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Abstract This article aims to contribute to numerical strategies forPDE-constrained multi-
objective optimization, with a particular emphasis on CPU-demanding computational appli-
cations in which the different criteria to be minimized (or reduced) originate from different
physical disciplines that share the same set of design variables. Merits and shortcuts of the
most-commonly used algorithms to identify, or approximate, the Pareto set are reviewed,
prior to focusing on the approach by Nash games. A strategy isproposed for the treatment
of two-discipline optimization problems in which one discipline, the primary discipline, is
preponderant, or fragile. Then, it is recommended to identify, in a first step, the optimum
of this discipline alone using the whole set of design variables. Then, an orthogonal basis is
constructed based on the evaluation at convergence of the Hessian matrix of the primary cri-
terion and constraint gradients. This basis is used to splitthe working design space into two
supplementary subspaces to be assigned, in a second step, totwo virtual players in competi-
tion in an adapted Nash game, devised to reduce a secondary criterion while causing the least
degradation to the first. The formulation is proved to potentially provide a set of Nash equi-
librium solutions originating from the original single-discipline optimum point by smooth
continuation, thus introducing competition gradually. This approach is demonstrated over a
testcase of aero-structural aircraft wing shape optimization, in which the eigen-split-based
optimization reveals clearly superior. Thereafter, a result of convex analysis is established
for a general unconstrained multiobjective problem in which all the gradients are assumed to
be known. This results provides a descent direction common to all criteria, and adapting the
classical steepest-descent algorithm by using this direction, a new algorithm is defined re-
ferred to as the multiple-gradient descent algorithm (MGDA). The MGDA realizes a phase
of cooperative optimization yielding to a point on the Pareto set, at which a competitive
optimization phase can possibly be launched on the basis of the local eigenstructure of the
different Hessian matrices.
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1 Multidisciplinary competition in complex design optimization

In the engineering office, the optimization problems that are raised by designers of com-
plex systems are by naturemultiobjective. For instance, in aerodynamic shape optimization
for the design of commercial airplanes, one focus is the liftmaximization in the critical
phase of take-off or landing, another is drag minimization in the cruise regime since it di-
rectly determines kerosene consumption or range, but othercriteria are also important :
those related to stability or maneuverability that are linked to aerodynamic moments, or
those imposed by manufacturing constraints, etc. Evidently, the resulting multiobjective op-
timization problems are inevitably alsomultipoint, since they are associated with different
flight regimes (different Mach and Reynolds numbers, and angles of attack) and configu-
rations (e.g. possible deployment of special high-lift devices). Consequently, the accurate
evaluation of such criteria by means of high-fidelity modelsrequires the efficient simulation
of several flowfields by the numerical approximation of the gasdynamics equations, typi-
cally by finite volumes. In addition, different couplings ofaerodynamics with other physical
phenomena are also of critical importance in the performance evaluation of a design : struc-
tural deformation, stress and fatigue, dynamic fluid-structure interaction, acoustics, thermal
load analysis, etc. These aspects can be treated in various ways with advanced numerical
procedures. For example, in her doctoral thesis [17], M. Marcelet, in preparation of an aero-
dynamic aircraft wing shape optimization, has considered amodel in which the compressible
Reynolds-Averaged Navier-Stokes (RANS) equations have been used to compute the three-
dimensional flow about the wing, whereas the structure has been modeled as a beam subject
to bending and torsion under the aerodynamic forces, and thus established the expression
for the discrete gradient of aerodynamic coefficients accounting for this coupling. In this
area, where functional gradients of complex coupled discrete systems are calculated,Auto-
matic Differentiationas it is more and more routinely developed in tools such as TAPENADE

(cf. http://www-sop.inria.fr/tropics), is expected to become increasingly useful. Considering
more generally, the application of gradient-based methodsto aerodynamic and structural
wing design, the article by Leoviriyakit and Jameson [16] reflects the potentials of state-of-
the-art computational methods.

In a different perspective, in the literature, the expression “multidisciplinary optimiza-
tion” (MDO) most often refers to methodologies for analyzing, and locally optimizing
single-discipline subsystems, and integrating them in a larger coupled system for purpose of
design. In particular, the design of aeronautical complex systems has stimulated many ba-
sic developments. A commonly-used approach is the Bi-levelIntegrated System Synthesis
(BLISS) of Sobieszczanski-Sobieski and co-authors in which the integration is organized
after a distinction is made among the design variables between the global (or public) vari-
ables common ta all disciplines, and the local (or private) variables associated with separate
subsystems [25] [26]. A formal presentation and a comparison of collaborative optimization
approaches was made by Alexandrov in [3]. The DIVE approach of [23] has been proposed
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recently as a variant of the BLISS in which the coupling between subsystems is reinforced
by the solution of an additional nonlinear equation. From the original developments, MDO
concepts have matured and we refer to the textbook by Keane and Nair [15] for a general
presentation, and to [29] for a recent review.

