Skip to main content
Log in

A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A, requires \(\mathcal{O}(nm^{2})\) operations per iteration. When nm it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported.

As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, Athena (1997)

    Google Scholar 

  2. Cartis, C.: Some disadvantages of a Mehrotra-type primal-dual corrector interior point algorithm for linear programming. Appl. Numer. Math. 59, 1110–1119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colombo, M., Gondzio, J.: Further development of multiple centrality correctors for interior point methods. Comput. Optim. Appl. 41(3), 277–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dantzig, G., Ye, Y.: A build-up interior-point method for linear programming: affine scaling form. Working paper, Department of Management Science, University of Iowa, 1991

  5. den Hertog, D., Roos, C., Terlaky, T.: Adding and deleting constraints in the path-following method for LP. In: Du, D.Z., Sun, J. (eds.) Advances in Optimization and Approximation, pp. 166–185. Kluwer Academic, Norwell (1994)

    Chapter  Google Scholar 

  6. Deza, A., Nematollahi, E., Peyghami, R., Terlaky, T.: The central path visits all the vertices of the Klee-Minty cube. Optim. Methods Softw. 21(5), 851–865 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dikin, I.I.: Iterative solution of problems of linear and quadratic programming. Dokl. Akad. Nauk SSSR 174, 747–748 (1967). English translation: Sov. Math. Dokl. 8, 674–675 (1967)

    MathSciNet  Google Scholar 

  8. Dikin, I.I.: O skhodimosti odnogo iteratsionnogo protsessa (On the convergence of an iterative process). Upr. Sist. 12, 54–60 (1974), in Russian

    Google Scholar 

  9. Gay, D.M.: Electronic mail distribution of linear programming test problems. Math. Program. Soc. COAL Newslett. 13, 10–12 (1985). http://www-fp.mcs.anl.gov/OTC/Guide/TestProblems/LPtest/

    Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, London (1996)

    MATH  Google Scholar 

  11. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. (2010). doi:10.1007/s10589-010-9361-3

    MATH  Google Scholar 

  12. He, M.Y., Tits, A.L.: Infeasible constraint-reduced interior-point methods for linear optimization. Submitted for possible publication in Optim. Methods Softw., special issue in honor of Florian A. Potra’s 60-th birthday (2011). www.optimization-online.org/DB_HTML/2010/11/2822.html

  13. Herskovits, J.N.: Développement d’une méthode numérique pour l’optimization non-linéaire. Ph.D. thesis, Université Paris IX—Dauphine, Paris, France, January 1982

  14. Higham, N.J.: Analysis of the Cholesky decomposition of a semi-definite matrix. In: Cox, M.G., Hammarling, S.J. (eds.) Reliable Numerical Computation, pp. 161–185. Oxford University Press, London (1990)

    Google Scholar 

  15. Jansen, B., Roos, C., Terlaky, T.: A polynomial primal-dual Dikin-type algorithm for linear programming. Math. Oper. Res. 21(2), 341–353 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaliski, J.A., Ye, Y.: A decomposition variant of the potential reduction algorithm for linear programming. Manag. Sci. 39, 757–776 (1993)

    Article  MATH  Google Scholar 

  17. Mangasarian, O.: A Newton method for linear programming. J. Optim. Theory Appl. 121(1), 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mittelmann, H.: LP Models, Miscellaneous LP models collected by Hans D. Mittelmann: online at http://plato.asu.edu/ftp/lptestset/

  20. Monteiro, R.D.C., Adler, I., Resende, M.G.C.: A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Math. Oper. Res. 15, 191–214 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Leary, D.P.: On bounds for scaled projections and pseudo-inverses. Linear Algebra Appl. 132, 115–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Panier, E.R., Tits, A.L., Herskovits, J.N.: A QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization. SIAM J. Control Optim. 26(4), 788–811 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saigal, R.: On the primal-dual affine scaling method. Tech. report, Dept. of Industrial and Operational Engineering, The University of Michigan, 1994

  24. Saigal, R.: A simple proof of a primal affine scaling method. Ann. Oper. Res. 62, 303–324 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Salahi, M., Terlaky, T.: Postponing the choice of the barrier parameter in Mehrotra-type predictor-corrector algorithms. Eur. J. Oper. Res. 182, 502–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salahi, M., Peng, J., Terlaky, T.: On Mehrotra-type predictor-corrector algorithms. SIAM J. Optim. 18(4), 1377–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stewart, G.W.: On scaled projections and pseudo-inverses. Linear Algebra Appl. 112, 189–194 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tits, A.L., Zhou, J.L.: A simple, quadratically convergent algorithm for linear and convex quadratic programming. In: Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds.) Large Scale Optimization: State of the Art, pp. 411–427. Kluwer Academic, Norwell (1994)

    Chapter  Google Scholar 

  29. Tits, A.L., Absil, P.A., Woessner, W.: Constraint reduction for linear programs with many constraints. SIAM J. Optim. 17(1), 119–146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tone, K.: An active-set strategy in an interior point method for linear programming. Math. Program. 59, 345–360 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vanderbei, R.J., Lagarias, J.C.: I.I. Dikin’s convergence result for the affine-scaling algorithm. In: Lagarias, J.C., Todd, M.J. (eds.) Mathematical Developments Arising from Linear Programming: Proceedings of a Joint Summer Research Conference (Bowdoin College, Brunswick, Maine, USA), pp. 109–119. American Mathematical Society, Providence (1988)

    Google Scholar 

  32. Winternitz, L.B.: Primal-dual interior-point algorithms for linear programming problems with many inequality constraints. Ph.D. thesis, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, May 2010. http://drum.lib.umd.edu/handle/1903/10400

  33. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  34. Ye, Y.: An O(n 3 L) potential reduction algorithm for linear programming. Math. Program. 50(2), 239–258 (1991)

    Article  MATH  Google Scholar 

  35. Zhang, Y., Zhang, D.: On polynomiality of the Mehrotra-type predictor-corrector interior point algorithms. Math. Program. 68, 303–31 (1995)

    Article  MATH  Google Scholar 

  36. Zhang, D., Zhang, Y.: A Mehrotra-type predictor-corrector algorithm with polynomiality and Q-subquadratic convergence. Ann. Oper. Res. 62(1), 131–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. Tits.

Additional information

This work was supported by NSF grant DMI0422931 and DoE grants DEFG0204ER25655 and DESC0002218. The work of the first author was supported by NASA under the Goddard Space Flight Center Study Fellowship Program. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation, those of the US Department of Energy, or those of NASA.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10589_2010_9389_MOESM1_ESM.pdf

Electronic Supplementary Material (appendix) to “A Constraint-Reduced Variant of Mehrotra’s Predictor-Corrector Algorithm” by L.B. Winternitz, S.O. Nicholls, A.L. Tits, and D.P. O’Leary. (156 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winternitz, L.B., Nicholls, S.O., Tits, A.L. et al. A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm. Comput Optim Appl 51, 1001–1036 (2012). https://doi.org/10.1007/s10589-010-9389-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-010-9389-4

Keywords

Navigation