Skip to main content
Log in

Finding the shortest path with honey-bee mating optimization algorithm in project management problems with constrained/unconstrained resources

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Effective project management requires the development of a realistic plan and a clear communication of the plan from the beginning to the end of the project. The critical path method (CPM) of scheduling is the fundamental tool used to develop and interconnect project plans. Ensuring the integrity and transparency of those schedules is paramount for project success. The complex and discrete nature of the solution domain for such problems causes failing of traditional and gradient-based methods in finding the optimal or even feasible solution in some cases. The difficulties encountered in scheduling construction projects with resource constraints are highlighted by means of a simplified bridge construction problem and a basic masonry construction problem. The honey-bee mating optimization (HBMO) algorithm has been previously adopted to solve mathematical and engineering problems and has proven to be efficient for searching optimal solutions in large-problem domains. This paper presents the HBMO algorithm for scheduling projects with both constrained and unconstrained resources. Results show that the HBMO algorithm is applicable to projects with or without resource constraints. Furthermore, results obtained are promising and compare well with those of well-known heuristic approaches and gradient-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeyasinghe, M.C.L., Greenwood, D.J., Johansen, D.E.: An efficient method for scheduling construction projects with resource constraints. Int. J. Proj. Manag. 19(1), 29–45 (2001)

    Article  Google Scholar 

  2. Afshar, A., Bozorg Haddad, O., Adams, B.J., Mariño, M.A.: Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation. J. Frankl. Inst. 344, 452–462 (2007)

    Article  Google Scholar 

  3. Al-Tabtabai, H., Alex, A.P.: Network compression using genetic algorithms. Computing in civil engineering. In: Wang, K.C.P. (ed.) Proceedings of the International Computing Congress, pp. 652–659. ASCE, Boston (1998)

    Google Scholar 

  4. Bozorg Haddad, O., Afshar, A., Mariño, M.A.: Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20, 661–680 (2006)

    Article  Google Scholar 

  5. Busch, D.H.: The New Critical Path Method. Probus Publishing Company, Chicago (1991)

    Google Scholar 

  6. Callahan, M.T.: Construction Project Scheduling. McGraw-Hill, New York (1992)

    Google Scholar 

  7. Chabini, I., Ganugapati, S.: Parallel algorithms for dynamic shortest path problems. Int. Trans. Oper. Res. 9(3), 279–302 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, W.T., Chua, D.K.H., Kannan, G.: Construction resource scheduling with genetic algorithms. J. Constr. Eng. Manag. 122, 125–132 (1996)

    Article  Google Scholar 

  9. Christodoulous, S.: Ant colony optimization in construction scheduling. Proceedings of the 2005 ASCE International Conference on Computing in Civil Engineering, July 11–17, Cancun, Mexico (2005)

  10. França, P.M., Gendreau, M., Laporte, G., Muller, F.M.: A tabu search heuristic for the multiprocessor scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 43(2–3), 79–89 (1996)

    Article  Google Scholar 

  11. Gen, M., Cheng, R.W.: Genetic Algorithms and Engineering Design. Wiley, New York (1997)

    Google Scholar 

  12. Gen, M., Cheng, R., Wang, D.: Genetic algorithms for solving shortest path problems. IEEE International Conference on Evolutionary Computation, 13–16 April, pp. 401–406 (1997)

  13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  14. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harris, R.B.: Precedence and Arrow Networking Techniques for Construction. Wiley, New York (1978)

    Google Scholar 

  16. Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universidad Kiel, No. 435, Germany (1997a)

  17. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universidad Kiel, No. 451, Germany (1997b)

  18. Hartmann, S.: Naval Res. Logist. 45, 733–750 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. He, J., Wan, Z.P., Guochun, T.: Construction project scheduling problem with uncertain resource constraints. Optimization Online, www.optimization-online.org/DB_FILE/2004/06/884.pdf (2004)

  20. Hegazy, T.: Optimization of resource allocation and leveling using genetic algorithms. J. Constr. Eng. Manag. 125, 167–175 (1999a)

    Article  Google Scholar 

  21. Hegazy, T.: Optimization of construction time-cost trade-off analysis using genetic algorithms. Can. J. Civil Eng. 26, 685–697 (1999b)

    Article  Google Scholar 

  22. Hinze, J.W.: Construction Planning and Scheduling. Prentice Hall, Upper Saddle River (1998)

    Google Scholar 

  23. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann-Arbor (1975)

