Skip to main content
Log in

Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Two methods of approximate solution are developed for T-stage stochastic optimal control (SOC) problems, aimed at obtaining finite-horizon management policies for water resource systems. The presence of uncertainties, such as river and rain inflows, is considered. Both approaches are based on the use of families of nonlinear functions, called “one-hidden-layer networks” (OHL networks), made up of linear combinations of simple basis functions containing parameters to be optimized. The first method exploits OHL networks to obtain an accurate approximation of the cost-to-go functions in the dynamic programming procedure for SOC problems. The approximation capabilities of OHL networks are combined with the properties of deterministic sampling techniques aimed at obtaining uniform samplings of high-dimensional domains. In the second method, admissible solutions to SOC problems are constrained to take on the form of OHL networks, whose parameters are determined in such a way to minimize the cost functional associated with SOC problems. Exploiting these tools, the two methods are able to cope with the so-called “curse of dimensionality,” which strongly limits the applicability of existing techniques to high-dimensional water resources management in the presence of uncertainties. The theoretical bases of the two approaches are investigated. Simulation results show that the proposed methods are effective for water resource systems of high dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Garstka, S.J., Wets, R.J.B.: On decision rules in stochastic programming. Math. Program. 7, 117–173 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16, 119–147 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  4. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  5. Larson, R.: State Increment Dynamic Programming. Elsevier, New York (1968)

    MATH  Google Scholar 

  6. Jacobson, D., Mayne, D.: Differential Dynamic Programming. Academic Press, New York (1970)

    MATH  Google Scholar 

  7. Turgeon, A.: A decomposition method for the long-term scheduling of reservoirs in series. Water Resour. Res. 17, 1565–1570 (1981)

    Article  Google Scholar 

  8. Archibald, T.W., McKinnon, K.I.M., Thomas, L.C.: An aggregate stochastic dynamic programming model of multireservoir systems. Water Resour. Res. 33, 333–340 (1997)

    Article  Google Scholar 

  9. Bellman, R., Kalaba, R., Kotkin, B.: Polynomial approximation—A new computational technique in dynamic programming. Math. Comput. 17, 155–161 (1963)

    MATH  MathSciNet  Google Scholar 

  10. Foufoula-Georgiou, E., Kitanidis, P.K.: Gradient dynamic programming for stochastic optimal control of multidimensional water resources systems. Water Resour. Res. 24, 1345–1359 (1988)

    Article  Google Scholar 

  11. Johnson, S.A., Stedinger, J.R., Shoemaker, C., Li, Y., Tejada-Guibert, J.A.: Numerical solution of continuous-state dynamic programs using linear and spline interpolation. Oper. Res. 41, 484–500 (1993)

    Article  MATH  Google Scholar 

  12. Philbrick, Jr., C.R., Kitanidis, P.K.: Improved dynamic programming methods for optimal control of lumped-parameter stochastic systems. Oper. Res. 49, 398–412 (1999)

    Article  MathSciNet  Google Scholar 

  13. Chen, V.C.P., Ruppert, D., Shoemaker, C.A.: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming. Oper. Res. 47, 38–53 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: A simple least squares approach. Rev. Financ. Stud. 14, 113–147 (2001)

    Article  Google Scholar 

  15. Carriere, J.F.: Valuation of the early-exercise price for derivative securities using simulations and splines. Insur. Math. Econ. 19, 19–30 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brodie, P., Glasserman, M.: A stochastic mesh method for pricing high dimensional American options, J. Comput. Finance 7, 2004

  17. Zoppoli, R., Parisini, T.: Learning techniques and neural networks for the solution of n-stage nonlinear nonquadratic optimal control problems. In: Isidori, A., Tarn, T.J. (eds.) Systems, Models and Feedback: Theory and Applications, pp. 193–210. Birkhäuser, Boston (1992)

    Google Scholar 

  18. Alessandri, A., Parisini, T., Sanguineti, M., Zoppoli, R.: Neural strategies for nonlinear optimal filtering. In: Proc. IEEE Int. Conf. Syst. Eng., Kobe, Japan, 1992, pp. 44–49

  19. Zoppoli, R., Parisini, T., Sanguineti, M.: Approximating networks and extended Ritz method for the solution of functional optimization problems. J. Optim. Theory Appl. 112, 403–439 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kůrková, V., Sanguineti, M.: Comparison of worst-case errors in linear and neural network approximation. IEEE Trans. Inf. Theory 48, 264–275 (2002)

    Article  MATH  Google Scholar 

  21. Kůrková, V., Sanguineti, M.: Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. 15, 261–287 (2005)

    Google Scholar 

  22. Cervellera, C., Muselli, M.: Deterministic design for neural–network learning: An approach based on discrepancy. IEEE Trans. Neural Netw. 15, 533–544 (2004)

