: This case is very similar to the case 0 <
ū + c(µ̄ − β) ≤ b discussed above.

◦ ū + c(µ̄ + β) < a: Analogous to the case ū + c(µ̄ − β) > b.

Since for every point of Ω exactly one of the above five conditions holds, this
finishes the proof of the implication 2 ⇒ 1 and ends the proof.

In the next theorem we summarize the first-order optimality conditions for
(P).

Theorem 3. The solution (ȳ, ū) ∈ H1
0(Ω) × L2(Ω) of (P) is characterized

by the existence of (p̄, µ̄) ∈ H1
0(Ω) × L2(Ω) such that

Aȳ − ū − f = 0, (11a)

A⋆p + ȳ − yd = 0, (11b)

−p̄ + αū + µ̄ = 0, (11c)

ū − max(0, ū + c(µ̄ − β)) − min(0, ū + c(µ̄ + β))

+ max(0, (ū− b) + c(µ̄ − β)) + min(0, (ū− a) + c(µ̄ + β)) = 0, (11d)

with c > 0.

Note that, from (11) one obtains an optimality system for (P2) simply by
setting β = 0 in (11): While the equations (11a)–(11c) remain unchanged,
the condition (11d) becomes

µ̄ + max(0, µ̄ + c−1(ū − b)) + min(0, µ̄ + c−1(ū − a)) = 0. (12)

This formulation has been used for the construction of an algorithm for
bilaterally control constraint optimal control problems of the form (P2), see
[19]. The next section is concerned with structural properties of solutions of
(P) in comparison with those of (P2).

3. Properties of solutions of (P)
For simplicity of the presentation, in this section we dismiss the control

constraints in (P) and (P2), i.e. we choose a := −∞ and b := ∞ and thus
Uad = L2(Ω). We think of α > 0 being fixed and study the dependence of
the optimal control on β. To emphasize this dependence, in the rest of this



OPTIMAL CONTROL WITH L1-COST 9

section we denote the solution of (P) by (ȳβ, ūβ). The first lemma states
that, if β is sufficiently large, the optimal control is ūβ ≡ 0.

Lemma 4. If β ≥ β0 := ‖A−⋆(yd −A−1f)‖L∞, the unique solution of (P) is

(ȳβ, ūβ) = (A−1f, 0).

Proof : For the proof we use the reduced form (P̂) of (P). For arbitrary
u ∈ L2(Ω) we consider

Ĵ(u) − Ĵ(0) =
1

2
‖A−1u‖2

L2 − (yd − A−1f, A−1u)L2 + β‖u‖L1 +
α

2
‖u‖2

L2

≥
1

2
‖A−1u‖2

L2 − ‖u‖L1‖A−⋆(yd − A−1f)‖L∞ + β‖u‖L1 +
α

2
‖u‖2

L2

=
1

2
‖A−1u‖2

L2 + (β − β0) ‖u‖L1 +
α

2
‖u‖2

L2.

Clearly, the latter expression is nonnegative if β ≥ β0. Thus, for β ≥ β0,
Ĵ(u) − Ĵ(0) ≥ 0 for all u ∈ Uad, which proves that the optimal control is
ūβ ≡ 0. Using (11a) the corresponding state is obtained as A−1f .

An analogous result with respect to the parameter α in (P2) does not hold,
i.e. in general optimal controls for (P2) will only approach zero as α tends to
infinity. Lemma (4) is also a consequence of the fact that the L1-term in the
objective functional can be seen as exact penalization (see e.g. [4]) for the
constraint u = 0.

To gain more insight in the structure of solutions of (P) and in the role of
the cost weight parameters α and β, we next discuss the behavior of ūβ as β
changes (while α > 0 is kept fixed), i.e. we investigate the mapping

Φ : [0,∞) → L2(Ω), Φ(β) := ūβ.

For that purpose, we derive the sensitivity of the optimal control ūβ with
respect to β. We will show that the function Φ is directionally differentiable,
and that its derivative is discontinuous at boundaries of regions where ūβ = 0.
Moreover, we discuss the influence of α on the discontinuity. We start our
study with continuity properties of Φ.

Lemma 5. The mapping Φ is Lipschitz continuous.