In our perspective, MDO processes are viewed as game strategies [5] [21] of particular
types, and our developments are linked to MDO in this light.

From the standpoint of numerical analysis, how should the public variables be op-
timized concurrently to account for antagonistic criteriaoriginating from different disci-
plines? This article focuses on this question sometimes referred to as “concurrent engineer-
ing”. In optimum-shape design, often the different physical phenomena are accurately mod-
eled by partial-differential equations to be solved in domains that are identical or distinct
but share a common geometrical boundary at which appropriate conditions are enforced
and whose shape is to be optimized. Besides the case of the aero-structural design of an
aircraft wing cited above, in the design of a stealth airplane, one would optimize the wing-
shape w.r.t. an appropriate aerodynamic criterion, or several such criteria, concurrently with
an electromagnetic criterion, such as cross-radar section(RCS) reduction. In the latter case,
both distributed P.D.E. systems are formulated in the domain exterior to the aircraft, but have
very different computational characteristics in particular concerning mesh requirements.

In the area of pure numerical simulation of multidisciplinary coupled systems, the com-
putational cost to evaluate a configuration may be very high.A fortiori, in multidisciplinary
optimization, one is led to evaluate a number of different configurations to iterate on the
design parameters. This observation motivates the search for the most innovative and com-
putationally efficient approaches in all the sectors of the computational chain : at the level of
the solvers (using a hierarchy of physical models), the meshes and geometrical parametriza-
tions for shape, or shape deformation, the implementation (on a sequential or parallel ar-
chitecture; grid computing), and the optimizers (deterministic or semi-stochastic, or hybrid;
synchronous, or asynchronous).

In the present approach, we concentrate on situations typically involving a small number
of disciplines assumed to be strongly antagonistic, and a relatively moderate number of
related objective functions. However, our objective functions are functionals, that is, PDE-
constrained, and thus costly to evaluate. The aerodynamic and structural optimization of
an aircraft configuration is a prototype of such a context, when these disciplines have been
reduced to a few major objectives. This is the case when, implicitly, many subsystems are
taken into account by local optimizations.

Our developments are focused on the question of approximating the Pareto set in cases
of strongly-conflicting disciplines. For this purpose, a general computational technique is
proposed, guided by a form of sensitivity analysis, with theadditional objective to be more
economical than standard evolutionary approaches.

Classically, the simplest way to account for several criteria simultaneously consists in
agglomerating them all in a single performance index weighting each criterion with an ap-
propriate coefficient, or weight. For example, with two criteriaJA andJB, consider :

J = α
JA

J0
A

+β
JB

J0
B

whereJ0
A andJ0

B are reference values, for example, those associated with aninitial design.
Here,α andβ are positive weights to be chosen somehow. This approach is very commonly-
used, particularly when one disposes of an initial design that is close to be satisfactory, that
is, only a better, or slightly different optimum is to be sought. However, the construction
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of the agglomerated criterion involves a large amount of arbitrariness, in particular (but not
only) w.r.t. the weightsα and β that can strongly influence the result and require to be
calibrated by an experienced practitioner. Thus, this approach is poorly general, physically
or mathematically relevant.

An alternative to the unique criterion by agglomeration of several objective functions,
consists of a two-step process in which each criterion is first optimized alone, possibly under
constraints; for the above two-objective problem, one thusgetsJ∗A andJ∗B as the solutions
to two independent single-objective optimizations. Then,in the second step, one solves the
following single-objective constrained problem :

min p

subject to the following inequality constraints :

JA ≤ J∗A +α p and JB ≤ J∗B +β p

In this alternative, assuming all the cited single-objective problems make sense separately,
without physical coupling, the difficulty is here to treat a problem with functional inequality
constraints of physically-different nature. Additionally, the same arbitrariness resides in the
calibration of the weightsα andβ .

A real alternative to the unique agglomerated objective approach, is to establish the front
of Pareto-optimal solutions.To introduce this, we first recall the notion ofdominanceand
non-dominance:
Definition : When considering the minimization of several criteria concurrently (JA, JB, etc),
a design point D(1) in the parameter space is said to dominate the design D(2) in efficiency,
which we denote as follows :

D(1) ≻ D(2) ,

iff, for all the criteria J to be minimized, the following holds :

J
[

D(1)
]

≤ J
[

D(2)
]

,

and if, for at least one criterion, the inequality is strict.Inversely, if instead :

D(1) ⊁ D(2) , and D(2) ⊁ D(1) ,

the two design-points D(1) and D(2) are said to be non-dominated.
This notion can be used to sort a collection, or population ofdesign-points evaluated

w.r.t. the various criteriaJA, JB, etc, according to the so-calledPareto fronts. The first front
is made of all the design-points dominated by no other; the second, the front of those dom-
inated by no other in the remaining set; etc. The result of this sorting process is sketched at
Fig. 1.