    Article  Google Scholar 

  23. Yakowitz, S.: Dynamic programming applications in water resources. Water Resour. Res. 18, 673–696 (1982)

    Article  Google Scholar 

  24. Cervellera, C., Chen, V.C., Wen, A.: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization. Eur. J. Oper. Res. 171(3), 1139–1151 (2006)

    Article  MATH  Google Scholar 

  25. Gal, S.: Optimal management of a multireservoir water supply system. Water Resour. Res. 15, 737–749 (1979)

    Article  Google Scholar 

  26. Salas, J.D., Tabios III, G.Q., Bartolini, P.: Approaches to multivariate modeling of water resources time series. Water Resour. Bull. 21, 683–708 (1985)

    Google Scholar 

  27. Grippo, L.: Convergent on-line algorithms for supervised learning in neural networks. IEEE Trans. Neural Netw. 11, 1284–1299 (2000)

    Article  Google Scholar 

  28. Alessandri, A., Sanguineti, M.: Optimization-based learning with bounded error for feedforward neural networks. IEEE Trans. Neural Netw. 13, 261–273 (2002)

    Article  Google Scholar 

  29. Alessandri, A., Cuneo, M., Pagnan, S., Sanguineti, M.: A recursive algorithm for nonlinear least-squares problems. Comput. Optim. Appl. 38, 195–216 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39, 930–945 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Barron, A.R.: Approximation and estimation bounds for artificial neural networks. Mach. Learn. 14, 115–133 (1994)

    MATH  Google Scholar 

  32. Kushner, H.J., Yin, G.G.: Stochastic Approximation Algorithms and Applications. Springer, New York (1997)

    MATH  Google Scholar 

  33. Leshno, M., Ya, V., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6, 861–867 (1993)

    Article  Google Scholar 

  34. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  35. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  36. Thenie, J., Vial, J.P.: Step decision rules for multistage stochastic programming: A heuristic approach. Automatica 44, 1569–1584 (2008)

    Article  MathSciNet  Google Scholar 

  37. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  38. Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems J. Optim. Theory Appl. doi:10.1007/s10957-008-9471-6

  39. Parisini, T., Zoppoli, R.: Neural networks for feedback feedforward nonlinear control systems. IEEE Trans. Neural Netw. 5, 436–449 (1994)

    Article  Google Scholar 

  40. Zoppoli, R., Parisini, T.: Neural approximations for multistage optimal control of nonlinear stochastic systems. IEEE Trans. Autom. Control 41, 889–895 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Baglietto, M., Parisini, T., Zoppoli, R.: Distributed–information neural control: the case of dynamic routing in traffic networks. IEEE Trans. Neural Netw. 12, 485–502 (2001)

    Article  Google Scholar 

  42. Baglietto, M., Sanguineti, M., Zoppoli, R.: Facing the curse of dimensionality by the extended Ritz method in stochastic functional optimization: dynamic routing in traffic networks. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 23–56. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  43. Alessandri, A., Sanguineti, M.: Optimization of approximating networks for optimal fault diagnosis. Optim. Methods Softw. 20, 241–266 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, L.Y., Yin, G.G.: Persistent identification of systems with unmodeled dynamics and exogenous disturbances. IEEE Trans. Autom. Control 45, 1246–1256 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Niyogi, P., Girosi, F.: On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comput. 8, 819–842 (1996)

    Article  Google Scholar 

  46. Nussbaum, M.: On nonparametric estimation of a regression function that is smooth in a domain on ℝk. Theory Probab. Appl. 31, 118–125 (1986)

    MathSciNet  Google Scholar 

  47. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Comput. 7, 219–269 (1995)

    Article  Google Scholar 

  48. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  49. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  50. Cervellera, C., Muselli, M.: Efficient sampling in approximate dynamic programming algorithms. Comput. Optim. Appl. 38, 417–443 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Fang, K.-T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  52. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. Zh. Vychisl. Mat. Mat. Fiz. 7, 784–802 (1967)

    MathSciNet  Google Scholar 

  53. Hagan, M.T., Menhaj, M.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 989–993 (1994)

    Article  Google Scholar 

  54. Kůrková, V., Sanguineti, M.: Learning with generalization capability by kernel methods of bounded complexity. J. Complex. 21, 350–367 (2005)

    Article  MATH  Google Scholar 

  55. Gnecco, G., Sanguineti, M.: Accuracy of suboptimal solutions to kernel principal component analysis, Comput. Optim. Appl. doi:10.1007/s10589-007-9108-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sanguineti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglietto, M., Cervellera, C., Sanguineti, M. et al. Management of water resource systems in the presence of uncertainties by nonlinear approximation techniques and deterministic sampling. Comput Optim Appl 47, 349–376 (2010). https://doi.org/10.1007/s10589-008-9221-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9221-6

Keywords

Navigation