Proof : Let β, β ′ ≥ 0 and denote the solution variables corresponding to β and
β ′ by (ȳβ, ūβ, p̄β, µ̄β) and (ȳβ′, ūβ′, p̄β′, µ̄β′), respectively. From (11a)–(11c) we
obtain

A−⋆A−1u + αu − A−⋆yd + A−⋆A−1f + µ = 0 (13)
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for both (u, µ) = (ūβ, µ̄β) and (u, µ) = (ūβ′, µ̄β′). Deriving the difference
between these two equations leads to

A−⋆A−1(ūβ − ūβ′) + α(ūβ − ūβ′) + µ̄β − µ̄β′ = 0,

and taking the inner product with ūβ − ūβ′ results in

‖A−1(ūβ − ūβ′)‖2
L2 + α‖(ūβ − ūβ′)‖2

L2 = (µ̄β − µ̄β′, ūβ′ − ūβ)L2 . (14)

We now estimate the right hand side of (14) pointwise (almost everywhere).
From the complementarity conditions, we deduce that the following cases
can occur:

◦ µ̄β = β, uβ ≥ 0, µ̄β′ = β ′, uβ′ ≥ 0: Here, we obtain

(µ̄β − µ̄β′)(ūβ′ − ūβ) = (β − β ′)(ūβ′ − ūβ) ≤ |β − β ′||ūβ′ − ūβ|.

◦ µ̄β = β, uβ ≥ 0, |µ̄β′| < β′, uβ′ = 0: In this case, we find ūβ′ − ūβ =
−ūβ ≤ 0 and thus

(µ̄β − µ̄β′)(ūβ′ − ūβ) ≤ (β − β ′)(ūβ′ − ūβ) ≤ |β − β ′||ūβ′ − ūβ|.

◦ µ̄β = β, uβ ≥ 0, µ̄β′ = −β ′, uβ′ ≤ 0: From the sign structure of the
variables one obtains the estimate

(µ̄β − µ̄β′)(ūβ′ − ūβ) ≤ 0.

◦ |µ̄β| < β, uβ = 0, |µ̄β′| < β′, uβ′ = 0: In this case, trivially

(µ̄β − µ̄β′)(ūβ′ − ūβ) = 0.

◦ There are five more cases that may occur. Since they are very similar
to those discussed above, their discussion is skipped here and we only
remark that in all remaining cases the pointwise estimate

(µ̄β − µ̄β′)(ūβ′ − ūβ) ≤ |β − β ′||ūβ′ − ūβ|

holds as well. Summarizing, we obtain

(µ̄β − µ̄β′)(ūβ′ − ūβ) ≤ |β − β ′||ūβ′ − ūβ| almost everywhere in Ω.

Integrating result in

(µ̄β − µ̄β′, ūβ′ − ūβ)L2 ≤ |Ω|1/2|β − β ′|‖ūβ′ − ūβ‖L2, (15)

and combing (14) with (15) leads to

‖ūβ′ − ūβ‖L2 ≤
1

α
|Ω|1/2|β − β ′|,
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which proves Lipschitz continuity of Φ and thus ends the proof.

Clearly, from the above lemma we get L2(Ω)-boundedness of the sequence

1

β − β ′
(ūβ − ūβ′) as β ′ → β, β ′ > β. (16)

Let u̇β denote a weak accumulation point of this sequence, i.e. a weak limit
of a subsequence. On the same subsequence (ȳβ − ȳβ′)/(β − β ′) = (A−1ūβ −
A−1ūβ′)/(β − β ′) → ẏβ weakly in H1

0(Ω) and strongly in L2(Ω). Moreover,
(p̄β − p̄β′)/(β−β ′) = (−A−⋆A−1ūβ −−A−⋆A−1ūβ′)/(β−β ′) → ṗβ strongly in
L2(Ω). We will characterize u̇β as right directional derivative of Φ and give
its explicit form. Similar arguments can be used to derive the left directional
derivative; for related results we also refer to [16].

For the following discussion we consider the optimality system (11) taking
into account that Uad = L2(Ω) and choosing c := α−1. This results in

Aȳβ − ūβ − f = 0, (17a)

A⋆p̄β + ȳβ − yd = 0, (17b)

−µ̄β + p̄β − αūβ = 0, (17c)

ūβ − max(0, ūβ + α−1(µ̄β − β)) − min(0, ūβ + α−1(µ̄β + β)) = 0. (17d)

Using (17c), we can replace µ̄β in (17d) and, due to the choice of c = α−1

obtain

ūβ − max(0, α−1(p̄β − β)) − min(0, α−1(p̄β + β)) = 0. (18)

Besides the fact that we have eliminated the variable µ̄β from the optimality
system (17), the formulation (18) also has the advantage that the expressions
in the pointwise max- and min-operators enjoy additional regularity. The
choice c = α−1 will be essential for the reasoning in the next section, where
we present an algorithm for the solution of (P). Next, we introduce the
functions

g−(β) :=
1

α
(p̄β + β) =

1

α
(A−1yd − A−⋆A−1(ūβ + f) + β), (19a)

g+(β) :=
1

α
(p̄β − β) =

1

α
(A−1yd − A−⋆A−1(ūβ + f) − β). (19b)

