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Abstract Nonlinearly constrained optimization problems can be solved by minimiz-
ing a sequence of simpler unconstrained or linearly constrained subproblems. In this
paper, we consider the formulation of subproblems in which the objective function is
a generalization of the Hestenes-Powell augmented Lagrangian function. The main
feature of the generalized function is that it is minimized with respect to both the
primal and the dual variables simultaneously. The benefits of this approach include:
(i) the ability to control the quality of the dual variables during the solution of the
subproblem; (ii) the availability of improved dual estimates on early termination of
the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit
bounds on the dual variables. We propose two primal-dual variants of conventional
primal methods: a primal-dual bound constrained Lagrangian (pdBCL) method and
a primal-dual �1 linearly constrained Lagrangian (pd�1LCL) method. Finally, a new
sequential quadratic programming (pdSQP) method is proposed that uses the primal-
dual augmented Lagrangian as a merit function.
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1 Introduction

This paper concerns methods for finding a local solution of the nonlinearly con-
strained minimization problem:

(NP) minimize
x∈Rn

f (x) subject to c(x) = 0, x ≥ 0,

where c : R
n �→ R

m and f : R
n �→ R are twice-continuously differentiable. This

problem format assumes that all general inequality constraints have been converted
to equalities by the use of slack variables. Methods for solving problem (NP) easily
carry over to the more general setting with l ≤ x ≤ u. Much of the discussion will
focus on the equality-constrained problem

(NEP) minimize
x∈Rn

f (x) subject to c(x) = 0.

This problem has all the properties necessary for a description of the proposed meth-
ods, while avoiding the complications of dealing with bound constraints.

The idea of replacing a constrained optimization problem by a sequence of un-
constrained problems parameterized by a scalar μ has played a fundamental role
in the formulation of algorithms since the early 1960s (for a seminal reference, see
Fiacco and McCormick [14, 15]). One of the best-known methods for solving the
equality-constrained problem (NEP) uses an unconstrained function based on the
quadratic penalty function, which combines f with a term of order 1/μ that “pe-
nalizes” the sum of the squares of the constraint violations. Under certain conditions
(see, e.g., [15, 20, 54, 56]), the minimizers of the penalty function define a differen-
tiable trajectory or central path that approaches the solution as μ → 0. Penalty meth-
ods approximate this path by minimizing the penalty function for a finite sequence of
decreasing values of μ. In this form, the methods have a two-level structure of inner
and outer iterations: the inner iterations are those of the method used to minimize the
penalty function, and the outer iterations test for convergence and adjust the value of
μ. As μ → 0, the Newton equations for minimizing the penalty function are increas-
ingly ill-conditioned, and this ill-conditioning was perceived to be the reason for the
poor numerical performance on some problems. In separate papers, Hestenes [34] and
Powell [42] proposed the augmented Lagrangian function for (NEP), which is an un-
constrained function based on augmenting the Lagrangian function with a quadratic
penalty term that does not require μ to go to zero for convergence. The price that
must be paid for keeping 1/μ finite is the need to update estimates of the Lagrange
multipliers in each outer iteration.

Since the first appearance of the Hestenes-Powell function, many algorithms have
been proposed based on using the augmented Lagrangian as an objective function for
sequential unconstrained minimization. Augmented Lagrangian functions have also
been proposed that treat the multiplier vector as a continuous function of x; some of
these ensure global convergence and permit local superlinear convergence (see, e.g.,
Fletcher [16]; DiPillo and Grippo [13]; Bertsekas [1, 2]; Boggs and Tolle [5]).

As methods for treating linear inequality constraints and bounds became more
sophisticated, the emphasis of algorithms shifted from sequential unconstrained min-
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imization to sequential linearly constrained minimization. In this context, the aug-
mented Lagrangian has been used successfully within a number of different algo-
rithmic frameworks for problem (NP). The method used in the software package
LANCELOT [9] finds the approximate solution of a sequence of bound constrained
problems with an augmented Lagrangian objective function. Similarly, the software
package MINOS of Murtagh and Saunders [40] employs a variant of Robinson’s lin-
early constrained Lagrangian (LCL) method [46] in which an augmented Lagrangian
is minimized subject to the linearized nonlinear constraints. Friedlander and Saun-
ders [22] define a globally convergent version of the LCL method that can treat infea-
sible constraints and infeasible subproblems. Augmented Lagrangian functions have
also been used extensively as a merit function for sequential quadratic programming
(SQP) methods (see, e.g., [4, 6, 8, 18, 24, 26, 49–52]).

The development of path-following interior methods for linear programming in
the mid-1980s stimulated renewed interest in the treatment of constraints by sequen-
tial unconstrained optimization. This new attention not only resulted in a new un-
derstanding of the computational complexity of existing methods but also provided
the impetus for the development of new approaches. A notable development was the
derivation of efficient path-following methods for linear programming based on ap-
plying Newton’s method with respect to both the primal and dual variables. These
new approaches also refocused attention on two computational aspects of penalty-
and barrier-function methods for nonlinear optimization. First, the recognition of
the formal equivalence between some primal-dual methods and conventional penalty
methods indicated that the inherent ill-conditioning of penalty and barrier functions
is not necessarily the reason for poor numerical performance. Second, the crucial role
of penalty and barrier functions in problem regularization was recognized and better
understood.

In this paper we consider some of these developments in the context of a gen-
eralization of the Hestenes-Powell augmented Lagrangian that is minimized jointly
with respect to the primal and dual variables. The benefits of this approach include:
(i) the ability to control the quality of the dual variables during the solution of the
subproblem; (ii) the availability of improved dual estimates on early termination of
the subproblem; and (iii) the ability to regularize the subproblem by imposing explicit
bounds on the dual variables. Three primal-dual variants of conventional primal meth-
ods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method, a
primal-dual �1 linearly constrained Lagrangian (pd�1LCL) method, and a primal-dual
sequential quadratic programming (pdSQP) method.

The paper is organized in five sections. Section 2 is a review of some of the ba-
sic properties of the Hestenes-Powell augmented Lagrangian function. It is shown
that the Newton direction for the unconstrained minimization of the augmented La-
grangian satisfies a certain primal-dual system in which the change in the dual vari-
ables may be specified arbitrarily. In Sect. 3, a generalized primal-dual augmented
Lagrangian function is introduced that may be used to define a continuum of meth-
ods that include several well-known methods as specific cases. Similarities with the
conventional Hestenes-Powell augmented Lagrangian method are also discussed. In
Sect. 4 it is shown how artificial bounds on the dual variables may be used to reg-
ularize the associated subproblem. Finally, in Sect. 5 we illustrate the use of the
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primal-dual augmented function in three methods: a primal-dual bound constrained
Lagrangian method; a primal-dual �1 linearly constrained Lagrangian method; and a
primal-dual sequential quadratic programming method for solving problem (NEP). In
order to provide some preliminary information on the effectiveness of the proposed
SQP method, we give results from numerical experiments on a subset of equality con-
strained problems from the CUTEr test collection (see Bongartz et al. [7] and Gould,
Orban and Toint [28]).

