Skip to main content
Log in

Parameter identification in financial market models with a feasible point SQP algorithm

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The quickly moving market data in the finance industry requires a frequent parameter identification of the corresponding financial market models. In this paper we apply a special sequential quadratic programming algorithm to the calibration of typical equity market models. As it turns out, the projection of the iterates onto the feasible set can be efficiently computed by solving a semidefinite programming problem. Combining this approach with a Gauss-Newton framework leads to an efficient algorithm which allows to calibrate e.g. Heston’s stochastic volatility model in less than a half second on a usual 3 GHz desktop PC. Furthermore we present an appropriate regularization technique that stabilizes and significantly speeds up computations if the model parameters are chosen to be time-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  2. Albrecher, H., Mayer, P., Schoutens, W., Tistaert, J.: The little Heston trap. In: Wilmott Magazine, pp. 83–92 (2007)

    Google Scholar 

  3. Andersen, L., Brotherton-Ratcliffe, R.: The equity option volatility smile: an implicit finite-difference approach. J. Comput. Finance 1(2), 5–32 (1997/98)

    Google Scholar 

  4. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Econ. 81, 637–659 (1973)

    Article  Google Scholar 

  5. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: In: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994)

    Chapter  Google Scholar 

  6. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 3, 463–520 (1999)

    Google Scholar 

  7. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  8. Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s manual—version 6.2.0. Research Report B-308, Dept. Math. and Comp. Sciences, Tokyo Institute of Technology, December 1995

  9. Goldfarb, D., Idnani, A.: A numerically stable method for solving strictly convex quadratic programs. Math. Program. 27, 1–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hedar, A., Fukushima, M.: Hybrid simulated annealing and direct search method for nonlinear unconstrained global optimization. Optim. Methods Softw. 17, 891–912 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Herskovits, J.N., Carvalho, L.A.V.: A successive quadratic programming based feasible directions algorithm. In: Bensoussan, A., Lions, J.L. (eds.) Proceedings of the Seventh International Conference on Analysis and Optimization of Systems, Antibes. Lecture Notes in Control and Inform. Sci., vol. 83, pp. 93–101. Springer, Berlin (1986)

    Google Scholar 

  12. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  13. Higham, N.: Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl. 103, 103–118 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, Berlin (1998)

    MATH  Google Scholar 

  15. Kilin, F.: Accelerating the calibration of stochastic volatility models. Technical Report, available at MPRA: http://mpra.ub.unimuenchen.de/2975 (2007)

  16. Lawrence, C.T., Tits, A.L.: A computationally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11(4), 1092–1118 (2000)

    Article  MathSciNet  Google Scholar 

  17. Mayer, P., Kindermann, S., Albrecher, H., Engl, H.: Identification of the local speed function in a Levy model for option pricing. J. Integral Equ. Appl. 20(2), 161–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mikhailov, S., Noegel, U.: Heston’s stochastic volatility model: implementation, calibration and some extensions. In: Wilmott Magazine, July 2003

  19. Robinson, S.M.: Stability theory for systems of inequalities, Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Turinici, G.: Calibration of local volatility using the local and implied instantaneous variance. J. Comput. Finance 13(2) (2009)

  21. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Weber, T.: Efficient calibration of Libor market models: alternative strategies and implementation issues. Presentation at the Frankfurt MathFinance Workshop, 14/15 April 2005

  23. Wright, S.J., Tenny, M.J.: A feasible trust-region sequential quadratic programming algorithm. SIAM J. Optim. 14(4), 1074–1105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Maruhn.

Additional information

This research was supported by the Forschungsfonds 2005, University of Trier, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlich, F., Giese, A.M., Maruhn, J.H. et al. Parameter identification in financial market models with a feasible point SQP algorithm. Comput Optim Appl 51, 1137–1161 (2012). https://doi.org/10.1007/s10589-010-9369-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9369-8

Keywords

Navigation