Skip to main content
Log in

A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper discusses the L 2 spectral estimation problem with lower and upper bounds. To the best of our knowledge, it is unknown if the existing methods for this problem have superlinear convergence property or not. In this paper we propose a nonsmooth equation reformulation for this problem. Then we present a smoothing Newton-type method for solving the resulting system of nonsmooth equations. Global and local superlinear convergence of the proposed method are proved under some mild conditions. Numerical tests show that this method is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell, R.J.: Introductory Fourier Transform Spectroscopy. Academic Press, New York (1972)

    Google Scholar 

  2. Ben-Tal, A., Borwein, J.M., Teboulle, M.: A dual approach to multidimension L p spectral estimation problems. SIAM J. Control Optim. 26, 985–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borwein, J.M., Lewis, A.S.: Dual relationships for entropy-like minimization problems. SIAM J. Control Optim. 29, 325–333 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein, J.M., Lewis, A.S.: Partially finite convex programming I: Quasi relative interiors and duality theory; II: Explicit lattice models. Math. Program. 57, 15–83 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein, J.M., Wolkowicz, H.: A simple constraint qualification in infinite dimensional programming. Math. Program. 35, 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burg, J.P.: Maximum entropy spectral analysis. Presented at the 37th International Meeting of the Society of Exploratory Geophysics, Oklahoma City, OK, October 1968

  7. Burg, J.P.: Maximum entropy spectral analysis. Ph.D. Dissertation, Stanford University, CA, May 1975

  8. Chamberlain, J.E.: The Principles of Interferometric Spectroscopy. Wiley, New York (1979)

    Google Scholar 

  9. Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput. 67, 519–540 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Cole, R.E., Goodrich, R.K.: L p -spectral estimation with an L -upper bound. J. Optim. Theory Appl. 76, 321–355 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dickinson, B.W.: Two-dimensional Markov spectrum estimates need not exist. IEEE Trans. Inf. Theory 22, 120–121 (1980)

    Article  MathSciNet  Google Scholar 

  14. Dontchev, A.L., Qi, H., Qi, L.: Convergence of Newton’s method for convex best interpolation. Numer. Math. 87, 435–456 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Qi, H., Qi, L., Yin, H.: A Newton method for shape-preserving spline interpolation. SIAM J. Optim. 13, 588–602 (2003)

    Article  MathSciNet  Google Scholar 

  16. Dontchev, A.L., Qi, H., Qi, L.: Quadratic convergence of Newton’s method for convex interpolation and smoothing. Constr. Approx. 19(1), 123–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 107–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goodrich, R.K., Steinhardt, A.: L 2 spectral estimation. SIAM J. Appl. Math. 46, 417–426 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kay, S.M., Marple, S.L.: Spectrum analysis-a modern perspective. Proc. IEEE 69, 1380–1419 (1981)

    Article  Google Scholar 

  20. Landau, H.J.: Maximum entropy and maximum likelihood in spectral estimation. IEEE Trans. Inf. Theory 44, 1332–1336 (1998)

    Article  MATH  Google Scholar 

  21. Lang, S.W., McClellan, J.H.: Spectral estimation for sensor arrays. IEEE Trans. Acoust. Speech Signal Process. 31, 349–358 (1983)

    Article  MATH  Google Scholar 

  22. Qi, H.D., Liao, L.Z.: A smoothing Newton method for general nonlinear complementarity problems. Comput. Optim. Appl. 17, 231–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qi, L., Ling, C., Tong, X., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl. 42, 1–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Optim. 15, 957–972 (1977)

    MathSciNet  Google Scholar 

  25. Pang, J.-S., Qi, L.: Nonsmooth equation: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Potter, L.C.: Constrained signal reconstruction. Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1990

  27. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qi, L., Jiang, H.: Semismooth Karush-Kuhn-Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations. Math. Oper. Res. 22, 301–325 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, L., Sun, D.: Smoothing functions and smoothing Newton method for complementarity and variational inequality problems. J. Optim. Theory Appl. 113, 121–147 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program. 87, 1–35 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Qi, L., Shapiro, A., Ling, C.: Differentiability and semismoothness properties of integral functions and their applications. Math. Program. 102, 223–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stewart, J.: Positive definite functions and generalizations: an historical survey. Rocky Mt. J. Math. 6, 409–434 (1976)

    Article  MATH  Google Scholar 

  34. Sun, D.: A further result on an implicit function theorem for locally Lipschitz functions. Oper. Res. Lett. 28, 193–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yin, H.X., Ling, C., Qi, L.: A semismooth Newton method for L 2 spectral estimation. Math. Program. 107, 539–546 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Ling.

Additional information

Dedicated to Professor Liqun Qi on the occasion of his 65th birthday.

C. Ling’s work was supported by Chinese NSF Grants 10871168 and 10971187. C. Ling’s work was also supported by the Zhenjiang Provincial National Science Foundation of China (Grant No. Y6100366).

H. Yin’s research was supported by FRG of Minnesota State University Mankato and Chinese NSF Grants 10671203, 70531040, and 70621001.

G. Zhou’s work was supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, C., Yin, H. & Zhou, G. A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds. Comput Optim Appl 50, 351–378 (2011). https://doi.org/10.1007/s10589-010-9356-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9356-0

Keywords

Navigation