1.1 Notation and terminology

Unless explicitly indicated otherwise, ‖ ·‖ denotes the vector two-norm or its induced
matrix norm. The inertia of a real symmetric matrix A, denoted by In(A), is the in-
teger triple (a+, a−, a0) giving the number of positive, negative and zero eigenvalues
of A. Given vectors a and b with the same dimension, the vector with ith compo-
nent aibi is denoted by a · b. The symbol e is used to denote a column vector of
ones with dimension determined by the context. A local solution of an optimization
problem is denoted by x∗. The vector g(x) is used to denote ∇f (x), the gradient of
f (x), and H(x) denotes the (symmetric) Hessian matrix ∇2f (x). The matrix J (x)

denotes the m × n constraint Jacobian, which has ith row ∇ci(x)T , the gradient of
the ith constraint function ci(x). The matrix Hi(x) denotes the Hessian of ci(x). The
Lagrangian function associated with (NEP) is L(x, y) = f (x) − c(x)Ty, where y is
an m-vector of dual variables. The Hessian of the Lagrangian with respect to x is
H(x,y) = H(x) − ∑m

i=1 yiHi(x).

2 The Hestenes-Powell augmented Lagrangian

In its most commonly-used form, the Hestenes-Powell augmented Lagrangian func-
tion for problem (NEP) is given by

LA(x ;ye,μ) = f (x) − c(x)Tye + 1

2μ
‖c(x)‖2,

where μ is a positive penalty parameter, x is the vector of primal variables and
ye is an approximate Lagrange multiplier vector. If ye is chosen to be a Lagrange
multiplier vector y∗ of (NEP), then the associated solution x∗ is a stationary point
of LA. Moreover, if the second-order sufficient conditions for optimality hold, then
there exists a positive μ̄ such that x∗ is an isolated unconstrained minimizer of LA

for all 0 < μ < μ̄. Based on this result, Hestenes and Powell proposed that x∗ be
found by minimizing a sequence of augmented Lagrangian functions LA(x ;yk,μk)

in which a Lagrange multiplier estimate yk is defined in terms of a minimizer of
LA(x ;yk−1,μk−1).

For given μ and ye, the function LA(x)

= LA(x ;ye,μ) may be minimized using

standard trust-region or line-search methods for unconstrained optimization. Here we
focus on the properties of line-search methods, but much of the discussion may be
extended to the formulation of trust-region methods. (For example, see Gertz and
Gill [23] for a primal-dual penalty method in the trust-region setting.) In a typical
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line-search method, if ∇2LA(x) is sufficiently positive definite, a direction p is found
by solving the subproblem

minimize
p∈Rn

∇LA(x)Tp + 1
2pT ∇2LA(x)p.

In this case, p is the unique solution of the Newton equations ∇2LA(x)p =
−∇LA(x). The gradient and Hessian of LA(x) may be written in terms of the m-
vector π(x) such that

π(x) = ye − 1

μ
c(x). (2.1)

With this definition of π(x), we have

∇LA(x) = g(x) − J (x)Tπ(x) and ∇2LA(x) = H
(
x,π(x)

) + 1

μ
J(x)TJ (x),

and the Newton equations may be written in the form

(

H
(
x,π(x)

) + 1

μ
J(x)TJ (x)

)

p = −(
g(x) − J (x)Tπ(x)

)
. (2.2)

The elements of π(x) may be viewed as approximate Lagrange multipliers, and are
referred to as first-order primal multiplier estimates.

We motivate the derivation of the primal-dual augmented Lagrangian by showing
that the Newton direction for minimizing the conventional augmented Lagrangian
satisfies a “primal-dual” system in which the change in the dual variables may be
specified arbitrarily.

Lemma 2.1 Given an arbitrary m-vector y, the Newton direction p associated with
minimizing the Hestenes-Powell augmented Lagrangian satisfies the equations

(
H

(
x,π(x)

)
J (x)T

J (x) −μI

)(
p

−q

)

= −
(

g(x) − J (x)Ty

c(x) + μ(y − ye)

)

, (2.3)

where q depends on the value of y.

Proof Define J = J (x), g = g(x), c = c(x), H = H(x,π), and π = π(x). Then the
Newton equations (2.2) may be written as

(

H + 1

μ
JTJ

)

p = −(
g − J Tπ

)
. (2.4)

For a given choice of y, consider the m-vector q such that

q = − 1

μ

(
(Jp + (

c + μ(y − ye)
))

. (2.5)
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Equations (2.4) and (2.5) may be combined to give
(

H + 2
μ
J TJ J T

J μI

)(
p

q

)

= −
(

g − J Ty + 2J T(y − π)

μ(y − π)

)

,

where π = ye − c/μ (see (2.1)). Applying the nonsingular matrix

(
In − 2

μ
J T

0 Im

)

to both sides of this equation yields
(

H JT

J −μI

)(
p

−q

)

= −
(

g − J Ty

c + μ(y − ye)

)

. �

If y is chosen as an approximate Lagrange multiplier vector, then y + q may be
interpreted as the updated Lagrange multiplier estimate associated with x + p. In
particular, if μ = 0 and H = H(x,y), then p and q are the primal-dual SQP direc-
tions at (x, y) defined by one step of Newton’s method for a zero of the gradient of
the Lagrangian. Alternatively, if we choose y = ye in (2.3), the Newton direction p

satisfies the equations
(

H(x,π(x)) J (x)T

J (x) −μI

)(
p

−q

)

= −
(

g(x) − J (x)Tye

c(x)

)

,

which may be interpreted as a primal-dual variant of the primal Newton equations
(2.2) analogous to the primal-dual formulation of the quadratic penalty method con-
sidered by Gould [27] (for related methods, see Murray [37, 38] and Biggs [3]). The
nonzero (2,2) block in the primal-dual matrix serves to regularize the system; i.e.,
it is not necessary for J (x) to have full row rank for the Newton equations to be
nonsingular.

In conventional implementations of the augmented Lagrangian method, the direc-
tion q is not used. The motivation for the generalized primal-dual augmented La-
grangian considered in the next section is the ability to exploit changes in both the
primal and the dual variables during the unconstrained minimization.

3 The generalized primal-dual augmented Lagrangian

In this section we propose an augmented Lagrangian that is minimized with respect
to both the primal and the dual variables. The generalized primal-dual augmented
Lagrangian is

Mν(x, y ;ye,μ) = f (x)− c(x)Tye + 1

2μ
‖c(x)‖2 + ν

2μ
‖c(x)+μ(y −ye)‖2, (3.1)

where ye is an approximate Lagrange multiplier vector, ν is a fixed scalar and μ is a
positive parameter. The function Mν is equivalent to the Forsgren-Gill primal-dual
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quadratic penalty function [19] defined in terms of the shifted constraints c(x) −
μye = 0. (This derivation reflects Powell’s observation that for sufficiently small μ,
x∗ is a minimizer of the quadratic penalty function defined with shifted constraints
c(x) − μy∗ = 0.)

Using the m-vector π(x) = ye − c(x)/μ of (2.1), the gradient and Hessian for
Mν(x, y ;ye,μ) may be written as

∇Mν(x, y ;ye,μ) =
(

g − J T
(
π + ν(π − y)

)

ν
(
c + μ(y − ye)

)
)

=
(

g − J T
(
π + ν(π − y)

)

νμ(y − π)

)

,

(3.2a)
and

∇2Mν(x, y ;ye,μ) =
(

H
(
x,π + ν(π − y)

) + 1
μ
(1 + ν)J TJ νJ T

νJ νμI

)

, (3.2b)

where J , g, c, and π denote J (x), g(x), c(x), and π(x), respectively. Observe that the
first-order multipliers π(x) = ye − c(x)/μ minimize Mν(x, y ;ye,μ) with respect to
y for a fixed value of x.

