Skip to main content
Log in

A realization of constraint feasibility in a moving least squares response surface based approximate optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the context of approximate optimization, the most extensively used tools are the response surface method (RSM) and the moving least squares method (MLSM). Since traditional RSMs and MLSMs are generally described by second-order polynomials, approximate optimal solutions can, at times, be infeasible in cases where highly nonlinear and/or nonconvex constraint functions are to be approximated. This paper explores the development of a new MLSM-based meta-model that ensures the constraint feasibility of an approximate optimal solution. A constraint-feasible MLSM, referred to as CF-MLSM, makes approximate optimization possible for all of the convergence processes, regardless of the multimodality/nonlinearity in the constraint function. The usefulness of the proposed approach is verified by examining various nonlinear function optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tappeta, R.V., Nagendra, S., Renaud, J.E.: A multidisciplinary design optimization approach for high temperature aircraft engine components. Struct. Multidiscip. Optim. 18, 134–145 (1999)

    Google Scholar 

  2. Youn, B.D., Choi, K.K.: A new response surface methodology for reliability-based design optimization. Comput. Struct. 82, 241–256 (2004)

    Article  Google Scholar 

  3. Du, L., Youn, B.D., Choi, K.K.: Inverse possibility analysis method for possibility-based design optimization. AIAA J. 44, 2682–2690 (2006)

    Article  Google Scholar 

  4. Barthelemy, F.M., Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Multidiscip. Optim. 5, 129–144 (1993)

    Google Scholar 

  5. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  6. Jacobs, J.H., Etman, L.F.P., Keulen, F.V., Rooda, J.E.: Framework for sequential approximate optimization. Struct. Multidiscip. Optim. 27, 384–400 (2004)

    Article  Google Scholar 

  7. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. 13, 1–45 (1951)

    MathSciNet  Google Scholar 

  8. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization using Designed Experiments. Wiley, New York (1995)

    MATH  Google Scholar 

  9. Simpson, T.W., Peplinkski, J., Koch, P.N., Allen, J.K.: Metamodels for computer based engineering design: survey and recommendations. Eng. Comput. 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  10. Breitkopf, P., Rassineux, A., Villon, P.: An introduction to moving least squares meshfree methods. Rev. Eur. Eléments Finis 11, 825–68 (2002)

    Article  MATH  Google Scholar 

  11. Yang, R.J., Wang, N., Tho, C.H., Bobineau, J.P., Wang, B.P.: Metamodeling development for vehicle frontal impact simulation. J. Mech. Des. 127, 1014–1020 (2005)

    Article  Google Scholar 

  12. Lancaster, P., Salkauskas, K.: Curve and Surface Fitting: An Introduction. Academic Press, New York (1986)

    MATH  Google Scholar 

  13. Rassineux, A., Breitkopf, P., Villon, P.: Simultaneous surface and tetrahedron mesh adaptation using meshfree techniques. Int. J. Numer. Methods Eng. 57, 371–389 (2003)

    Article  MATH  Google Scholar 

  14. Song, C.Y., Park, Y.W., Kim, H.R., Lee, K.Y., Lee, J.: The use of Taguchi and approximation methods to optimize the laser hybrid welding of a 5052-H32 aluminum alloy plate. Proc. Ins. Mech. Eng., Part B J. Eng. Manuf. 222, 508–518 (2007)

    Google Scholar 

  15. Lee, J., Hajela, P.: Parallel genetic algorithm implementation in multidisciplinary rotor blade design. J. Aircr. 33, 962–969 (1996)

    Article  Google Scholar 

  16. Lee, J., Jeong, H., Choi, D.H., Volovoi, V., Mavris, D.: An enhancement of constraint feasibility in BPN based approximate optimization. Comput. Methods Appl. Mech. Eng. 196, 2147–2160 (2007)

    Article  MATH  Google Scholar 

  17. Lee, J., Kang, S.: GA based meta-modeling of BPN architecture for constrained approximate optimization. Int. J. Solids Struct. 44, 5980–5993 (2007)

    Article  MATH  Google Scholar 

  18. Lee, J., Jeong, H., Kang, S.: Derivative and GA based methods in meta-modeling of back-propagation neural networks for constraint approximate optimization. Struct. Multidiscip. Optim. 35, 29–40 (2008)

    Article  Google Scholar 

  19. Picheny, V., Kim, N.H., Haftka, R.T.: Conservative predictions using surrogate modeling. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2008-1716, IL, USA (2008)

  20. Haftka, R.T.: Using bootstrap methods for conservative estimations of probability of failure. In: Proceedings of 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference, St. Louis, Missouri, USA (2006)

  21. Kim, C., Choi, K.K.: Reliability-based design optimization using response surface method with prediction interval estimation. J. Mech. Des. 130, 121401 (2008)

    Article  Google Scholar 

  22. Efroymson, M.: Multiple Regression Analysis – Mathematical Methods for Digital Computers. Wiley, New York (1960)

    Google Scholar 

  23. Shewry, M., Wynn, H.: Maximum entropy sampling. J. Appl. Stat. 14, 165–170 (1987)

    Article  Google Scholar 

  24. Sacks, J., Schiller, S.B., Welch, W.J.: Designs for computer experiments. Stat. Sci. 4, 409–423 (1989)

    Article  MATH  Google Scholar 

  25. Johnson, M., Moore, L., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plann. Inference 26, 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  26. Zou, T., Mourelatos, Z.P., Mahadevan, S., Tu, J.: An indicator response surface method for simulation-based reliability analysis. J. Mech. Des. 130, 071401 (2008)

    Article  Google Scholar 

  27. Belegundu, A.D., Chandrupatla, T.R.: Optimization Concept and Applications in Engineering. Prentice-Hall, New Jersey (1999)

    Google Scholar 

  28. Wolfe, P.: A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)

    MathSciNet  MATH  Google Scholar 

  29. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  30. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsoo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C.Y., Lee, J. A realization of constraint feasibility in a moving least squares response surface based approximate optimization. Comput Optim Appl 50, 163–188 (2011). https://doi.org/10.1007/s10589-009-9312-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9312-z

Navigation