On the same subsequence as above we have

1

β − β ′
(g−(β) − g−(β ′)) −→ −

1

α
A−⋆A−1u̇β +

1

α
=: ġ−(β),
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where, due to the smoothing properties of the operator A−1 and its trans-
posed A−⋆ the latter convergence is strong in L2(Ω). Analogously, one obtains

1

β − β ′
(g+(β) − g+(β ′)) −→ −

1

α
A−⋆A−1u̇β −

1

α
=: ġ+(β)

strongly in L2(Ω). We now introduce the sets

S
+
β = {x ∈ Ω : g+(β) > 0 or (g+(β) = 0 ∧ ġ+(β) ≥ 0)},

S
−
β = {x ∈ Ω : g−(β) < 0 or (g−(β) = 0 ∧ ġ−(β) ≤ 0)}

and denote by χS the characteristic function for a set S ⊂ Ω. We are now
prepared to prove the following theorem.

Theorem 6. Let u̇β be a weak accumulation point of the sequence (16). Then

(A−1u̇β, u̇β) solves the auxiliary optimal control problem










minimize Jaux(ẏβ, u̇β) := 1
2‖ẏβ‖

2
L2 + α

2‖u̇β‖
2
L2 + (χS

+

β
− χS

−

β
, u̇β)

over (ẏβ, u̇β) ∈ H1
0(Ω) × L2(Ω)

subject to Aẏβ = u̇β ∈ Ω, u̇β = 0 in Ω \ (S−
β ∪ S

+
β ).

(21)

Proof : From (13) for (ūβ, µ̄β) and (ūβ′, µ̄β′), we obtain

A−⋆A−1u̇β + αu̇β + µ̇β = 0, (22)

where µ̇β is the weak limit of 1
β−β′

(µ̄β−µ̄β′) on the subsequence chosen above.

Using (19b) and separately arguing for sets with g+(β) > 0, g+(β) = 0 and
g+(β) < 0, one obtains that

1

β − β ′

(

max(0, g+(β)) − max(0, g+(β ′))
)

→
1

α
(ṗβ − 1)χS

+

β

strongly in L2(Ω). Similarly, with (19a)

1

β − β ′

(

min(0, g−(β)) − max(0, g−(β ′))
)

→
1

α
(ṗβ + 1)χ

S
−

β
.

Hence, from (18) we obtain

u̇β −
1

α
(ṗβ − 1)χS

+

β
−

1

α
(ṗβ + 1)χS

−

β
= 0, (23)

which yields that u̇β = 0 on Ω \ (S−
β ∪ S

+
β ). Moreover, from (23)

−ṗβ + αu̇β + χ
S

+

β
− χ

S
−

β
= 0 on S

−
β ∪ S

+
β . (24)
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Comparing (24) with (22) shows that µ̇β = 1 on S
+
β and µ̇β = −1 on S

−
β .

Now, it is easy to see that (ẏβ, u̇β) solves (21) and that µ̇β − (χS
+

β
−χS

−

β
) acts

as Lagrange multiplier for the equality constraint u̇β = 0 on Ω\(S−
β ∪S

+
β ).

Let us conclude this section with a discussion of structural properties of u̇β.
We consider the boundary of S

+
β . On the one hand, u̇β = 0 on Ω \ (S−

β ∪ S
+
β ).

On the other hand, from (24) we obtain that

−ṗβ + αu̇β − 1 = 0 in S
+
β . (25)

In our numerical tests we observe that usually ṗβ = A−⋆A−1u̇β is small com-
pared to αu̇β, and thus (25) shows that u̇β is of the order of magnitude of
1/α in S

+
β . Hence, u̇β obeys a jump of approximate magnitude α−1 along the

boundary of S
+
β . This jump in the (directional) derivative u̇β partly explains

the following behavior we observe in our test problems as we solve them for
decreasing β: Starting with large β, the optimal control equals zero until
β drops below a certain value, when the optimal control becomes different
from zero. This behavior can partly be explained with the L1-term in the
cost functional.

Moreover, for n ≤ 3, parts of Ω where ū has a different sign are always
separated by regions with positive measure, in which ūβ is identically zero.
This follows easily from standard regularity results for elliptic equations [12],
which show that ūβ ∈ H2(Ω): The Sobolev embedding theorem [1, p. 97]
yields that H2(Ω) embeds into the space of continuous functions, which im-
plies that p̄β is continuous. Now, the assertion follows from (18).