The next result emphasizes the potential role of Mν as the objective function in a
sequential unconstrained minimization method for solving constrained problems. It
states that a solution (x∗, y∗) of problem (NEP) is a minimizer of Mν(x, y ;y∗,μ)

for μ sufficiently small and all positive ν.

Theorem 3.1 Assume that (x∗, y∗) satisfies the following optimality conditions as-
sociated with problem (NEP):

(i) c(x∗) = 0,
(ii) g(x∗) − J (x∗)T y∗ = 0, and

(iii) there exists a positive scalar ω such that pTH(x∗, y∗)p ≥ ω‖p‖2 for all p sat-
isfying J (x∗)p = 0.

Then (x∗, y∗) is a stationary point of the primal-dual function

Mν(x, y ;y∗,μ) = f (x) − c(x)Ty∗ + 1

2μ
‖c(x)‖2 + ν

2μ
‖c(x) + μ(y − y∗)‖2.

Moreover, if ν > 0, then there exists a positive scalar μ̄ such that (x∗, y∗) is an
isolated unconstrained minimizer of Mν(x, y ;y∗,μ) for all 0 < μ < μ̄.

Proof We must show that ∇Mν is zero and ∇2Mν is positive definite at the primal-
dual point (x, y) = (x∗, y∗). Assumption (i) and the definition π(x) = y∗ − c(x)/μ

implies that π(x∗) = y∗. Substituting for π , x and y in the gradient (3.2a) and using
assumption (ii), gives ∇Mν(x∗, y∗ ;y∗,μ) = 0 directly. Similarly, the Hessian (3.2b)
is given by

∇2Mν =
(

H + 1
μ
(1 + ν)J TJ νJ T

νJ νμIm

)

,

where ∇2Mν = ∇2Mν(x∗, y∗ ;y∗,μ), J = J (x∗), and H = H(x∗, y∗).
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It may be verified by direct multiplication that the matrix L such that

L =
(

In 0
− 1

μ
J Im

)

gives LT ∇2MνL =
(

H + 1
μ
J TJ 0

0 νμIm

)

.

As L is nonsingular, we may apply Sylvester’s Law of Inertia to infer that

In
(
LT ∇2 MνL

) = In
(∇2Mν

) = (m,0,0) + In

(

H + 1

μ
JTJ

)

,

for all ν > 0.
Let r denote the rank of J , so that r ≤ min(m,n). The singular-value decomposi-

tion of J can be written as

J = USV T = U

(
Sr 0
0 0

)

V T ,

where U and V are orthogonal, and Sr is an r × r diagonal matrix with positive
diagonal entries. If the columns of U and V are partitioned to conform with the
zero and nonzero columns of S, then U = (Ur Um−r ) and V = (Vr Vn−r ), which
gives J = UrSrV

T
r . The n × n matrix Q defined such that Q = (Vn−r VrS

−1
r ) is

nonsingular, with JQ = (0 Ur). If we define Z = Vn−r and Y = VrS
−1
r , then Q =

(Z Y ), with the n − r columns of Z forming a basis for the null-space of J . As Q

is nonsingular, H + 1
μ
J TJ must have the same inertia as QT (H + 1

μ
J TJ )Q from

Sylvester’s Law of Inertia. Pre- and post-multiplying H + 1
μ
J TJ by QT and Q gives

QT
(
H + 1

μ
JTJ

)
Q = QTHQ + 1

μ
QTJTJQ =

(
ZTHZ ZTHY

YTHZ YTHY + 1
μ
Ir

)

.

This matrix has the form
(

H11 HT
21

H21 H22 + 1
μ
Ir

)

,

where H11 = ZTHZ, H21 = YTHZ and H22 = YTHY . As H11 is positive definite
by assumption (iii), we may write the block 2 × 2 matrix as the product

(
In−r 0

H21H
−1
11 Ir

)(
H11 0

0 H22 − H21H
−1
11 HT

21 + 1
μ
Ir

)(
In−r H−1

11 HT
21

0 Ir

)

.

Repeated use of Sylvester’s Law of Inertia then gives the inertia of H + 1
μ
J TJ as

the inertia of diag(H11,H22 − H21H
−1
11 HT

21 + 1
μ
Ir). Clearly, this matrix is positive

definite for all 0 < μ < μ̄, where μ̄ satisfies μ̄ = 1/max{−λmin,1} and λmin is the
least eigenvalue of H22 − H21H

−1
11 HT

21. Hence

In
(∇2Mν

) = (m,0,0) + (n,0,0) = (m + n,0,0),
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which implies that the Hessian ∇2Mν(x∗, y∗ ;y∗,μ) is positive definite for all ν > 0
and all 0 < μ < μ̄. It follows that (x∗, y∗) is an isolated unconstrained minimizer of
Mν(x, y ;y∗,μ). �

Theorem 3.1 suggests that if a sufficiently accurate estimate ye ≈ y∗ is known for
problem (NEP), then an approximate minimizer of Mν(x, y ;ye,μ) with respect to
both x and y will provide an even better estimate (for a proof of this result, see Robin-
son [45]). An analogous result holds for the conventional augmented Lagrangian (see
Conn, Gould and Toint [10]).

Standard line-search or trust-region methods for unconstrained minimization may
be used to find an unconstrained minimizer of Mν(x, y ;ye,μ). As our goal is to
develop second-order methods, it is of interest to consider the Newton equations for
the primal-dual augmented Lagrangian. Using the derivatives (3.2a) and (3.2b) for
Mν , the Newton direction for the primal-dual augmented Lagrangian satisfies

(
H

(
x,π + ν(π − y)

) + 1
μ
(1 + ν)J TJ νJ T

νJ νμI

)(
p

q

)

= −
(

g − J T
(
π + ν(π − y)

)

ν
(
c + μ(y − ye)

)
)

,

where p and q are the Newton directions in the primal and dual variables.

3.1 Relationships between methods for problem (NEP)

The next result shows that the Newton equations above may be transformed into a
system similar to the primal-dual equations (2.3) associated with the classical aug-
mented Lagrangian function.

Lemma 3.1 Let H denote an arbitrary symmetric matrix. The equations

(
H + 1

μ
(1 + ν)J TJ νJ T

νJ νμI

)(
p

q

)

= −
(

g − J T
(
π + ν(π − y)

)

ν
(
c + μ(y − ye)

)

)

, (3.3)

and
(

H JT

J −μI

)(
p

−q

)

= −
(

g − J Ty

c + μ(y − ye)

)

. (3.4)

are equivalent for all ν �= 0, i.e., (p, q) is a solution of (3.3) if and only if it is a
solution of (3.4).

Proof Multiplying both sides of (3.3) by the nonsingular matrix

U =
(

I − (1+ν)
νμ

J T

0 1
ν
I

)

,

and scaling the last m columns by −1 gives the result. �
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If μ = 0 and H = H(x,y), equations (3.4) are identical to those used to define the
step for a conventional SQP method. This property will be exploited in Sect. 5.3,
where the formulation of a primal-dual SQP method is considered.

Several well-known functions are equivalent to the primal-dual augmented La-
grangian for appropriate choices of the parameters ye and ν.

