Skip to main content
Log in

A stable primal–dual approach for linear programming under nondegeneracy assumptions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper studies a primal–dual interior/exterior-point path-following approach for linear programming that is motivated on using an iterative solver rather than a direct solver for the search direction. We begin with the usual perturbed primal–dual optimality equations. Under nondegeneracy assumptions, this nonlinear system is well-posed, i.e. it has a nonsingular Jacobian at optimality and is not necessarily ill-conditioned as the iterates approach optimality. Assuming that a basis matrix (easily factorizable and well-conditioned) can be found, we apply a simple preprocessing step to eliminate both the primal and dual feasibility equations. This results in a single bilinear equation that maintains the well-posedness property. Sparsity is maintained. We then apply either a direct solution method or an iterative solver (within an inexact Newton framework) to solve this equation. Since the linearization is well posed, we use affine scaling and do not maintain nonnegativity once we are close enough to the optimum, i.e. we apply a change to a pure Newton step technique. In addition, we correctly identify some of the primal and dual variables that converge to 0 and delete them (purify step).

We test our method with random nondegenerate problems and problems from the Netlib set, and we compare it with the standard Normal Equations NEQ approach. We use a heuristic to find the basis matrix. We show that our method is efficient for large, well-conditioned problems. It is slower than NEQ on ill-conditioned problems, but it yields higher accuracy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen, E.D., Ye, Y.: Combining interior-point and pivoting algorithms for linear programming. Manag. Sci. 42, 1719–1731 (1996)

    Article  MATH  Google Scholar 

  2. Anstreichner, K.M.: Linear programming in O((n 3/ln n)L) operations. SIAM J. Optim. 9(4), 803–812 (1999) (electronic). Dedicated to John E. Dennis, Jr., on his 60th birthday

    Article  MathSciNet  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.S.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.S.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. Ser. A 88(3), 411–424 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benzi, M., Meyer, C.D., Tu̇ma, M.: A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 17(5), 1135–1149 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benzi, M., Tu̇ma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19(3), 968–994 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28(2), 149–171 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Björck, Å.: Methods for sparse least squares problems. In: Bunch, J.R., Rose, D.J. (eds.) Sparse Matrix Computations, pp. 177–199. Academic Press, New York (1976)

    Google Scholar 

  10. Burke, J.: On the identification of active constraints II. The nonconvex case. SIAM J. Numer. Anal. 27(4), 1081–1103 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burke, J.V., Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25(5), 1197–1211 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burke, J.V., Moré, J.J.: Exposing constraints. SIAM J. Optim. 4(3), 573–595 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chai, J.-S., Toh, K.-C.: Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming. Comput. Optim. Appl. 36(2/3), 221–247 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. De Leone, R., Mangasarian, O.L.: Serial and parallel solution of large scale linear programs by augmented Lagrangian successive overrelaxation. In: Optimization, Parallel Processing and Applications, Oberwolfach, Karlsruhe, 1987. Lecture Notes in Economics and Mathematical Systems, vol. 304, pp. 103–124. Springer, Berlin (1988)

    Google Scholar 

  15. Dennis, J.E. Jr., Schnabel, B.R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics in Applied Mathematics, vol. 16. SIAM, Philadelphia (1996) (Corrected reprint of the 1983 original)

    MATH  Google Scholar 

  16. Dennis, J.E. Jr., Wolkowicz, H.: Sizing and least-change secant methods. SIAM J. Numer. Anal. 30(5), 1291–1314 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dominguez, J., Gonzalez-Lima, M.D.: A primal–dual interior-point algorithm for quadratic programming. Numer. Algorithms 105, 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  18. El-Bakry, A.S., Tapia, R.A., Zhang, Y.: A study of indicators for identifying zero variables in interior-point methods. SIAM Rev. 36(1), 45–72 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming Sequential Unconstrained Minimization Techniques. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  20. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Freund, R.W., Jarre, F.: A QMR-based interior-point algorithm for solving linear programs. Math. Program. Ser. B 76, 183–210 (1996)

    MathSciNet  Google Scholar 

  22. Golub, G.H., Pereyra, V.: The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10, 413–432 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, Ph.L.: Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Tr/pa/00/56, CERFACS, Toulouse, France (2001)

  24. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  25. Güler, O., Den Hertog, D., Roos, C., Terlaky, T., Tsuchiya, T.: Degeneracy in interior point methods for linear programming: a survey (Degeneracy in Optimization Problems). Ann. Oper. Res. 46/47(1–4), 107–138 (1993)

    Article  Google Scholar 

  26. Hager, W.W.: The dual active set algorithm and the iterative solution of linear programs. In: Novel Approaches to Hard Discrete Optimization, Waterloo, ON, 2001. Fields Institute Communications, vol. 37, pp. 97–109. Am. Math. Soc., Providence (2003)

    Google Scholar 

  27. Júdice, J.J., Patricio, J., Portugal, L.F., Resende, M.G.C., Veiga, G.: A study of preconditioners for network interior point methods. Comput. Optim. Appl. 24(1), 5–35 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kantorovich, L.V.: Functional analysis and applied mathematics. Uspekhi Mat. Nauk 3, 89–185 (1948) (Transl. by C. Benster as N.B.S. Rept. 1509, Washington, 1952)

