Skip to main content
Log in

Multi-Standard Quadratic Optimization: interior point methods and cone programming reformulation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

A Standard Quadratic Optimization Problem (StQP) consists of maximizing a (possibly indefinite) quadratic form over the standard simplex. Likewise, in a multi-StQP we have to maximize a (possibly indefinite) quadratic form over the Cartesian product of several standard simplices (of possibly different dimensions). Among many other applications, multi-StQPs occur in Machine Learning Problems. Several converging monotone interior point methods are established, which differ from the usual ones used in cone programming. Further, we prove an exact cone programming reformulation for establishing rigorous yet affordable bounds and finding improving directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil, P.-A., Tits, A.: Newton-KKT interior-point methods for indefinite quadratic programming. Comput. Optim. Appl. 36, 5–41 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baratchart, L., Berthod, M., Pottier, L.: Optimization of positive generalized polynomials under p constraints. J. Convex Anal. 5, 353–379 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Baum, L.E., Eagon, J.A.: An inequality with applications to statistical prediction for function of Markov processes and to a model of ecology. Bull. Am. Math. Soc. 73, 360–363 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2007)

    Google Scholar 

  5. Bomze, I.M.: On standard quadratic optimization problems. J. Glob. Optim. 13, 369–387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bomze, I.M.: Regularity vs. degeneracy in dynamics, games, and optimization: a unified approach to different aspects. SIAM Rev. 44, 394–414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bomze, I.M., Danninger, G.: A finite algorithm for solving general quadratic problems. J. Glob. Optim. 4, 1–16 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidefinite and copositive programming. J. Glob. Optim. 24, 163–185 (2002)

    Article  MATH  Google Scholar 

  9. Bomze, I.M., Dür, M., de Klerk, E., Quist, A., Roos, C., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  10. Bouveyron, C., Girard, S.: Robust supervised classification with Gaussian mixtures: learning from data with uncertain labels. In: Brito, P. (ed.) Compstat 2008, vol. II (CD), pp. 129–136. Physica-Verlag, Heidelberg (2008)

    Google Scholar 

  11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge (2004)

    MATH  Google Scholar 

  12. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. (2009). doi:10.1007/s10107-008-0223-z

    MathSciNet  Google Scholar 

  13. Chang, C.-C., Lin, C.-J.: Training ν-support vector classifiers: theory and algorithms. Neural Comput. 13, 2119–2147 (2001)

    Article  MATH  Google Scholar 

  14. de Angelis, P.L., Pardalos, P.M., Toraldo, G.: Quadratic problems with box constraints. In: Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in Global Optimization, pp. 73–93. Kluwer, Dordrecht (1997)

    Google Scholar 

  15. Ferris, M.C., Munson, T.S.: Interior-point methods for massive support vector machines. SIAM J. Optim. 13, 783–804 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fine, S., Scheinberg, K.: Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res. 2, 243–264 (2001)

    Article  Google Scholar 

  17. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Hummel, R.A., Zucker, S.W.: On the foundations of relaxation labeling processes. IEEE Trans. Pattern Anal. Mach. Intell. 5, 267–287 (1983)

    Article  MATH  Google Scholar 

  20. Joachims, T.: Learning to Classify Text Using Support Vector Machines—Methods, Theory and Algorithms. Springer, New York (2002)

    Google Scholar 

  21. Lucidi, S., Palagi, L., Risi, A., Sciandrone, M.: A convergent decomposition algorithm for support vector machines. Comput. Optim. Appl. 38, 217–234 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lyubich, Y., Maistrowskii, G.D., Ol’khovskii, Yu.G.: Selection-induced convergence to equilibrium in a single-locus autosomal population. Prob. Inform. Transm. 16, 66–75 (1980)

    MATH  Google Scholar 

  23. Pelillo, M.: The dynamics of nonlinear relaxation labeling processes. J. Math. Imaging Vis. 7, 309–323 (1997)

    Article  MathSciNet  Google Scholar 

  24. Schachinger, W., Bomze, I.M.: A conic duality Frank–Wolfe type theorem via exact penalization in quadratic optimization. Math. Oper. Res. 34, 83–91 (2009)

    Article  MathSciNet  Google Scholar 

  25. Torsello, A., Pelillo, M.: Continuous-time relaxation labeling processes. Pattern Recogn. 33, 1897–1908 (2000)

    Article  Google Scholar 

  26. Tseng, P.: Convergence properties of Dikin’s affine scaling algorithm for nonconvex quadratic minimization. J. Glob. Optim. 30, 285–300 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tseng, P.: A scaled projected reduced-gradient method for linearly constrained smooth optimization. Preprint, Univ. of Washington. Available at http://www.math.washington.edu/~tseng/papers/sprg.pdf, last accessed Aug. 08 (2007, submitted)

  28. Ye, Y.: On affine scaling algorithms for nonconvex quadratic programming. Math. Program. 56, 285–300 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immanuel M. Bomze.

Additional information

Paper presented at the 46th Erice Workshop: New Problems and Innovative Methods in Nonlinear Optimization, July 31–August 9, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomze, I.M., Schachinger, W. Multi-Standard Quadratic Optimization: interior point methods and cone programming reformulation. Comput Optim Appl 45, 237–256 (2010). https://doi.org/10.1007/s10589-009-9243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9243-8

Keywords

Navigation