The quadratic penalty function (ν ≡ 0, ye ≡ 0) In this case, Mν is the same as the
quadratic penalty function

P (x ;μ) = f (x) + 1

2μ
‖c(x)‖2,

which is defined in terms of the primal variables only. The primal-dual form of the
Newton equations analogous to (2.3) is given by

(
H(x,π) J T

J −μI

)(
p

−q

)

= −
(

g − J Ty

c + μy

)

, (3.5)

which have been studied by Biggs [3] and Gould [27]. Few competitive modern meth-
ods are based on the direct minimization of the quadratic penalty function, but several
reliable and efficient methods are designed to emulate the quadratic penalty method
when the set of optimal multipliers is unbounded (see, e.g., [10, 22, 40], and [45]).

The proximal-point penalty function (ν ≡ −1, ye ≡ 0) The function M is equiva-
lent to the proximal-point penalty function

PP (x, y) = f (x) − c(x)Ty − μ

2
‖y‖2.

This function has been used in the formulation of stabilized SQP methods (see,
e.g., Hager [32] and Wright [55]). The Newton equations for a stationary point of
∇PP (x, y) are given by:

(
H(x,y) J T

J −μI

)(
p

−q

)

= −
(

g − J Ty

c + μy

)

.

Note the similarities between these equations and the primal-dual equations (3.5)
for the quadratic penalty function. However, the Newton direction p is not the same
because the Lagrangian Hessian is evaluated with different values of the multipliers.

As ν is negative, ∇2 PP (x, y) is indefinite and the associated proximal-point
penalty function has an unbounded minimizer. In this case, a stationary point (x∗, y∗)
solves the min-max problem

min
x

max
y

f (x) − c(x)T y − μ

2
‖y‖2.

The Hestenes-Powell augmented Lagrangian (ν ≡ 0) This is the conventional aug-
mented Lagrangian

LA(x ;ye,μ) = f (x) − c(x)Tye + 1

2μ
‖c(x)‖2.
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Table 1 Functions associated with Mν(x, y ;ye,μ)

ν ye

Quadratic penalty function 0 0

Proximal-point penalty function −1 0

Hestenes-Powell augmented Lagrangian 0 ye

Proximal-point Lagrangian −1 ye

Primal-dual quadratic penalty function 1 0

Primal-dual augmented Lagrangian 1 ye

Lemma 2.1 implies that if π is substituted for y in the Hessian associated with the
primal-dual augmented Lagrangian system (3.4), then the Newton direction p asso-
ciated with the solution of the resulting modified Newton system

(
H(x,π) J T

J −μI

)(
p

−q

)

= −
(

g − J Ty

c + μ(y − ye)

)

,

is the Hestenes-Powell augmented Lagrangian direction given by (2.3).

The proximal-point Lagrangian (ν ≡ −1) In this case, Mν is the proximal-point
Lagrangian function

LP (x, y) = f (x) − c(x)Ty − μ

2
‖y − ye‖2,

which has been studied, for example, by Rockafellar in [47, 48]. Analogous to the
proximal-point penalty function, a stationary point (x∗, y∗) solves the min-max prob-
lem

min
x

max
y

f (x) − c(x)T y − μ

2
‖y − ye‖2.

The primal-dual quadratic penalty function (ν ≡ 1, ye ≡ 0)

P (x, y ;μ) = f (x) + 1

2μ
‖c(x)‖2 + 1

2μ
‖c(x) + μy‖2.

Methods based on the use of the primal-dual penalty function and its barrier function
counterpart are discussed by Forsgren and Gill [19], and Gertz and Gill [23].

The primal-dual augmented Lagrangian (ν ≡ 1).

M(x, y ;ye,μ) = f (x) − c(x)Tye + 1

2μ
‖c(x)‖2 + 1

2μ
‖c(x) + μ(y − ye)‖2.

This function is the basis of the primal-dual BCL, sLCL and SQP algorithms proposed
in Sect. 5.

Table 1 summarizes the six functions discussed above.
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4 Regularization by bounding the multipliers

Typically, augmented Lagrangian methods are based on the assumption that the mul-
tipliers of the subproblem remain bounded, or do not grow too rapidly relative to
the inverse of the penalty parameter. In the primal setting these assumptions are en-
forced by making appropriate modifications to μ and ye after the completion of each
subproblem. An attractive feature of the primal-dual augmented Lagrangian function
is that bounds on the multipliers may be enforced explicitly during the solution of
the subproblem. To develop this idea further, consider an algorithm that minimizes a
sequence of problems of the form

minimize
x∈Rn,y∈Rm

M(x, y ;ye,μ).

As this is an unconstrained problem in both the primal and dual variables, we can
impose explicit artificial bounds on the dual variables, i.e., we can solve the subprob-
lem:

minimize
x∈Rn,y∈Rm

M(x, y ;ye,μ) subject to −γ e ≤ y ≤ γ e,

for some positive constant γ . A sequence of these subproblems may be solved for
appropriate values of μ and ye. If all the bounds on y are inactive at the solution of a
subproblem, then the minimizer lies on the path of unconstrained minimizers of M.
However, if γ restricts the subproblem solutions, then a different problem is being
solved. Active bound constraints may occur for two reasons. First, the magnitudes of
the optimal multipliers y∗ may be bounded but larger than the current value of γ . In
this case, a poor choice of γ will inhibit the convergence of the subproblem to the
point on the path of subproblem solutions. Second, the subproblem multipliers may
not exist or may be unbounded—for example, the Mangasarian-Fromovitz constraint
qualification may not hold (see, e.g., [35, 41]). In this situation, an explicit bound on
the dual variables will prevent the multipliers from diverging to infinity.

The previous discussion makes it clear that if some components of y are active at
a subproblem solution, then μ must be decreased in order to obtain convergence. As
μ approaches zero, the subproblems become similar to those of the quadratic penalty
function. The idea is to choose μ and γ so that the artificial bounds will stabilize the
method when far from a solution without affecting the subproblems near (x∗, y∗). In
Sect. 5 we consider two algorithms that are formulated with these goals in mind.

If the artificial bounds are inactive, then the solution of the subproblem lies on
the conventional path of minimizers. However, when some bounds on y are active
it is unclear which problem is being solved. The next result shows that constrained
solutions are related to those obtained by minimizing an exact penalty function.

Theorem 4.1 Let γ be a positive scalar. If (x̄, ȳ, w̄) is a solution of

minimize
x∈Rn,y∈Rm

M(x, y ;ye,μ) subject to −γ e ≤ y ≤ γ e, (4.1)

where w̄ are the multipliers for the constraints −γ e ≤ y ≤ γ e, then there exists a
positive diagonal scaling matrix P such that x̄ is a minimizer of the nonsmooth un-
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constrained problem

minimize
x∈Rn

f (x) + ‖P (
c(x) + μ(ȳ − ye)

)‖1. (4.2)

Proof Let π̄ = ȳ − 2w̄/μ and define the diagonal scaling matrix P = diag(ρ1, ρ2,
. . . , ρm) such that

ρi =

⎧
⎪⎨

⎪⎩

π̄i if w̄i < 0,

−π̄i if w̄i > 0,

|π̄i | + ε if w̄i = 0,

where ε is any positive real number. It will be shown that the diagonals of P are
strictly positive. The nonsmooth unconstrained problem (4.2) is equivalent to the
constrained problem

minimize
x∈Rn,u∈Rm,v∈Rm

f (x) +
m∑

i=1

ρi(ui + vi)

subject to c(x) + μ(ȳ − ye) − u + v = 0, u ≥ 0, v ≥ 0.