    Google Scholar 

  29. Keil, C., Jansson, C.: Computational experience with rigorous error bounds for the Netlib linear programming library. Reliab. Comput. 12(4), 303–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lu, S., Barlow, J.L.: Multifrontal computation with the orthogonal factors of sparse matrices. SIAM J. Matrix Anal. Appl. 17(3), 658–679 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mangasarian, O.L.: Iterative solution of linear programs. SIAM J. Numer. Anal. 18(4), 606–614 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  32. Matstoms, P.: The multifrontal solution of sparse linear least squares problems. Licentiat thesis, Department of Mathematics, Linköping University, Sweden (1991)

  33. Matstoms, P.: Sparse QR factorization in MATLAB. ACM Trans. Math. Softw. 20, 136–159 (1994)

    Article  MATH  Google Scholar 

  34. Mehrotra, S.: Implementations of affine scaling methods: approximate solutions of systems of linear equations using preconditioned conjugate gradient methods. ORSA J. Comput. 4(2), 103–118 (1992)

    MATH  MathSciNet  Google Scholar 

  35. Mehrotra, S., Wang, J.-S.: Conjugate gradient based implementation of interior point methods for network flow problems. In: Linear and Nonlinear Conjugate Gradient-Related Methods, Seattle, WA, 1995, pp. 124–142. SIAM, Philadelphia (1996)

    Google Scholar 

  36. Mehrotra, S., Ye, Y.: Finding an interior point in the optimal face of linear programs. Math. Program. A 62(3), 497–515 (1993)

    Article  MathSciNet  Google Scholar 

  37. Oliveira, A.R.L., Sorensen, D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra Appl. 394, 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ordóñez, F., Freund, R.M.: Computational experience and the explanatory value of condition measures for linear optimization. SIAM J. Optim. 14(2), 307–333 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  39. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pang, J.: Error bounds in mathematical programming (Lectures on Mathematical Programming (ISMP97), Lausanne, 1997). Math. Program. Ser. B 79(1–3), 299–332 (1997)

    Google Scholar 

  41. Perez-Garzia, S.: Alternative iterative primal–dual interior-point algorithms for linear programming. Master’s thesis, Simon Bolivar University, Center for Statistics and Mathematical Software (CESMa), Venezuela (2003)

  42. Perez-Garcia, S., Gonzalez-Lima, M.: On a non-inverse approach for solving the linear systems arising in primal–dual interior point methods for linear programming. Technical report 2004-01, Simon Bolivar University, Center for Statistical and Mathematical Software, Caracas, Venezuela (2004)

  43. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston/Wiley, Washington (1977) (Transl. ed. Fritz John)

    MATH  Google Scholar 

  44. Van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14–23, (1969/1970)

    Article  MATH  MathSciNet  Google Scholar 

  45. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  46. Vanderbei, R.J.: LOQO: an interior point code for quadratic programming (Interior Point Methods). Optim. Methods Softw. 11/12(1–4), 451–484 (1999)

    Article  MathSciNet  Google Scholar 

  47. Wei, H.: Numerical stability in linear programming and semidefinite programming. Ph.D. thesis, University of Waterloo (2006)

  48. Wolkowicz, H.: Solving semidefinite programs using preconditioned conjugate gradients. Optim. Methods Softw. 19(6), 653–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wright, M.H.: Ill-conditioning and computational error in interior methods for nonlinear programming. SIAM J. Optim. 9(1), 84–111 (1999) (electronic)

    Article  MathSciNet  Google Scholar 

  50. Wright, S.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1996)

    Google Scholar 

  51. Wright, S.: Modifying SQP for degenerate problems. Technical report, Argonne National Laboratory (1997)

  52. Wright, S.J.: Stability of linear equations solvers in interior-point methods. SIAM J. Matrix Anal. Appl. 16(4), 1287–1307 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  53. Wright, S.J.: Stability of augmented system factorizations in interior-point methods. SIAM J. Matrix Anal. Appl. 18(1), 191–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zhang, Y.: User’s guide to LIPSOL: linear-programming interior point solvers V0.4 (Interior Point Methods). Optim. Methods Softw. 11/12(1–4), 385–396 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Wolkowicz.

Additional information

M. Gonzalez-Lima research supported by Universidad Simón Bolívar (DID-GID001) and Conicit (project G97000592), Venezuela. H. Wei research supported by The Natural Sciences and Engineering Research Council of Canada and Bell Canada. H. Wolkowicz research supported by The Natural Sciences and Engineering Research Council of Canada.

URL: http://orion.math.uwaterloo.ca/~hwolkowi/henry/reports/ABSTRACTS.html. This report is a revision of the earlier CORR 2001-66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Lima, M., Wei, H. & Wolkowicz, H. A stable primal–dual approach for linear programming under nondegeneracy assumptions. Comput Optim Appl 44, 213–247 (2009). https://doi.org/10.1007/s10589-007-9157-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9157-2

Keywords

Navigation