Skip to main content
Log in

Shape optimization of an airfoil in the presence of compressible and viscous flows

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The objective of this article is to present a step-by-step problem-solving procedure of shape optimization. The procedure is carried out to design an airfoil in the presence of compressible and viscous flows using a control theory approach based on measure theory. An optimal shape design (OSD) problem governed by full Navier-Stokes equations is given. Then, a weak variational form is derived from the linearized governing equations. During the procedure, because the measure theory (MT) approach is implemented using fixed geometry versus moving geometry, a proper bijective transformation is introduced. Finally, an approximating linear programming (LP) problem of the original shape optimization problem is obtained by means of MT approach that is not iterative and does not need any initial guess to proceed. Illustrative examples are provided to demonstrate efficiency of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calgaro, C., Debussche, A., Laminie, J.: On a multilevel approach for the two dimensional Navier-Stokes equations with finite elements. Int. J. Numer. Methods Fluids 27, 241–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Farhadinia, B., Farahi, M.H.: Optimal shape design of an almost straight nozzle. Int. J. Appl. Math. 17(3), 319–333 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Farhadinia, B., Farahi, M.H.: On the existence of the solution of an optimal shape design problem governed by full Navier-Stokes equations. Int. J. Contemp. Math. Sci. 2(15), 701–711 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Farhadinia, B., Farahi, M.H., Esfahani, J.A.: Shape optimization of a nozzle with specified flow field including viscosity effect. Acta Appl. Math. 104, 243–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lv, X., Zhao, Y., Hudng, X.Y., Xia, G.H., Wang, Z.J.: An efficient parallel unstructured-multigrid preconditioned implicit method for simulating 3D unsteady compressible flow with moving objects. J. Comput. Phys. 215(2), 661–690 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kweon, J.R., Kellogg, R.B.: Compressible Navier-Stokes equations in a bounded domain with inflow boundary condition. SIAM J. Math. Anal. 28(1), 94–108 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kweon, J.R., Kim, P., Song, M.: Weak singular solutions to compressible Navier-Stokes system in a bounded domain with inflow boundary. http://com2mac.postech.ac.kr/papers (2004)

  8. Mehne, H.H., Farahi, M.H., Esfahani, J.A.: On an optimal shape design problem to control a thermoelastic deformation under a prescribed thermal treatment. Appl. Math. Model. 31, 663–675 (2007)

    Article  MATH  Google Scholar 

  9. Mohammadi, B.: Applied Shape Optimization for Fluids. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  10. Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals form PDE approximations. SIAM Rev. 42(2), 247–264 (2000)

    Article  MathSciNet  Google Scholar 

  11. Pileckas, K., Zajaczkowski, W.M.: On the free boundary problem for stationary compressible Navier-Stokes equations. Commun. Math. Phys. 129, 169–204 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Plotnikov, P.I., Sokolowski, J.: Domain dependence of solutions to compressible Navier-Stokes equations. SIAM J. Control Optim. 45(4), 1147–1539 (2006)

    Article  MathSciNet  Google Scholar 

  13. Plotnikov, P.I., Sokolowski, J.: Stationary boundary value problems for compressible Navier-Stokes equations. In: Chipot, M. (ed.) Handbook of Differential Equations, vol. 6, pp. 313–410. Elsevier, Amsterdam (2008)

    Google Scholar 

  14. Plotnikov, P.I., Ruban, E.V., Sokolowski, J.: Inhomogeneous boundary value problems for compressible Navier-Stokes equations: well-posedness and sensitivity analysis. SIAM J. Math. Anal. 40(3), 1152–1200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rubio, J.E.: Control and Optimization: The Linear Treatment of Nonlinear Problems. Manchester University Press/Wiley, Manchester/New York and London (1986).

    MATH  Google Scholar 

  16. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  17. Saurel, R., Massoni, J., Renaud, F.: A Lagrangian numerical method for compressible multiphase flows. Int. J. Numer. Methods Fluids 54, 1425–1450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Farhadinia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhadinia, B. Shape optimization of an airfoil in the presence of compressible and viscous flows. Comput Optim Appl 50, 147–162 (2011). https://doi.org/10.1007/s10589-009-9313-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-009-9313-y

Navigation