(4.3)

Let ū = max( w̄,0 ) and v̄ = −min( w̄,0 ). Also, define

z̄u = Pe + π̄ , (4.4a)

z̄v = Pe − π̄ . (4.4b)

It is now shown that (x̄, ū, v̄, π̄ , z̄u, z̄v) is a solution of (4.3), where π̄ is the multiplier
vector for the equality constraint c(x) + μ(ȳ − ye) − u + v = 0, z̄u is the multiplier
vector for u ≥ 0, and z̄v is the multiplier vector for v ≥ 0. A solution (x̄, ȳ, w̄) of
(4.1) must satisfy the optimality conditions

J (x̄)T
(
2π(x̄) − ȳ

) = g(x̄), (4.5a)

c(x̄) + μ(ȳ − ye) = w̄, (4.5b)

−γ e ≤ ȳ ≤ γ e, (4.5c)

min( γ e − ȳ, ȳ + γ e, |w̄| ) = 0, (4.5d)

w̄ ·(ȳ + γ e) ≤ 0, (4.5e)

w̄ ·(ȳ − γ e) ≤ 0, (4.5f)

where π(x) = ye − c(x)/μ. The optimality conditions that must be verified for the
point (x̄, ū, v̄, π̄ , z̄u, z̄v) are:

C1. ū ≥ 0, v̄ ≥ 0, z̄u ≥ 0, z̄v ≥ 0, ū · z̄u = 0, v̄ · z̄v = 0;
C2. c(x̄) + μ(ȳ − ye) − ū + v̄ = 0;
C3. g(x̄) = J (x̄)Tπ̄ ;
C4. Pe = z̄u − π̄ ;
C5. Pe = z̄v + π̄ .
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(Proof of C2): Note that w̄ = ū − v̄. Thus C2 follows directly from (4.5b).
(Proof of C3): The definitions of π̄ and π(x) together with (4.5b) imply that

π̄ = ȳ − 2w̄/μ = 2ye − 2c(x̄)/μ − ȳ = 2π(x̄) − ȳ. (4.6)

Condition C3 follows from this equality and (4.5a).
(Proof of C4): Follows from definition (4.4a).
(Proof of C5): Follows from definition (4.4b).
(Proof of C1): ū ≥ 0 and v̄ ≥ 0 by definition.

Next it is shown that ū · z̄u = 0. The result is trivial if ūi = 0. If ūi �= 0, it must
hold that w̄i > 0 and hence ρi = −π̄i . It follows that [z̄u]i 
= ρi + π̄i = 0.

Now it is shown that v̄ · z̄v = 0. The result is trivial if v̄i = 0. So suppose that
v̄i > 0. This implies that w̄i < 0 and thus ρi = π̄i . It follows that [z̄v]i 
= ρi − π̄i = 0.

The inequalities z̄u ≥ 0, z̄v ≥ 0, and ρi > 0 are established by considering the
following cases.

1. Suppose w̄i = 0. Then ρi = |π̄i | + ε > 0 and [z̄v]i = |π̄i | + ε − π̄i > 0. Similarly,
[z̄u]i = |π̄i | + ε + π̄i > 0.

2. Suppose w̄i > 0. Then ȳi = −γ and π̄i = ȳi − 2w̄i/μ = −γ − 2w̄i/μ < 0. This
implies that ρi = −π̄i > 0 and that [z̄v]i = ρi − π̄i = −2π̄i > 0. Similarly, [z̄u]i =
ρi + π̄i = 0.

3. Suppose w̄i < 0. Then ȳi = γ and π̄i = ȳi − 2w̄i/μ = γ − 2w̄i/μ > 0. This im-
plies that ρi = π̄i > 0 and that [z̄v]i = ρi − π̄i = 0. Similarly, [z̄u]i = ρi + π̄i =
2π̄i > 0.

The proof is complete since the point (x̄, ū, v̄, π̄ , z̄u, z̄v) satisfies C1–C5. �

4.1 Interpretation of the artificial bounds

In Sect. 5 we consider two subproblems (5.2) and (5.4) that bound the dual variables
explicitly using artificial constraints. In this section we give a brief description of one
way in which these additional constraints may be interpreted.

Let (x̄, ȳ, w̄) denote a solution of the bound-constrained problem (4.1), where w̄ is
the multiplier vector for the simple bounds. Also, let (xμ, yμ) = (x(μ), y(μ)) denote
the solution to the unconstrained problem

minimize
x,y

M(x, y;ye,μ). (4.7)

If we apply an �1 penalty to the bound constraints in problem (4.1), we obtain the
equivalent problem

minimize
x,y

M(x, y;ye,μ) + σ‖yv‖1, (4.8)

where σ is a positive penalty parameter and yv = min(0, γ − |y|) (the definition of
yv should be interpreted componentwise and is a measure of how much y violates its
bounds). If σ > ‖w̄‖∞, it is well known that solutions of problem (4.8) are solutions
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of (4.1) (see, e.g., [17]). The quantity ‖w̄‖∞ may be regarded as the “required penal-
ization”. It follows from the optimality conditions for problems (4.1) and (4.7) that
w̄ = c(x̄)− c(xμ)+μ(ȳ − yμ), which implies that the required penalization satisfies

‖w̄‖∞ ≤ ‖c(x̄) − c(xμ)‖∞ + μ‖ȳ − yμ‖∞. (4.9)

This bound implies that the required penalization is closely associated with the mag-
nitudes of ‖c(x̄) − c(xμ)‖∞ and μ‖ȳ − yμ‖∞, which are zero if the artificial bounds
are inactive.

The discussion above implies that the artificial bounds in problem (4.1) may be in-
terpreted as a second form of regularization—the first being the presence of μI in the
(2,2) block of the Newton equations. In this second regularization, |y| is bounded ex-
plicitly by problem (4.1) and implicitly by the penalty term in problem (4.8). Specif-
ically, the μ‖ȳ − yμ‖∞ term in (4.9) implies that if the artificial bounds prevent the
“natural” solution from being found, then the required penalization is likely to be
large. However, the presence of the μ-term makes this implicit penalization dimin-
ish as μ is decreased to zero. Similarly, the presence of the ‖c(x̄) − c(xμ)‖∞ term in
(4.9) implies that the required penalization is likely to be large if the constraint values
differ substantially. For small μ, the minimizers of the merit function will be close
to minimizers of the quadratic penalty function. In this case, ‖c(x̄)‖∞ and ‖c(xμ)‖∞
can be expected to be small (and hence the term ‖c(x̄) − c(xμ)‖∞ will be small).

The previous discussion generalizes to the case where each dual variable is given
a separate bound in problem (4.1). We have the following componentwise result.

Theorem 4.2 If (x̄, ȳ, w̄) is a primal-dual solution of

minimize
x,y

M(x, y;ye,μ) subject to y� ≤ y ≤ yu,

then (x̄, ȳ) minimizes M(x, y;ye,μ)+‖D(w̄)yv‖1, where D(w̄) = diag(d1, d2, . . . ,
dm) and di ≥ w̄i for all i = 1, 2, . . . , m.