4. Primal-dual active set method
Here, we present a numerical technique to find the solution of (P) or, equiv-

alently, of the reformulated first-order optimality conditions (11). Obviously,
an algorithm based on (11) has to cope with the pointwise min- and max-
terms in (11d). One possibility to deal with these non-differentiabilities is
utilizing smooth approximations of the max- and min-operators. This leads
to a smoothed L1-norm term in (P) and thus has the disadvantage that the
typical properties of solutions of (P) (e.g. , the splitting into sets with u = 0
and u 6= 0) are lost. Hence, we prefer solving (11) directly instead of deal-
ing with a smoothed version. Since we focus on fast second-order methods,
we require an appropriate linearization of the nonlinear and nonsmooth sys-
tem (11). We use a recent generalized differentiability concept, which, for
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the convenience of the reader is briefly summarized in the next section. We
point out that this concept of semismoothness and generalized Newton meth-
ods holds in a function space setting. Such an infinite-dimensional analysis
has several advantages over purely finite-dimensional approaches: The reg-
ularity (or, more important, the non-regularity) of variables often explains
the behavior of algorithms dealing with the discretized problem; Moreover,
the well-posedness of a method in infinite dimensions is the basis for the
investigation of mesh-independence properties.

4.1. Semismoothness in function space. Since we want to apply the
differentiability concept introduced in [6, 15, 25] to (11), we briefly recall its
notion and some results here.

Definition 7. Let X, Y be Banach spaces, D ⊂ X be open and F : D −→ Y
be a nonlinear mapping. Then, we call the mapping F generalized differen-

tiable on the open subset U ⊂ D if there exists a mapping G : U −→ L(X, Y )
such that

lim
h→0

1

‖h‖X
‖F(x + h) − F(x) − G(x + h)h‖Y = 0 (26)

for every x ∈ U .

The above introduced mapping G, which need not be unique, is referred
to as generalized derivative. Note that in (26) G is evaluated at the point
x + h rather than at x and thus might change as h → 0. Focusing on (11d),
we are interested in the differentiability properties of the pointwise max- and
min-operators. To state the next result, which is due to [15], we restrict
ourselves to the pointwise max-operator. The corresponding result for the
min-operator follows easily from min(0, ·) = −max(0,−·).

Lemma 8. The pointwise max-operator Fmax : Lr(Ω) → Ls(Ω) defined by

Fmax(v) = max(0, v) for v ∈ Lr(Ω) is generalized differentiable for 1 ≤ s <
r ≤ ∞. The mapping

Gmax(y)(x) =

{

1 if y(x) ≥ 0,

0 if y(x) < 0,
(27)

is a generalized derivative of Fmax at y.

Above, Gmax is chosen as an element of the subgradient of convex analysis
(see [7]). However, generalized derivatives of Fmax need not be elements of the



OPTIMAL CONTROL WITH L1-COST 15

subgradient, see [15]. A generalized derivative of the pointwise min-operator
Fmin : Lr(Ω) → Ls(Ω) is

Gmin(y)(x) =

{

1 if y(x) ≤ 0,

0 if y(x) > 0.

We point out that the norm gap (i.e. , r < s) is essential for generalized
differentiability of Fmin and Fmax. Assume now we intend to find a root x̄ of

F(x) = 0 (28)

employing a Newton iteration. That is, given an iterate xk, the next iterate
xk+1 is computed from

F(xk) + G(xk)(xk+1 − xk) = 0.

Then, following [6, 15, 25] the following local convergence result holds:

Theorem 9. Suppose that x̄ ∈ D is a solution of (28) and that F is semis-

mooth in an open neighborhood U of x̄ with generalized derivative G. If

G(x)−1 exists for all x ∈ U and {‖G(x)−1‖ : x ∈ U} is bounded, the Newton

iteration

x0 ∈ U given, xk+1 = xk − G(xk)−1F(xk)

is well-defined and, provided x0 is sufficiently close to x̄, converges at super-

linear rate.

Now, we apply the above calculus to derive and analyze a solution algorithm
for (P).

4.2. Application to (P). ¿From (11c), we infer that

µ̄ = p̄ − αū.

Inserting this identity in (11d) results in

ū − max(0, ū + c(p̄ − αū − β)) − min(0, ū + c(p̄ − αū + β))

+ max(0, (ū− b) + c(p̄ − αū − β)) + min(0, (ū− a) + c(p̄ − αū + β)) = 0.
(29)

With the choice c := α−1, (29) becomes

ū − α−1 max(0, p̄ − β) − α−1 min(0, p̄ + β)

+ α−1 max(0, p̄ − β − αb) + α−1 min(0, p̄ + β − αa) = 0.
(30)
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Note that, now the unknown that appears inside the pointwise max- and min-
operators is p̄, which, compared to ū ∈ L2(Ω) obeys additional regularity. To
make this more precise, we introduce the operator S := −A−⋆A−1 : L2(Ω) →
H1

0(Ω) and denote by h := −A−⋆(A−1f − yd) ∈ H1
0(Ω). Then, (5) can be

written as
p̄ = Sū + h.