Relying on this sorting process, Srinivas and Deb [27] have proposed the genetic al-
gorithm NSGA (Non-dominated Sorting Genetic Algorithm)which utilizes essentially the
front index as thefitness function, the engine of the GA. Goldberg [12] improved the method
by introducing aniching technique in order to prevent the accumulation of non-dominated
design-points on a given front. To illustrate theNSGA, we present an experiment made by
Marcoet al [18] in which an airfoil shape was optimized to reduce drag (in transonic flow
conditions) and maximize lift (in subsonic flow conditions)concurrently. TheNSGAwas
implemented in two independent experiments correspondingto finite-volume simulations
of the compressible Euler equations using different meshes, a coarse and a fine. The totality
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Fig. 1 Sketch of a population of design-points sorted in Pareto fronts

of the design-points accumulated during the successive generations in the two experiments
indistinctly, are represented on Fig. 2 a). In each experiment, the set of design-points does
not cover the entire quarter plane : not all pairs(JA,JB) can be achieved by the system. The
boundary of the domain of realizable pairs is made of Pareto-optimal solutions. The corre-
sponding two (discrete) fronts and the associated shapes (for the fine-mesh experiment only)
are depicted on Fig. 2 b) and c).

This experiment allows us to point out the principal merits and weaknesses of this ap-
proach. The method provides the designer with a rich and unbiased information on the be-
havior of the criteria when the parameters vary, but one can also regret the lack of hierar-
chy between the Pareto-optimal solutions, among which a definite operating design-point
requires to be elected on the basis of some other criterion still to be introduced. Other exper-
iments in the literature have shown that the method is very general since it has been applied
to cases where the Pareto-equilibrium front was either non-convex or discontinuous. On the
other hand, the computational cost of a standard application of theNSGAis fairly high since
a large number of configurations ought to be evaluated, if an accurate identification of the
front is sought. In our example, this was achieved by instantiations of a two-dimensional
Eulerian flow code for purpose of demonstration; however today, realistic flow simulations
about aircraft wings are based on three-dimensional turbulent Navier-Stokes equations. The
cost-efficiency issue can be somewhat alleviated by the usage of parallel computing, which
is possible at several levels : the parallelization of the analysis code by domain decomposi-
tion, the natural parallelization of its independent instantiations, as well as the parallelization
the crossover operator in the GA [19]. Various evolutionaryalgorithms other than theNSGA
have been proposed for multiobjective optimization on the basis of similar principles (e.g.
NPGA[14], MOGA [11], SPEA[31]).

When the front of Pareto-optimal solutions is convex and smooth, it may be possible to
identify it point-wise, by treating all but one criterion asequality constraints, as depicted on
Fig. 3. However this approach is much less general since, as mentioned before, functional
constraints are difficult to implement; additionally, the identification is usually logically
complex in cases of more than two objectives.

An alternate treatment of multiobjective problems that circumvents the usually very
arbitrary question of adjusting penalty constants in the agglomerated-criterion approach,
and that is much more economical than anNSGA-type method to establish the Pareto-
equilibrium front, consists in simulating a dynamic game inwhich the design variables are
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a) Realizable design-point accumulation by application ofthe NSGA
(independent Eulerian flow simulations on coarse and fine grids)
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b) Discrete fronts of Pareto-optimal solutions (coarse andfine grids)
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c) Shapes associated with the (fine-grid) Pareto-optimal solutions

Fig. 2 An illustration of the NSGA in which an airfoil shape is optimized to reduce drag and maximize lift
concurrently; in c) the upper-left airfoil has the highest lift, and the lower-right the lowest drag.

first split in complementary subsets and distributed to virtual players as individual strate-
gies. Symmetrical as well as unsymmetrical (or hierarchical) games can be considered [21],
[5]. In a symmetrical Nash game [21], each player accommodates its own strategy to the
other players strategies to optimize only one criterion. Ifan equilibrium point is reached, a
trade-off between the various criteria is achieved.
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{

min JA

s.t.JB = β j

{

min JB

s.t.JA = αi

αi

β j

JA

JB

Fig. 3 Schematic of a Pareto front point-wise identification by thetreatment of certain criteria as equality
constraints

In his doctoral thesis, B. Abou El Majd [1] has realized a number of aero-structural
shape-optimization exercises related to a generic business-jet wing using either Nash or
Stackelberg games, some of which are reported here for illustration, some of which have
also been reported in [2].

Here, we focus on the symmetrical formulation of Nash games involving two players
A and B controlling the subvectorsYA andYB composing the complete vector of design
variables :

Y = (YA,YB)

In this case, the vectorY =
(

YA,YB
)

is said to realize a Nash equilibrium of the criteriaJA

andJB, iff :
YA = ArgminYA

JA
(

YA,YB
)

and symmetrically :
YB = ArgminYB

JB
(

YA,YB
)

This formulation is inspired by the negotiation mechanism of which economics and social
sciences provide numerous examples.