Proof The result follows from the standard properties of the �1 penalty function (see,
e.g., [10] and [17]). �

5 Algorithms

The augmented Lagrangian has been used successfully within a number of differ-
ent algorithmic frameworks. In the context of problem (NP), the software package
LANCELOT [9] finds an approximate minimizer of a sequence of bound constrained
Lagrangian (BCL) subproblems of the form

minimize
x∈Rn

LA(x ;ye,μ) subject to x ≥ 0. (5.1)

After each approximate minimization, the Lagrange multiplier estimate ye may be
updated, while parameters and tolerances are adjusted. Conn, Gould, and Toint [10]
show that under certain standard assumptions, the BCL method is globally convergent,
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exhibits R-linear convergence, and has a penalty parameter μ that is bounded away
from zero.

Linearly constrained Lagrangian (LCL) methods also make use of the augmented
Lagrangian. LCL methods are based on the properties of Robinson’s method [46],
which sequentially minimizes the Lagrangian L(x ;ye) = f (x) − c(x)Tye, subject to
the linearized constraints. Robinson shows that this algorithm exhibits R-quadratic
convergence when started sufficiently close to a solution satisfying the second-order
sufficient conditions. Two potential drawbacks of the LCL method are that the linearly
constrained subproblem may be infeasible and that convergence is guaranteed only
in a neighborhood of the solution. Murtagh and Saunders [39, 40] include a penalty
term in their LCL software package MINOS in order to encourage convergence from
poor starting points (i.e., MINOS uses an augmented Lagrangian instead of the La-
grangian). This modification improves the robustness of Robinson’s method, but the
question of convergence from arbitrary starting points remains open.

The stabilized LCL (sLCL) method of Friedlander and Saunders [22] includes fur-
ther improvements to the method of MINOS. The sLCL algorithm is provably globally
convergent and uses a formulation of the subproblem that is always feasible. These
improvements result from the use of a so-called elastic subproblem, which is equiv-
alent to an �1 penalization of the linearized constraint violations. Friedlander and
Saunders show that the sLCL algorithm constitutes a range of algorithms, with the
BCL method at one extreme and Robinson’s LCL method at the other. The sLCL algo-
rithm inherits global convergence from the BCL method and R-quadratic convergence
from the LCL method.

The augmented Lagrangian function may also be used as a merit function in an
SQP method. In a typical line-search SQP method, the search direction is the solu-
tion of a quadratic programming subproblem involving a quadratic model of the La-
grangian and the linearized constraints (see, e.g., Han [33] and Powell [43]). A similar
SQP approach starts with an unconstrained quadratic model derived from second-
order Taylor-series approximation of LA(x;ye,μ). This unconstrained subproblem
is then solved as an equivalent quadratic program (for more details, see [11, Sec-
tion 15.3.1]). The SQP algorithm in the software package SNOPT [24] uses an aug-
mented Lagrangian merit function in a different way. Given a primal-dual approxi-
mate solution, the method of SNOPT solves a convex QP subproblem defined using a
quasi-Newton approximation of the Hessian of the Lagrangian. A search direction in
both the primal and dual variables is then defined from the primal and dual solution
of the QP subproblem. The dual variables are included in the line search to make
the augmented Lagrangian continuous in both the primal and dual variables. This
property is used to force convergence from arbitrary starting points (see Gill, Murray,
Saunders and Wright [26]).

In the remainder of this section we illustrate how the primal-dual augmented La-
grangian may be used within various algorithmic frameworks for problem (NP). In
the case of the SQP method, some preliminary numerical experiments are used to
justify the further development of these methods. A complete theoretical treatment is
currently under investigation.
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5.1 Primal-dual bound-constrained Lagrangian methods

Problem (NP) may be solved as a sequence of bound constrained problems of the
form

minimize
x∈Rn,y∈Rm

M(x, y ;ye
k ,μk) subject to x ≥ 0, −γke ≤ y ≤ γke, (5.2)

where M(x, y ;ye
k ,μk) is the primal-dual augmented Lagrangian of Sect. 3.1, {γk} is

a positive sequence of parameters, {ye
k} is a sequence of Lagrange multiplier estimates

satisfying ye
k ∈ [−γke, γke], and {μk} is a sequence of positive penalty parameters.

One possible choice of γk is max(1/μk, γmax), where γmax is a preassigned antici-
pated bound on the magnitude of the multipliers, e.g., γmax = 105. An approximate
solution of the subproblem (5.2) is denoted by (x∗

k , y∗
k , z∗

k ,w
∗
k ), where z∗

k and w∗
k are

the Lagrange multipliers for the inequality constraints x ≥ 0 and −γke ≤ y ≤ γke.
Conventional BCL methods are known to be locally convergent if the penalty pa-

rameter is sufficiently small and each subproblem is solved exactly. Bertsekas [1]
extends this result by showing that only an approximate solution of each BCL sub-
problem need be found. In both cases it may be necessary to drive the penalty pa-
rameter to zero to guarantee global convergence. In this case, solutions of the BCL
subproblems are similar to those of the quadratic penalty method.

The formulation of a pdBCL algorithm based on solving a sequence of subprob-
lems (5.2) requires that both the penalty parameter μk and the Lagrange multi-
plier estimate ye

k be updated. The strategy used by Conn, Gould, and Toint [10]
for the LANCELOT package [9] is still appropriate in this case. However, in the
primal-dual case, the new multiplier estimate is ye

k+1 = 2π(x∗
k ) − y∗

k , with π(x∗
k ) =

ye
k − c(x∗

k )/μk . This update is based on the first-order optimality conditions for the
primal-dual augmented Lagrangian. (See [45, Chapter 4] for further details of the
global and local convergence properties of the pdBCL method.)

5.2 Stabilized primal-dual LCL methods

Problem (NP) may be solved as a sequence of linearly constrained subproblems. In
the primal-dual setting, given an estimate (xk, yk) of a solution to problem (NP), the
subproblems take the form

minimize
x∈Rn,y∈Rm

M(x, y ;ye
k ,μk)

subject to c̄k(x) = 0, x ≥ 0, −γke ≤ y ≤ γke,
(5.3)

where γk is a positive parameter, ye
k is an estimate of the Lagrange multiplier vector,

c̄k(x)

= c(xk) + J (xk)(x − xk) is a linearization of the constraints, and μk is the kth

penalty parameter. As in pdBCL, the bounds on the dual variables may be defined as
γk = max(1/μk, γmax).

The subproblem (5.3) may be unsuitable for two reasons. First, the constraints
c̄k(x) = 0 and x ≥ 0 may be infeasible. Second, the distance ‖xk − x∗

k ‖ from the
point of linearization to the solution of the subproblem may be arbitrarily large. These
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problems are addressed by Friedlander and Saunders [22], who regularize the stan-
dard LCL subproblem by including an �1 penalty on the linearized constraint viola-
tions. The analogous approach for the primal-dual augmented Lagrangian gives the
so-called elastic subproblem:

minimize
x,y,u,v

M(x, y ;ye
k ,μk) + σke

T(u + v)

subject to c̄k(x) + u − v = 0, x,u, v ≥ 0, −γke ≤ y ≤ γke.
(5.4)

An approximate solution of this problem is denoted by (x∗
k , y∗

k , u∗
k , v∗

k , �y∗
k , z∗

k ,
w∗

k ), where �y∗
k is the (approximate) multiplier vector for the linearized constraints,

and z∗
k is the (approximate) multiplier vector for the bounds x ≥ 0. The subproblem

(5.4) forms the basis of a pd�1LCL method that uses the updating strategy for μk

and ye
k proposed by Friedlander and Saunders [22]. As in the pdBCL algorithm, a

“primal-dual” update is defined for the new multiplier estimate. In this case, ye
k+1 =

2π(x∗
k ) − y∗

k + �y∗
k , where π(x∗

k ) = ye
k − c(x∗

k )/μk . This definition is based on the
first-order optimality conditions for problem (5.4). (See [45, Chapter 5] for further
details of the global and local convergence properties of the pd�1LCL method.)