Let us consider the mapping

T : L2(Ω) → Ls(Ω) with s ∈











(2,∞] for n = 1,

(2,∞) for n = 2,

(2, 2n
(n−2)] for n ≥ 3,

(31)

defined by T u = p = Su + h. Strictly speaking, T u = I(Su + h) with I
denoting the Sobolev embedding (see e.g. [1]) of H1

0(Ω) into Ls(Ω) with s
as defined in (31). From the above considerations, it follows that T is well-
defined and continuous. Since T is affine, it is also Fréchet differentiable from
L2(Ω) to Ls(Ω). Replacing p̄ in (30) by T ū motivates to define F : L2(Ω) →
L2(Ω) by

F(u) :=u − α−1 max(0, T u − β) − α−1 min(0, T u + β)

+ α−1 max(0, T u − β − αb) + α−1 min(0, T u + β − αa).
(32)

This allows to express the optimality system (11) in the compact form

F(u) = 0. (33)

After the preparations above, we are now able to argue generalized differen-
tiability of the function F and derive a generalized Newton iteration for the
solution of (33) and thus for (P).

Theorem 10. The function F as defined in (32) is generalized differentiable

in the sense of Definition 7. A generalized derivative is given by

G(u)(v) = v − α−1χA(T v) − α−1χB(T v) + α−1χC(T v) + α−1χD(T v), (34)

where

A = {x ∈ Ω : T u − β ≥ 0 a.e. in Ω},

B = {x ∈ Ω : T u + β ≤ 0 a.e. in Ω},

C = {x ∈ Ω : T u − β − αb ≥ 0 a.e. in Ω},

D = {x ∈ Ω : T u + β − αa ≤ 0 a.e. in Ω}.
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Proof : After the above discussion, the prove is an application of the general
theory from Section 4.1 to (32). For showing that the conditions required for
the application of Theorem 9 are satisfied, we restrict ourselves to the first
max-term in (32). Analogous reasoning yields generalized differentiability of
the remaining terms in (32) and thus of F . From the smoothing property of
the affine operator T we obtain for each u ∈ L2(Ω) that T u ∈ Ls(Ω) with
some s > 2. Thus, from Lemma 8 it follows that

F1 : u → max(0, T u − β)

is semismooth in the sense of Definition 7 if considered as mapping from
L2(Ω) into L2(Ω); Moreover, for its generalized derivative we obtain

G1(u)(v) = χA(T v),

where χA denotes the characteristic function for the set A = {x ∈ Ω :
T u − β ≥ 0 a.e. in Ω}, compare with (27). A similar argumentation for the
remaining max- and min-operators in (32) shows that the whole function F
is generalized differentiable and that a generalized derivative is given by (34),
which ends the proof.

We can now state our algorithm for the solution of (P).

Algorithm 1 (semismooth Newton).

(1) Initialize u0 ∈ L2(Ω) and set k := 0.
(2) Unless some stopping criterion is satisfied, compute the generalized

derivative G(uk) as given in (34) and derive δuk from

G(uk)δuk = −F(uk). (35)

(3) Update uk+1 := uk + δuk, set k := k + 1 and return to Step 1.

Now, Theorem 9 applies and yields the following convergence result for
Algorithm 1:

Theorem 11. Let the initialization u0 be sufficiently close to the solution ū
of (P). Then the iterates uk of Algorithm 1 converge superlinearly to ū in

L2(Ω). Moreover, the corresponding states yk converge superlinearly to ȳ in

H1
0(Ω).

Proof : To apply Theorem 9, it remains to show that the generalized deriv-
ative (34) is invertible and that the norms of the inverse linear mappings
are bounded. Both things follow with some calculations (that we skip here)
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from the fact that the system solved in each step constitutes the optimality
system for a uniquely solvable auxiliary problem.

We conclude this section with the statement of a different, more explicit
form for the Newton step (35) in Algorithm 1. This alternative formulation
also justifies the name “primal-dual active set strategy” for Algorithm 1.

