Skip to main content
Log in

A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A multi-objective optimization evolutionary algorithm incorporating preference information interactively is proposed. A new nine grade evaluation method is used to quantify the linguistic preferences expressed by the decision maker (DM) so as to reduce his/her cognitive overload. When comparing individuals, the classical Pareto dominance relation is commonly used, but it has difficulty in dealing with problems involving large numbers of objectives in which it gives an unmanageable and large set of Pareto optimal solutions. In order to overcome this limitation, a new outranking relation called “strength superior” which is based on the preference information is constructed via a fuzzy inference system to help the algorithm find a few solutions located in the preferred regions, and the graphical user interface is used to realize the interaction between the DM and the algorithm. The computational complexity of the proposed algorithm is analyzed theoretically, and its ability to handle preference information is validated through simulation. The influence of parameters on the performance of the algorithm is discussed and comparisons to another preference guided multi-objective evolutionary algorithm indicate that the proposed algorithm is effective in solving high dimensional optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, C.W.: Advances in Evolutionary Algorithms: Theory, Design and Practice. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Abraham, A., Jain, L., Goldberg, R.: Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  3. Zitzler, E., Laumanns, M., Bleule, S.: A tutorial on evolutionary multiobjective optimization. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation, pp. 3–37. Springer, Berlin (2004)

    Google Scholar 

  4. Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 32(7), 841–855 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zadeh, L.A.: Making computers think like people. IEEE Spectr. 8, 26–32 (1984)

    Google Scholar 

  7. Coello Coello, C.A.: Handling preferences in evolutionary multiobjective optimization: A survey. In: 2000 Congress on Evolutionary Computation, IEEE Service Center, Piscataway, New Jersey, pp. 30–37, July 2000

  8. Fonseca, C.M., Fleming, P.J.: Multiobjective evolutionary algorithms made easy: Selection, sharing, and mating restriction. In: Proceedings of the First International Conference on Evolutionary Algorithms in Engineering Systems: Innovations and Applications, Sheffield, UK, pp. 42–52. IEE, September 1995

  9. Greenwood, G.W., Hu, X., D’Ambrosio, J.G.: Fitness function for multiple objective optimization problems: Combining preferences with Pareto ranking. In: Belew, R.K., Vose, M.D. (eds.) Foundations of Genetic Algorithms, vol. 4, pp. 437–455. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  10. Deb, K.: Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. KanGAL Report 99002, Indian Institute of Technology, Kanpur, India (1999)

  11. Branke, J., Kaussler, T., Schmeck, H.: Guidance in evolutionary multi-objective optimization. Adv. Eng. Softw. 32, 499–507 (2001)

    Article  MATH  Google Scholar 

  12. Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. KanGAL Report 2004004, Indian Institute of Technology, Kanpur, India (2004)

  13. Cvetkovic, D., Parmee, I.C.: Preferences and their application in evolutionary multiobjective optimisation. IEEE Trans. Evol. Comput. 6(1), 42–57 (2002)

    Article  Google Scholar 

  14. Parmee, I.C., Cvetkovic, D., Watson, A.H., Bonham, C.R.: Multi-objective satisfaction within an interactive evolutionary design environment. J. Evolut. Comput. 8(2), 197–222 (2000)

    Article  Google Scholar 

  15. Cvetkovic, D., Parmee, I.C.: Genetic algorithm-based multi-objective optimisation and conceptual engineering design. In: Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 29–36. IEEE, Washington D.C. (1999)

    Google Scholar 

  16. Jin, Y.C., Sendhoff, B.: Incorporation of fuzzy preferences into evolutionay multiobjective optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, vol. 1, pp. 26–30. Orchid Country Club, Singapore, November 2002

  17. Jin, Y.C., Okabe, T., Sendhoff, B.: Adapting weighted aggregation for multiobjective evolution strategies. In: First International Conference on Evolutionary Multi-Criterion Optimization, Zurich, Switzerland, March 2001. Lecture Notes in Computer Science, vol. 1993, pp. 96–110. Springer, Berlin (2001)

    Chapter  Google Scholar 

  18. Phelps, S., Koksalan, M.: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Manag. Sci. 49(12), 1726–1738 (2003)

    Article  Google Scholar 

  19. Klamroth, K., Miettinen, K.: Integrating approximation and interactive decision making in multicriteria optimization. Oper. Res. 56(1), 222–234 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Deb, K., Sundar, J., Uday, B.R.N., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006)