5.3 Primal-dual SQP methods

Some of the most efficient algorithms for nonlinear optimization are sequential
quadratic programming (SQP) methods. This class of methods provides an impor-
tant application of the primal-dual function considered here. In particular, the primal-
dual augmented Lagrangian may be used as a merit function to force convergence
to points satisfying the second-order necessary conditions for optimality. This is a
consequence of Theorem 3.1, which shows that minimizers of problem (NEP) are
also minimizers of the primal-dual augmented Lagrangian function. In what remains
of this section, we propose an SQP method for (NEP) that uses M(x, y ;ye,μ) as a
merit function.

If μ = 0 and H = H(x,y), equations (3.4) are identical to the conventional equa-
tions for the SQP step. This provides the motivation for using different penalty
parameters for the step computation and the merit function. In particular, given
an iterate vk = (xk, yk) and Lagrange multiplier estimate ye

k , the search direction
Δvk = (pk, qk) is computed from the equations

(
H̄ k J T

k

Jk −μRI

)(
pk−qk

)

= −
(

gk − J T
k yk

ck + μR(yk − ye
k)

)

, (5.5)

where H̄ k is an approximate Lagrangian Hessian and μR is a small fixed parame-
ter. In this context, μR plays the role of a regularization parameter rather than a
penalty parameter, thereby providing an O(μR) estimate of the conventional SQP
direction. In the numerical experiments given below, H̄ k = H(xk, yk) + Ek , where
Ek is a positive-semidefinite modification chosen to ensure that the inertia of the reg-
ularized equations (5.5) is (n,m,0). If the inertia is correct, then Ek = 0; otherwise
Ek is defined implicitly by modifying the eigenvalues associated with the spectral
decomposition of H(xk, yk) (see Greenstadt [31]). Other, more practical approaches
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include: (i) modifying an inertia-controlling factorization of the KKT matrix [19, 21];
(ii) using a positive-definite quasi-Newton approximation to H(xk, yk) [24, 29, 30,
44]; and (iii) adding increasing positive multiples of the identity matrix to H(xk, yk)

until the inertia is correct [53].
Once the search direction Δvk has been determined, a penalty parameter μk is de-

fined such that μk ∈ [μR,μk−1] and Δvk is a descent direction for M(x, y ;ye
k ,μk)

at (xk, yk). Specifically, μk = max(10−�μk−1,μR ), where � ≥ 0 is the smallest in-
teger such that

ΔvT
k ∇M(vk ;ye

k ,μk) ≤ max

(
1

4
ΔvT

k ∇M(vk ;ye
k ,μR),−10−3‖Δvk‖2

)

, (5.6)

and M(v ;ye,μ) denotes the merit function evaluated at v = (x, y). As the inertia
of the matrix in (5.5) is correct (as described above), the primal-dual direction sat-
isfies ΔvT

k ∇M(vk ;ye
k ,μR) ≤ 0, which implies that the right-hand side of (5.6) is

nonpositive. Condition (5.6) holds for μk = μR and so it is always possible to find a
μk that satisfies the descent condition (5.6). Once μk has been determined, a “flexi-
ble” backtracking line search is performed on the primal-dual augmented Lagrangian.
A conventional backtracking line search defines vk+1 = vk +αkΔvk , where αk = 2−j

and j is the smallest nonnegative integer such that

M(vk + αkΔvk ;ye
k ,μk) ≤ M(vk ;ye

k ,μk) + αkηSΔvT
k ∇M(vk ;ye

k ,μk)

for a given scalar ηS ∈ (0,1). However, this approach would suffer from the Maratos
effect [36] simply because the penalty parameter μk and the regularization parameter
μR generally have different values. Thus we use a “flexible penalty function” ap-
proach proposed by Curtis and Nocedal [12] and define αk = 2−j , where j is the
smallest nonnegative integer such that

M(vk + αkΔvk ;ye
k , σ ) ≤ M(vk ;ye

k , σ ) + αkηSΔvT
k ∇M(vk ;ye

k , σ ) (5.7)

for some value σ ∈ [μR,μk]. Once an appropriate value for αk is found, the new
primal-dual solution estimate is given by

xk+1 = xk + αkpk, yk+1 = yk + αkqk, and ye
k+1 = yk+1.

The iteration is concluded by increasing the iteration counter k.
Numerical results from a simple MATLAB implementation of pdSQP were obtained

for the nonlinear equality constrained problems from the CUTEr test collection (see
Bongartz et al. [7] and Gould, Orban and Toint [28]). The MATLAB implementation
was defined with the parameter values μR = 10−8, μ−1 = 1, and ηS = 10−1. The
sequence {(xk, yk)} was judged to have converged if

max
(
‖c(xk)‖,‖g(xk) − J (xk)

Tyk‖
)

< 10−6. (5.8)

If the inertia of (5.5) was not correct, the eigenvalues {λ̄j } associated with the
spectral decomposition of the (1,1)-block H̄ (xk, yk) in (5.5) were defined as λ̄j =
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Algorithm 5.1 Primal-dual equality constrained SQP algorithm (pdSQP)
Input: (x0, y0);
Set parameters μR > 0, μ−1 ∈ [μR,∞), and ηS ∈ (0,1);
Set ye

0 = y0 and k = 0;
while not converged do

Compute f (xk), c(xk), g(xk), J (xk), and H(xk, yk);
If necessary, modify H(xk, yk) to ensure that the inertia of (5.5) is (n,m,0);
Solve (5.5) for the search direction Δvk = (pk, qk);
Choose μk to satisfy (5.6);
Use a flexible backtracking line search to find an αk satisfying (5.7);
Update the primal-dual estimate xk+1 = xk + αkpk , yk+1 = yk + αkqk ;
Update the multiplier estimate : ye

k+1 = yk+1; k ← k + 1;
end do

max{γL, λj }, where {λj } are the eigenvalues of H(xk, yk). The lower bound γL

was γL = max{1, γU/condmax}, where γU = max1≤j≤n {|λj |,1} and condmax
is a preassigned upper bound on the condition number of H̄ (xk, yk). The value of
condmax was 103 in all cases.

In order to provide some context for the pdSQP results, the SQP package SNOPT
[24] was applied to the same test set. The default SNOPT parameter values were
used throughout. These include a termination criterion comparable (but not identi-
cal) to the pdSQP condition (5.8) above. However, it must be emphasized that the
results should not be used in an attempt to assess the relative efficiency of pdSQP
and SNOPT. The implementation of pdSQP is simply a verbatim MATLAB version
of Algorithm 5.1, whereas SNOPT is an established package that incorporates many
years of development. On the other hand, SNOPT uses only first derivatives and is
implemented with different termination criteria (for more information on the imple-
mentation of SNOPT, see Gill, Murray and Saunders [25]).