Utilizing (34), the explicit statement of the Newton step (35) is

δuk − α−1χBk
−

(T δuk) − α−1χBk
+
(T δuk) + α−1χAk

a
(T δuk) + α−1χAk

b
(T δuk)

= −uk + α−1χBk
−

(T uk + β) + α−1χBk
+
(T uk − β)

− α−1χAk
a
(T uk + β − αb) + α−1χAk

b
(T uk − β − αa),

(36)

where

B
k
− = {x ∈ Ω : T uk + β ≤ 0 a.e. in Ω}, (37a)

B
k
+ = {x ∈ Ω : T uk − β ≥ 0 a.e. in Ω}, (37b)

A
k
a = {x ∈ Ω : T uk + β − αa ≤ 0 a.e. in Ω}, (37c)

A
k
b = {x ∈ Ω : T uk − β − αb ≥ 0 a.e. in Ω}. (37d)

Note that Ak
a ⊂ Bk

− and Ak
b ⊂ Bk

+. To obtain a disjoint splitting of Ω, we
introduce the sets

I
k
− := B

k
− \ A

k
a, I

k
+ := B

k
+ \ A

k
b , A

k
o := Ω \ (Bk

− ∪ B
k
+). (38)

These definitions result in the following disjoint splitting of Ω:

Ω = A
k
a ∪̇ I

k
− ∪̇ A

k
o ∪̇ I

k
+ ∪̇ A

k
b . (39)

Observe that only the iterates for the control uk appear explicity in Algo-
rithm 1. The corresponding iterates for the state, the adjoint state and the
multiplier are, in terms of uk, given by

pk = T uk, yk = A−1(uk + f) and µk = T uk − αuk, (40)

compare with the definition of T on page 16 and with (11a)–(11c).
Concerning the sets defined in (37), we remark that for c = α−1 we obtain

α−1T uk = α−1pk = uk + c(pk − αuk) = uk + cµk. (41)

Therefore, replacing T uk by uk + cµk in (37), the sets B
k
−, Bk

+, Ak
a and A

k
b

can equivalently be determined using both the primal variable uk and the
dual variable (i.e. the Lagrange multiplier) µk. This relates (37) to the NCP
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function (11d) and also explains the notion primal-dual in the restatement
of Algorithm 1 below. Utilizing the above preparations, we can dicuss the
iteration rule (36) separately on the subsets of the splitting (39). To start
with, on Ak

a we obtain

δuk − α−1T δuk + α−1T δuk = −uk + α−1(T uk + β) − α−1(T uk + β − αa),

where we used that Ak
a ⊂ Bk

−. Since δuk = uk+1 − uk, this results in the
setting

uk+1 = a on A
k
a.

Next we turn to I
k
−. From (36) we obtain

δuk − α−1T δuk = −uk + α−1(T uk + β)

and, with δuk = uk+1 − uk, that uk+1 − α−1T uk+1 = α−1β. Multiplying with
α and using (40) yields

µk+1 = −β on I
k
−.

Continuing the evaluation of (36) separately on the remaining sets of the
splitting (39) and using (40) yields

uk+1 = 0 on A
k
o ,

µk+1 = β on I
k
+,

uk+1 = b on A
k
b .

Thus, we can restate Algorithm 1 as primal-dual active set method.

Algorithm 2 (primal-dual active set method).

(1) Initialize u0 ∈ L2(Ω), compute y0, p0 and µ0 as in (40) and set k := 0.
(2) Unless some stopping criterion is satisfied, derive the sets A

k
a, I

k
−, Ak

o, I
k
+

and Ak
b following (37), (38) and (41), i.e.

A
k
a = {x ∈ Ω : uk + α−1(µk + β) ≤ a a.e. in Ω},

I
k
− = {x ∈ Ω : a < uk + α−1(µk + β) ≤ 0 a.e. in Ω},

A
k
o = {x ∈ Ω : |uk + α−1µk| < β a.e. in Ω},

I
k
+ = {x ∈ Ω : 0 ≤ uk + α−1(µk − β) < b a.e. in Ω},

A
k
b = {x ∈ Ω : uk + α−1(µk − β) ≥ b a.e. in Ω}.
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(3) Solve for (uk+1, yk+1, pk+1, µk+1):

Ayk+1 = uk+1 + f,

A⋆pk+1 = yd − yk+1,

−pk+1 + αuk+1 + µk+1 = 0,

uk+1 = a on A
k
a,

µk+1 = −β on I
k
−,

uk+1 = 0 on A
k
o,

µk+1 = β on I
k
+,

uk+1 = b on A
k
b .

(4) Set k := k + 1 and return to Step 2.

5. Numerical Examples
We end this paper with a numerical study. Our aim is twofold: Firstly, we

examine the influence of the L1-norm on the structure of solutions of (P) and
numerically verify our theoretical findings in Section 3. Secondly, we study
the performance of our algorithm for the solution of (P).

As initialization u0 for Algorithm 1 (or equivalently Algorithm 2) we choose
the solution of (11) with µ̄ = 0, that is, the solution of (P) with β = 0
and Uad = L2(Ω). We terminate the algorithm if the sets A

k
a,I

k
−,Ak

o,I
k
+,Ak

b

coincide for two consecutive iterations or as soon as the discrete analogue of
‖uk+1 − uk‖L2 drops below the tolerance ε = 10−10. If the linear systems in
Algorithm 2 are solved exactly, the first stopping criterion yields the exact
solution of (P). To be more precise, after discretization this stopping rule
results in the exact solution of the discrete analogue of (P).