    MathSciNet  Google Scholar 

  21. Di Pierro, F., Shoon-Thiam, K., Savic, D.A.: An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans. Evolut. Comput. 11(1), 17–45 (2007)

    Article  Google Scholar 

  22. Das, I.: A preference ordering among various Pareto optimal alternatives. Struct. Optim. 18(1), 30–35 (1999)

    Article  Google Scholar 

  23. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Conference on Parallel Problem Solving from Nature (PPSN VIII), Birmingham, UK, September 2004, vol. 3242, pp. 832–842. Springer, Berlin (2004)

    Google Scholar 

  24. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1999)

    MATH  Google Scholar 

  25. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: A history and analysis. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1998)

  26. Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer, Norwell (1994)

    Google Scholar 

  27. Ekel, P.Y., Silva, M.R., Schuffner Neto, F., Palhares, R.M.: Fuzzy preference modeling and its application to multiobjective decision making. Comput. Math. Appl. 52(1–2), 179–196 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sakawa, M., Kato, K.: An interactive fuzzy satisficing method for general multiobjective 0-1 programming problems through genetic algorithms with double strings based on a reference solution. Fuzzy Sets Syst. 125(3), 289–300 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sakawa, M., Yauchi, K.: An interactive fuzzy satisficing method for multiobjective nonconvex programming problems through floating point genetic algorithms. Eur. J. Oper. Res. 117(1), 113–124 (1999)

    Article  MATH  Google Scholar 

  30. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic, New York (2002)

    MATH  Google Scholar 

  31. Liu, S.Y., Chi, S.C.: A fuzzy multiple attribute decision making approach using modified lexicographic method. In: IEEE International Conference on Systems, Man and Cybernetics, Canada, pp. 19–24. IEEE (1995)

  32. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2004)

    Google Scholar 

  33. Brans, J.P., Vincke, P.: A preference ranking organisation method (the PROMETHEE method for multiple criteria decision-making). Manag. Sci. 31(6), 647–656 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller, part I. IEEE Trans. Syst. Man Cybern. SMC-20, 404–418 (1990)

    Article  Google Scholar 

  35. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective evolutionary algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  36. Deb, K., Goel, T.: Controlled elist non-dominated sorting evolutionary algorithms for better convergence. In: First International Conference on Evolutionary Multi-Criterion Optimization, Zurich, Switzerland, pp. 67–81. Springer, Berlin (2001)

    Chapter  Google Scholar 

  37. Chakraborti, N., Siva Kumar, B., Satish Babu, V., Moitra, S., Mukhopadhyay, A.: A new multi-objective genetic algorithm applied to hot rolling process. Appl. Math. Model. (2007). doi:10.1016/j.apm.2007.06.011

    Google Scholar 

  38. Roychowdhury, A., Pratihar, D.K., Bose, N., Sankaranarayanan, K.P., Sudhahar, N.: Diagnosis of the diseases—using a GA-fuzzy approach. Inf. Sci. 162(2), 105–120 (2004)

    Article  Google Scholar 

  39. Karr, C.L., Wilson, E.L.: Improved electric arc furnace operation via implementation of a geno-fuzzy control system. Mater. Manuf. Process. 20(3), 381–405 (2005)

    Article  Google Scholar 

  40. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 8th edn. Addison-Wesley Longman, Boston (1998)

    MATH  Google Scholar 

  41. Mucientes, M., Moreno, D.L., Bugarín, A., Barro, S.: Design of a fuzzy controller in mobile robotics using genetic algorithms. Appl. Soft Comput. 7(2), 540–546 (2007)

    Article  Google Scholar 

  42. Jha, R.K., Singh, B., Pratihar, D.K.: On-line stable gait generation of a two-legged robot using a genetic-fuzzy system. Robot. Auton. Syst. 53(1), 15–35 (2005)

    Article  Google Scholar 

  43. Deb, K., Kumar, A.: Real-coded evolutionary algorithms with simulated binary crossover: Studies on multimodal and multiobjective problems. Complex Syst. 9, 431–454 (1995)

    Google Scholar 

  44. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolut. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Shen.

Additional information

Supported by National Key Laboratory of Spatial Intelligent Control.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Guo, Y., Chen, Q. et al. A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic. Comput Optim Appl 46, 159–188 (2010). https://doi.org/10.1007/s10589-008-9189-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9189-2

Keywords

Navigation