A total of 80 equality-constrained CUTEr problems were identified: arglcle,
bt1–bt12, byrdsphr, coolhans, dixchlng, eigena2, eigenaco,
eigenb2, eigenbco, eigenc2, eigencco, elec, gridnete, gridneth,
hs6–hs9, hs26–hs28, hs39–hs40, hs42, hs46–hs52, hs56, hs61, hs77–
hs79, hs100lnp, hs111lnp, lch, lukvle1–lukvle4, lukvle6–
lukvle18, maratos, mss1, mwright, orthrdm2, orthrds2, orthrega,
orthregb, orthregc, orthregd, orthrgdm, orthrgds, s316-322, and
woodsne.

Of these 80 problems, 9 were excluded from the test set: arglcle, lukvle2,
lukvle4, lukvle11, lukvle12, lukvle15, lukvle17, lukvle18, and
woodsne. Problems arglcle and woodsne have infeasible constraints. Prob-
lem lukvle2 has an unbounded solution. Problems lukvle4, lukvle11,
lukvle12, lukvle15, lukvle17, and lukvle18 were excluded because they
could not be solved by either SNOPT or pdSQP within 500 iterations.

Tables 2–4 give the details of runs on the remaining 71 problems. For each test
problem we list the number of equality constraints (“m”) and variables (“n”). In
addition, we give the number of function evaluations (“fe”) and iterations (“itns”)
needed by SNOPT and pdSQP. Both methods found the same local solution for the
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Table 2 Nonlinear equality constrained CUTEr problems (A–E)

Problem m n SNOPT pdSQP
fe itns fe itns

bt1 1 2 21 10 9 6

bt2 1 3 16 15 14 13

bt3 3 5 7 6 2 1

bt4 2 3 10 7 14 7

bt5 2 3 11 8 7 5

bt6 2 5 16 14 11 9

bt7 3 5 36 19 57 41

bt8 2 5 13 11 20 19

bt9 2 4 30 18 23 14

bt10 2 2 23 13 7 6

bt11 3 5 14 11 8 7

bt12 3 5 9 8 5 4

byrdsphr 2 3 14 10 59 30

coolhans 9 9 28 19 14 13

dixchlng 5 10 30 29 43 40

eigena2 55 110 4 3 5 4

eigenaco 55 110 4 3 10 8

eigenb2 55 110 4 3 37 22

eigenbco 55 110 4 3 125 74

eigenc2 231 462 290 243 83 44

eigencco 231 462 253 208 93 48

elec 200 600 403 359 115 59

problems with more than one local solution. A table entry “ t ” indicates that the run
was terminated after 500 iterations.

Algorithm pdSQP was unable to solve the 8 cases mss1, lukvle6, lukvle8,
lukvle13, lukvle14, lukvle16, orthrds2, and orthrega within the al-
lotted 500 iterations. However, pdSQP can solve orthrds2 in 200 function evalua-
tions and 198 iterations if the convergence tolerance in (5.8) is increased from 10−6 to
10−5. If all of the difficult lukvle problems are omitted from the test set, pdSQP was
able to solve all but three of the remaining 61 problems, many of which are nontrivial.

As is to be expected, the more mature package SNOPT was slightly more robust
than pdSQP, with only 4 problems unsolved (lukvle9, lukvle10, lch, and or-
thrgds). However, pdSQP usually required fewer iterations than SNOPT on the prob-
lems for which both methods converged successfully. In particular, pdSQP required
fewer iterations than SNOPT in 72% of the cases. Moreover, the number of function
evaluations is typically not much greater than the number of iterations, which implies
that the regularized SQP step was usually accepted by the backtracking line search.
The performance of pdSQP on problem maratos is particularly encouraging be-
cause this problem is a known source of difficulty for SQP methods that suffer from
the Maratos effect.
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Table 3 Nonlinear equality constrained CUTEr problems (F–H)

Problem m n SNOPT pdSQP

fe itns fe itns

gridnete 36 60 38 37 4 3

gridneth 36 60 73 72 6 5

hs6 1 2 7 6 26 11

hs7 1 2 30 17 11 8

hs8 2 2 6 5 6 4

hs9 1 2 8 6 5 4

hs26 1 3 24 23 19 18

hs27 1 3 23 20 15 10

hs28 1 3 11 10 2 1

hs39 2 4 30 18 23 14

hs40 3 4 7 6 5 4

hs42 2 4 8 6 6 5

hs46 2 5 26 25 20 18

hs47 3 5 31 22 22 17

hs48 2 5 8 7 2 1

hs49 2 5 32 31 17 16

hs50 3 5 21 19 10 9

hs51 3 5 8 7 2 1

hs52 3 5 8 6 2 1

hs56 4 7 14 10 6 5

hs61 2 3 174 68 19 13

hs77 2 5 14 12 11 9

hs78 3 5 7 6 5 4

hs79 3 5 14 11 5 4

hs100lnp 2 7 19 14 22 18

hs111lnp 3 10 104 49 34 18

We emphasize that the formulation of pdSQP proposed here has been chosen to
illustrate the local rather than global properties of the merit function. Clearly, a more
sophisticated updating strategy for ye

k is needed to ensure that pdSQP is globally con-
vergent. Moreover, many of the cases that did not converge involved a substantial
number of iterations in which the Hessian was modified. More efficient updates for
ye
k , and matrix modification schemes involving a trust-region strategy are currently

under investigation and are beyond the scope of this paper.

6 Conclusion

Merit functions have played an important role in the formulation and analysis of
methods for solving constrained optimization problems. In this paper we have in-
troduced a generalized primal-dual augmented Lagrangian that may be minimized
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Table 4 Nonlinear equality constrained CUTEr problems (J–Z)

Problem m n SNOPT pdSQP
fe itns fe itns

lukvle1 98 100 13 11 11 10

lukvle3 2 100 36 35 10 9

lukvle6 49 99 29 28 t t

lukvle7 4 100 34 33 12 8

lukvle8 98 100 24 18 t t

lukvle9 6 100 t t 129 74

lukvle10 98 100 t t 13 10

lukvle13 64 98 76 68 t t

lukvle14 64 98 38 33 t t

lukvle16 72 97 342 160 t t

lch 1 300 t t 19 17

mss1 73 90 69 59 t t

maratos 1 2 13 7 4 3

mwright 3 5 10 9 9 7

orthrdm2 100 203 10 7 8 6

orthrds2 100 203 161 80 t t

orthrega 64 133 21 19 t t

orthregb 6 27 8 6 5 4

orthregc 10 25 16 14 8 7

orthregd 10 23 1462 442 8 6

orthrgdm 10 23 14 11 8 6

orthrgds 76 155 t t 17 11

s316-322 1 2 10 6 25 24

jointly with respect to the primal and dual variables. In its most general form, the
function may be considered as one of a continuum of functions that have some
well-known functions as specific cases. One variant of this generalized function—
the primal-dual augmented Lagrangian—is proposed as the basis of three primal-
dual methods. The first is a primal-dual bound-constrained Lagrangian method based
on a primal method given by Conn, Gould, and Toint [10]; the second is a primal-
dual linearly constrained Lagrangian method based on the method of Friedlander and
Saunders [22]; and the third is a new primal-dual SQP method. Preliminary numerical
results from nonlinearly constrained problems with equality constraints indicate that
the primal-dual SQP approach generates trial steps that are well suited to a primal-
dual augmented Lagrangian merit function.
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