Skip to main content
Log in

Machine learning for global optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we introduce the LeGO (Learning for Global Optimization) approach for global optimization in which machine learning is used to predict the outcome of a computationally expensive global optimization run, based upon a suitable training performed by standard runs of the same global optimization method. We propose to use a Support Vector Machine (although different machine learning tools might be employed) to learn the relationship between the starting point of an algorithm and the final outcome (which is usually related to the function value at the point returned by the procedure). Numerical experiments performed both on classical test functions and on difficult space trajectory planning problems show that the proposed approach can be very effective in identifying good starting points for global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: A global optimization method for the design of space trajectories. COAP, published on line (2009). doi:10.1007/s10589-009-9261-6

  2. Addis, B., Locatelli, M., Schoen, F.: Local optima smoothing for global optimization. Optim. Methods Softw. 20(45), 417–437 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ampatzis, C., Izzo, D.: Machine learning techniques for approximation of objective functions in trajectory optimisation. In: Proceedings of the IJCAI-09 Workshop on Artificial Intelligence in Space, pp. 1–6 (2009)

  4. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)

    Article  Google Scholar 

  5. Byrd, R.H., Nocedal, J., Lu, P., Zhu, C.: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. Tech. Rep., Northwestern University, Department of Electrical Engineering and Computer Science (1995)

  6. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)

  7. Dill, K.A., Phillips, A.T., Rosen, J.B.: CGU: an algorithm for molecular structure prediction. In: Bigler, L.T., Coleman, T.F., Conn, A.R., Santosa, F.N. (eds.) Large-Scale Optimization with Applications. Part 3: Molecular Structure and Optimization, vol. 94, pp. 1–21. Springer, Berlin (1997)

    Chapter  Google Scholar 

  8. Dill, K.A., Phillips, A.T., Rosen, J.B.: Protein structure and energy landscape dependence on sequence using a continuous energy function. J. Comput. Biol. 4(3), 227–240 (1997)

    Article  Google Scholar 

  9. Grosso, A., Locatelli, M., Schoen, F.: A population based approach for hard global optimization problems based on dissimilarity measures. Math. Programm. 110(2), 373–404 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Izzo, D., Becerra, V., Myatt, D., Nasuto, S., Bishop, J.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J. Global Optim. 38, 283–296 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. Fusion Found. Methodol. Appl. 9(1), 3–12 (2005)

    Google Scholar 

  12. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)

    Article  Google Scholar 

  13. Leary, R.H.: Global optimization on funneling landscapes. J. Global Optim. 18, 367–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lourenço, H.R., Martin, O.C., Stülze, T.: Iterated local search. In: Glover, F.W., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic, Dordrecht (2003)

    Google Scholar 

  15. Mangasarian, O.L., Rosen, J.B., Thompson, M.E.: Global minimization via piecewise-linear underestimation. J. Global Optim. 32(1), 1–9 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Olympio, J.T., Marmorat, J.-P.: Global trajectory optimization: can we prune the solution space when considering deep space manoeuvres? Final Report, ESA (2008)

  17. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods. Part I: Clustering methods. Math. Programm. 39, 27–56 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods. Part II: Multi level methods. Math. Programm. 39, 57–78 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  20. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  21. Vasile, M.: Design of Earth-Mars transfer trajectories using evolutionary-branching technique. Acta Astronaut. 56, 705–720 (2005)

    Article  Google Scholar 

  22. Vaz, I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained global optimization. J. Glob. Optim. 39, 197–219 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassioli, A., Di Lorenzo, D., Locatelli, M. et al. Machine learning for global optimization. Comput Optim Appl 51, 279–303 (2012). https://doi.org/10.1007/s10589-010-9330-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9330-x

Keywords

Navigation