Skip to main content

Advertisement

Log in

Adaptive constraint reduction for convex quadratic programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose an adaptive, constraint-reduced, primal-dual interior-point algorithm for convex quadratic programming with many more inequality constraints than variables. We reduce the computational effort by assembling, instead of the exact normal-equation matrix, an approximate matrix from a well chosen index set which includes indices of constraints that seem to be most critical. Starting with a large portion of the constraints, our proposed scheme excludes more unnecessary constraints at later iterations. We provide proofs for the global convergence and the quadratic local convergence rate of an affine-scaling variant. Numerical experiments on random problems, on a data-fitting problem, and on a problem in array pattern synthesis show the effectiveness of the constraint reduction in decreasing the time per iteration without significantly affecting the number of iterations. We note that a similar constraint-reduction approach can be applied to algorithms of Mehrotra’s predictor-corrector type, although no convergence theory is supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Absil, P.-A., Tits, A.L.: Newton-KKT interior-point methods for indefinite quadratic programming. Comput. Optim. Appl. 36(1), 5–41 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Washington (2005)

    Google Scholar 

  3. Burges, C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  6. Dantzig, G.B., Ye, Y.: A build–up interior method for linear programming: Affine scaling form. Technical report, University of Iowa, Iowa City, IA 52242, USA (July 1991)

  7. Ferris, M.C., Munson, T.S.: Interior-point methods for massive support vector machines. SIAM J. Optim. 13(3), 783–804 (2002)

    Article  MathSciNet  Google Scholar 

  8. Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  9. Hertog, D., Roos, C., Terlaky, T.: A build-up variant of the path-following method for LP. Technical Report DUT-TWI-91-47, Delft University of Technology, Delft, The Netherlands (1991)

  10. Hertog, D., Roos, C., Terlaky, T.: Adding and deleting constraints in the path–following method for linear programming. In: Advances in Optimization and Approximation (Nonconvex Optimization and Its Applications), vol. 1, pp. 166–185. Kluwer Academic, Dordrecht (1994)

    Chapter  Google Scholar 

  11. Higham, N.J.: Analysis of the Cholesky decomposition of a semi-definite matrix. In: Cox, M.G., Hammarling, S.J. (eds.) Reliable Numerical Computation, Walton Street, Oxford OX2 6DP, UK, 1990, pp. 161–185. Oxford University Press, Oxford (1990)

    Google Scholar 

  12. Householder, A.S.: The Theory of Matrices in Numerical Analysis. Blaisdell, New York (1964). Reprinted by Dover, New York (1975)

    MATH  Google Scholar 

  13. Jung, J.H.: Adaptive constraint reduction for convex quadratic programming and training support vector machines. PhD thesis, University of Maryland (2008). Available at http://hdl.handle.net/1903/8020

  14. Jung, J.H., O’Leary, D.P., Tits, A.L.: Adaptive constraint reduction for training support vector machines. Electron. Trans. Numer. Anal. 31, 156–177 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Luo, Z.-Q., Sun, J.: An analytic center based column generation algorithm for convex quadratic feasibility problems. SIAM J. Optim. 9(1), 217–235 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2000)

    Google Scholar 

  19. Nordebo, S., Zang, Z., Claesson, I.: A semi-infinite quadratic programming algorithm with applications to array pattern synthesis. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 48(3), 225–232 (2001)

    Article  Google Scholar 

  20. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003). Chap. 9

    Book  MATH  Google Scholar 

  21. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  22. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, Washington (2005)

    Google Scholar 

  23. Tits, A.L., Zhou, J.L.: A simple, quadratically convergent interior point algorithm for linear programming and convex quadratic programming. In: Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds.) Large Scale Optimization: State of the Art, pp. 411–427. Kluwer Academic, Dordrecht (1994)

    Chapter  Google Scholar 

  24. Tits, A.L., Absil, P.-A., Woessner, W.P.: Constraint reduction for linear programs with many inequality constraints. SIAM J. Optim. 17(1), 119–146 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tone, K.: An active-set strategy in an interior point method for linear programming. Math. Program. 59(3), 345–360 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, W., O’Leary, D.P.: Adaptive use of iterative methods in predictor-corrector interior point methods for linear programming. Numer. Algorithms 25(1–4), 387–406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Watson, G.: Choice of norms for data fitting and function approximation. Acta Numer. 7, 337–377 (1998)

    Article  Google Scholar 

  28. Winternitz, L., Nicholls, S.O., Tits, A., O’Leary, D.: A constraint reduced variant of Mehrotra’s Predictor-Corrector Algorithm, 2007. Submitted for publication. http://www.optimization-online.org/DB_FILE/2007/07/1734.pdf

  29. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  30. Ye, Y.: A “build-down” scheme for linear programming. Math. Program. 46(1), 61–72 (1990)

    Article  MATH  Google Scholar 

  31. Ye, Y.: An \(O(n^{\mbox{3}}L)\) potential reduction algorithm for linear programming. Math. Program. 50, 239–258 (1991)

    Article  MATH  Google Scholar 

  32. Ye, Y.: A potential reduction algorithm allowing column generation. SIAM J. Optim. 2(1), 7–20 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, Y.: Solving large–scale linear programs by interior–point methods under the MATLAB environment. Technical Report 96–01, Dept. of Mathematics and Statistics, Univ. of Maryland Baltimore County (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne P. O’Leary.

Additional information

This work was supported by the US Department of Energy under Grant DEFG0204ER25655, and by the National Science Foundation under Grant DMI0422931 (A.L.T.). Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation or those of the US Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.H., O’Leary, D.P. & Tits, A.L. Adaptive constraint reduction for convex quadratic programming. Comput Optim Appl 51, 125–157 (2012). https://doi.org/10.1007/s10589-010-9324-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9324-8

Keywords

Navigation