    Google Scholar 

  24. Icmeli, O., Erenguc, S.S.: A tabu search procedure for the resource constrained project scheduling problem with discounted cash flows. Comput. Oper. Res. 21(8), 841–853 (1994)

    Article  MATH  Google Scholar 

  25. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  26. Klein, R., Scholl, A.: Progress: Optimally solving the generalized resource constrained project scheduling problem. Math. Methods Oper. Res. 52, 467–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis in project scheduling. In: Weglarz, J. (ed.) Handbook on Recent Advances in Project Scheduling, pp. 147–178. Kluwer, Dordrecht (1999)

    Google Scholar 

  28. Leu, S.S., Hwang, S.T.: Optimal repetitive scheduling model with shareable resource constraint. J. Constr. Eng. Manag. 127, 270–280 (2001)

    Article  Google Scholar 

  29. Leu, S.S., Yang, C.H.: A genetic-algorithm-based resource-constrained construction scheduling system. Constr. Manag. Econ. 17, 767–776 (1999)

    Article  Google Scholar 

  30. Li, H., Love, P.: Using improved genetic algorithms to facilitate time-cost optimization. J. Constr. Eng. Manag. 123, 233–237 (1997)

    Article  Google Scholar 

  31. Liaw, C.F.: A tabu search algorithm for the open shop scheduling problem. Comput. Oper. Res. 26(2), 109–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Miller, M.D., Chen, H.C., Matson, J., Liu, Q.: A hybrid genetic algorithm for the single machine scheduling problem. J. Heuristics 5, 437–454 (1999)

    Article  MATH  Google Scholar 

  33. Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Manag. Sci. 44(5), 714–729 (1998)

    Article  MATH  Google Scholar 

  34. Misra, S., Oommen, B.J.: Dynamic algorithms for the shortest path routing problem: learning automata-based solutions. IEEE Trans. Syst. Man Cybern., Part B 35(6), 1179–1192 (2005)

    Article  Google Scholar 

  35. Moder, J.J., Phillips, C.R., Davis, E.W.: Project Management With CPM, PERT & Precedence Diagramming, 3rd edn. Blitz Publishing Co., Middleton (1995)

    Google Scholar 

  36. Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V.: A branch and bound algorithm for the robust shortest path problem with interval data. Technical Report IDSIA-09-02, Istituto Dalle Molle di Studi sull’Intelligenza 20 Artificiale (2002)

  37. O’Brien, J.J.: CPM in Construction Management, 5th edn. McGraw-Hill, New York (1999)

    Google Scholar 

  38. Opricovic, S., Tzeng, G.H.: Multicriteria scheduling in water resources engineering using genetic algorithm. Proceedings of ICCCBE-VIII, 8th Int. Conf. on Computing in Civil and Building Engineering, Aug. 14–17, 2000, Stanford, CA, USA (2000)

  39. Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models: classical and innovative aspects. Equilib. Adv. Transp. Model. 245–281 (1998)

  40. Righini, G., Salani, M.: Dynamic programming algorithms for the elementary shortest path problem with resource constraints. Electronic Notes in Discrete Mathematics, Workshop on Graphs and Combinatorial Optimization, 17, pp. 247–249 (2004)

  41. Roslöf, J., Harjunkoski, I., Westerlund, T., Isaksson, J.: Solving a large-scale industrial scheduling problem using MILP combined with a heuristic procedure. Eur. J. Oper. Res. 138, 29–42 (2002)

    Article  MATH  Google Scholar 

  42. Senouci, A.B., Naji, K.K.: Resource-constrained scheduling of construction projects using genetic algorithms. Int. J. IT Archit. Eng. Constr. 1(3), 191–208 (2003)

    Google Scholar 

  43. Toklu, Y.C.: Application of genetic algorithms to construction scheduling with or without resource constraints. Can. J. Civil Eng. 29(3), 421–429 (2002)

    Article  Google Scholar 

  44. Wall, M.B.: A genetic algorithm for resource-constrained scheduling. Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Bozorg Haddad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozorg Haddad, O., Mirmomeni, M., Zarezadeh Mehrizi, M. et al. Finding the shortest path with honey-bee mating optimization algorithm in project management problems with constrained/unconstrained resources. Comput Optim Appl 47, 97–128 (2010). https://doi.org/10.1007/s10589-008-9210-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9210-9

Keywords

Navigation