Subsequently, we focus on the following test problems. We use Ω = [0, 1]2

and, unless otherwise specified, A = −∆.

Example 1. The data for this example are as follows: a ≡ −30, b ≡ 30,
yd = sin(2πx) sin(2πy) exp(2x)/6, f = 0 and α = 0.0001. We study the
influence of the parameter β onto the solution. For β = 0.001, the optimal
control ū with corresponding condensed multiplier µ̄, the optimal state and
the splitting into the active/inactive sets are shown in Figure 1.

Example 2. This second example is constructed in order to obtain sets Aa,
I−, Ao, I+, Ab that have a more complex structure at the solution. Moreover,
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Figure 1. Example 1: Optimal control ū (upper left), corre-
sponding multiplier µ̄ (upper right), optimal state ȳ (lower left),
and visualization of the splitting (lower right) according to (39)
into Aa (in black), I− (in dark grey), Ao (in middle grey), I+ (in
light grey) and Ab (in white).

the upper control bound b is zero on a part of Ω with positive measure. The
exact data are a ≡ −10,

b =

{

0 for (x, y) ∈ [0, 1/4]× [0, 1],

−5 + 20x for (x, y) ∈ [1/4, 1]× [0, 1],

yd = sin(4πx) cos(8πy) exp(2x), f = 10 cos(8πx) cos(8πy), α = 0.0002 and
β = 0.002. The solution (ȳ, ū), as well as the corresponding Lagrange mul-
tiplier are shown in (2). Moreover we visualize the splitting (39) at the
solution.



22 G. STADLER

0

0.5

1

0

0.5

1
−10

0

10

20

optimal control u

0

0.5

1

0

0.5

1

−5

0

5

x 10
−3

multiplier µ

0

0.5

1

0

0.5

1
−0.02

0

0.02

0.04

0.06

optimal state y

Figure 2. Example 2: Optimal control ū (upper left), corre-
sponding multiplier µ̄ (upper right), optimal state ȳ (lower left),
and visualization of the splitting (lower right) according to (39)
into Aa (in black), I− (in dark grey), Ao (in middle grey), I+ (in
light grey) and Ab (in white).

5.1. Example 3. For this example we use the differential operator A =
∇a(x, y)∇, with a(x, y) = y2 + 0.05. The remaining data are given by yd ≡
0.5, f = 0 and α = 0.0001. We do not assume box constraints for the
control, i.e. a ≡ −∞ and b ≡ ∞. In Figure 3, the optimal control ū and the
corresponding multiplier µ̄ are shown for β = 0.005.

5.2. Qualitative discussion of the results.
Complementarity conditions. We start with visually verifying the comple-
mentarity conditions for Example 1, see Figure 1, upper row. First note that
ū = 0 on a relatively large part of Ω. Further, observe that on this part
|µ̄| ≤ β holds, as expected. On subdomains with 0 ≤ u ≤ b, the condensed
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Figure 3. Example 3: Optimal control ū (left) and correspond-
ing multiplier µ̄ (right).

multiplier µ = β; Moreover, ū = b corresponds to sets where µ ≥ β, as de-
sired. Similarly, on can verify visually that the complementarity conditions
hold for ū ≤ 0 as well.
The role of β – placement of control devices. To show the influence of the
parameter β on the optimal control ū, we solve Example 1 for various values
of β while keeping α = 0.0001 fixed. For β = 0.02 or larger, the optimal
control ū is identically zero, compare with Lemma 4. As β decreases, the size
of the region with ū different from zero increases. In Figure 4 we depict the
optimal controls for β = 0.008, 0.003, 0.0005 and 0. To realize the optimal
control for β = 0.008 in an application, only two relatively small control
devices are needed since ū is zero on large parts of the domain. This means
that no distributed control device that acts on the whole of Ω is necessary.
Note that the solution for β = 0 shown in Figure 4 is the solution for the
classical smooth optimal control problem (P2).

