Skip to main content
Log in

Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the present work, we apply a variational discretization proposed by the first author in (Comput. Optim. Appl. 30:45–61, 2005) to Lavrentiev-regularized state constrained elliptic control problems. We extend the results of (Comput. Optim. Appl. 33:187–208, 2006) and prove weak convergence of the adjoint states and multipliers of the regularized problems to their counterparts of the original problem. Further, we prove error estimates for finite element discretizations of the regularized problem and investigate the overall error imposed by the finite element discretization of the regularized problem compared to the continuous solution of the original problem. Finally we present numerical results which confirm our analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alibert, J.-J., Raymond, J.-P.: Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls. Numer. Funct. Anal. Optim. 18, 235–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37, 1176–1194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergounioux, M., Kunisch, K.: Primal-dual active set strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22, 193–224 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergounioux, M., Kunisch, K.: On the structure of the Lagrange multiplier for state-constrained optimal control problems. Syst. Control Lett. 48, 169–176 (2002)

    Article  MathSciNet  Google Scholar 

  5. Casas, E.: L 2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47, 627–632 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24, 1309–1317 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions. Lecture Notes Math., vol. 1341. Springer, Berlin (1988)

    MATH  Google Scholar 

  9. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45, 1937–1953 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Deckelnick, K., Hinze, M.: A finite element approximation to elliptic control problems in the presence of control and state constraints. Preprint HBAM2007-01, Hamburger Beiträge zur Angewandten Mathematik, Universität Hamburg (2007)

  11. Deckelnick, K., Hinze, M.: Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations. Preprint HBAM2007-02, Hamburger Beiträge zur Angewandten Mathematik, Universität Hamburg (2007), to appear in Proceedings of the ENUMATH 2007 in Graz

  12. Hintermüller, M., Kunisch, K.: Path following methods for a class of constrained minimization methods in function spaces. SIAM J. Optim. 17, 159–187 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hintermüller, M., Kunisch, K.: Feasible and non-interior path following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45, 1198–1221 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Meyer, C.: Optimal control of semilinear elliptic equations with applications to sublimation crystal growth. PhD thesis, Department of Mathematics, Technical University Berlin (2006)

  16. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37, 51–85 (2008)

    MATH  Google Scholar 

  17. Meyer, C., Prüfert, U., Tröltzsch, F.: On two numerical methods for state-constrained elliptic control problems. Optim. Meth. Softw. 22, 871–899 (2007)

    MATH  Google Scholar 

  18. Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33, 187–208 (2006)

    Article  MathSciNet  Google Scholar 

  19. Tröltzsch, F., Prüfert, U., Weiser, M.: The convergence of an interior point method for an elliptic control problem with mixed control-state constraints. Comput. Optim. Appl. 39, 183–218 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vierling, M.: Ein semiglattes Newton Verfahren für semidiskretisierte steuerungsbeschränkte Optimalsteuerungsprobleme. Diploma Thesis, Department Mathematik, Universität Hamburg (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinze, M., Meyer, C. Variational discretization of Lavrentiev-regularized state constrained elliptic optimal control problems. Comput Optim Appl 46, 487–510 (2010). https://doi.org/10.1007/s10589-008-9198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9198-1

Keywords

Navigation