Next, we turn to Example 3. In Figure 5, we visualize for different values
of β those parts of Ω, where control devices need to be placed (i.e. where the
optimal control is nonzero). It can be seen that the control area shrinks for
increasing β. Moreover, for different β also the shape of the domain with
nonzero control changes significantly.
Derivatives with respect to β. Now, we derive the right-side directional deriva-
tives u̇β using Theorem 6. To be precise, we use an extended version of this
theorem, since we also allow for box constraints on the control. Without
proof we remark that, for strongly active box constraints (i.e. where the La-
grange multiplier satisfies |µ̄| > β), u̇β = 0 holds. For α = 0.0001 and



24 G. STADLER

0

0.5

1

0

0.5

1
−20

−10

0

10

20

optimal control u for β=0.008

0

0.5

1

0

0.5

1
−40

−20

0

20

40

optimal control for β=0.003

0

0.5

1

0

0.5

1
−40

−20

0

20

40

optimal control for β=0.0005

0

0.5

1

0

0.5

1
−40

−20

0

20

40

optimal control for β=0

Figure 4. Example 1: Optimal control ū for β = 0.008 (upper
left), β = 0.003 (upper right), β = 0.0005 (lower right) and β = 0
(lower left).

Figure 5. Example 3: Visualization of sets with nonzero opti-
mal control ū (black) for β = 0.001, 0.01, 0.05, 0.1 (from left to
right); Only in the black parts of Ω control devices are needed.
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Figure 6. Directional derivatives u̇β for β = 0.001 in Example
1 (left) and β = 0.002 in Example 2 (right).

β = 0.001, the result is shown on the left of Figure 6. Observe that the
sensitivity for changes in β in only nonzero on I

−
β ∪ I

+
β , since in this example

numerical strict complementarity holds. As observed at the end of Section
3, u̇β is noncontinuous with jumps approximate magnitude α−1 = 104. On
the right hand side of Figure 6, we depict u̇β for Example 2, where β = 0.002
and α = 0.0002. Again, the height of the jump along the boundaries of zones
where u̇β = 0 is of magnitude α−1 = 5000.

5.3. Performance of the algorithm.
Number of iterations. In Table 1 we show the number of iterations required
for the solution of Example 1 for various values of β. For all mesh-sizes h and
choices of β the algorithm yields an efficient behavior. Note also the stable
behavior for various meshsizes h. The parameter β does not have a significant
influence on the performance of the algorithm. Thus, the computational
effort for solving problem (P) is comparable to the one for the solution of
(P2).

Though in the second example the solution obeys a more complex structure
of active sets, the algorithm detects the solution after 3 iterations for meshes
with h = 1/32, . . .1/256.
Convergence rate. For Example 3, we study the convergence of the iterates uk

to the optimal control ū. In Table 2, we show the L2-norm of the differences
uk−ū and the quotients ‖uk−ū‖L2/‖uk−1−ū‖L2 for α = 0.0001 and β = 0.005.
Observe that after a few iterations, the quotients decrease monotonically.
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Table 1. Number of iterations for Example 1 with α = 0.0001
for meshsize h and various values for β.

h β
0.008 0.003 0.001 0.0005 0

1/32 5 5 4 4 3
1/64 5 5 4 4 4
1/128 5 5 5 4 4
1/256 6 6 5 5 4

This numerically verifies the local superlinear convergence rate proven in
Theorem 9.

Table 2. Convergence of uk in Example 3, h = 1/128.
k ‖uk − ū‖ ‖uk − ū‖/‖uk−1 − ū‖

1 4.588585e + 00 −
2 5.045609e + 00 1.099600e − 00
3 2.148787e − 01 4.258726e − 02
4 2.054260e − 01 9.560091e − 01
5 5.556892e − 02 2.705058e − 01
6 6.047484e − 04 1.088285e − 02
7 0.000000 0.000000

Attempts to speed up the algorithm when solving (P) for various β. If one
is interested in placing control devices in an optimal way, one needs to solve
(P) for several values of β in order to find a control structure that is re-
alizable with the available resources. We considered two ideas to speed up
the algorithm for this case: The first one used an available solution for β
as initialization for the algorithm to solve (P) for β ′. The second one used
uβ + (β ′ − β)u̇β as initialization for (P) with β ′. We tested both approaches
when we solved Example 3 for various β. Unfortunately, we did not observe
a significant speedup of the iteration.
Speeding up the algorithm using a nested iteration. Here, we use a prolon-
gated solution on a rough grid as initialization on a finer grid. We start with
a very rough grid and iteratively repeat the process (solve – prolongate –
solve of next finer grid – . . . ) until the desired mesh-size is obtained. In
Table 3, we give the results obtained for Example 3 with β = 0.001 and
β = 0.01, where h = 1/256 for the finest grid. Using the nested strategy,
only 3 iterations are needed on the finest grid, compared to 11 when the
iteration is only done on that grid. Since the effort on the rougher meshes
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is small compared to the finer one, using the nested approach speeds up the
solution process considerably (only 39% of CPU time is needed).

Table 3. Example 3: Number of iterations for nested iteration
and for direct solution on finest grid.

h 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−8 CPU-time ratio
#iterations 3 2 2 6 4 3 3 11 0.39
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