The Nash equilibrium-point can be achieved by the followingparallel algorithm [28] :

Step 1:Initialize both subvectors :

YA := Y(0)
A YB := Y(0)

B

Step 2:Perform in parallel optimization iterations of both subsystems (by independent and
generally different analysis and optimization methods) :

Player A:

• Retrieve and maintain fixed
YB = Y(0)

B

• PerformKA minimization steps ofJA

(

YA,Y(0)
B

)

by iterating onYA alone and getY(KA)
A .
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Player B:

• Retrieve and maintain fixed
YA = Y(0)

A

• PerformKB minimization steps ofJB

(

Y(0)
A ,YB

)

by iterating onYB alone and getY(KB)
B .

Step 3:Update both subvectors in preparation of the information exchange :

Y(0)
A := Y(KA)

A Y(0)
B := Y(KB)

B

and go back to Step 2 or stop (at equilibrium).
Note that in practice, under-relaxation is very often essential to convergence. This point

is particularly critical when the two criteriaJA andJB originate from different physical disci-
plines associated with different dependencies and scales,as it is the case for optimum design
w.r.t. aerodynamics and structural mechanics, or electro-magnetics. However, certain rather
general mathematical stabilization techniques exist; seefor example [4].

Important remark : invariance of the Nash equilibrium solut ion to units and scales.
Assume thatY =

(

YA,YB
)

realizes a Nash equilibrium of the criteriaJA and JB, and let
Φ andΨ be some arbitrary but smooth and strictly-monotone increasing functions; then,
evidently,Y also realizes a Nash equilibrium of the criteriaΦ [JA] andΨ [JB]. In other words,
the notion of Nash equilibrium is not only independent of thephysical units used for the
criteria, but also of possible changes in scales applied to them : for example, replacingJ
by Jα or exp(J) has no effects other than a different conditioning of the numerical system.
By this invariance property, the Nash game formulation contrasts outstandingly from the
agglomerated criterion approach in which dimensioning thepenalty constants has a strong,
and usually unknown influence on the solution. The equilibrium solution, unique or not, is
only determined by the split of the design vector, which is here referred to as thesplit of
territory by which each virtual player is allocated a subspace of action, or territory.

This approach has been tested successfully over a number of cases related to optimum
design in aeronautics, in particular within the framework of the Jacques-Louis Lions Labo-
ratory common to the University of Paris 6 and Dassault Aviation. One of the earliest con-
tributions has been Wang’s doctoral thesis [30] in which multicriterion optimization prob-
lems in aerodynamics have been treated by Nash games by taking the best advantage of a
distributed environment. Nevertheless, note that in some cases of multipoint drag minimiza-
tion, the lift constraint was introduced by the penalty approach; thus, somewhat artificially,
all the criteria were unconstrained and this results in a simplification, because it allows the
Nash equilibrium to be sought from an initial point where thefunctional gradient is equal to
zero, and the dynamic game develops in a region in which the functional is not very sensitive
to parameter changes.

For purpose of illustration, we reproduce here partially the results of a two-point airfoil
shape aerodynamic optimization taken from [28]. The targets are to maximize the lift in a
subsonic regime representative of take-off and landing (M∞ = 0.2, α = 10.8o) defining the
first point, and concurrently minimize the drag in a transonic flow representative of cruise
(M∞ = 0.77, α = 1o) defining the second point. For both points, the airfoil is assumed to be
immersed in a compressible Eulerian flow. Here, both optimizations are treated as inverse
problems. A first airfoil shape is associated with the subsonic point; this airfoil is consid-
ered satisfactory w.r.t. lift in this regime, and the corresponding pressure distribution along
the airfoil is denotedpsub. This airfoil may be the result of a single-point optimization.
However, this airfoil should be improved w.r.t. drag at the transonic point. A second airfoil
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has the opposite characteristics. It is satisfactory w.r.t. drag at the transonic point, and the
corresponding pressure distribution along the airfoil is denotedptrans, but not w.r.t. lift at
the subsonic point. Then one seeks an airfoil shape that produces in each point a pressure
distribution as close as possible to the relevant target profile, psubor ptrans.

For this, the airfoil boundaryΓc is split into two complementary territoriesΓ1 andΓ2,
corresponding approximately to the fore and aft regions of the airfoil (see Fig. 4, top). The
airfoil is parametrized classically by means of the Hicks-Henne basis functions, and the
associated weights are the design variables of the experiment. One such design variable is
allocated to either territory depending on the location of the maximum of the corresponding
bell-shaped function. In this way,Γ1 andΓ2 are associated with specific distinct subsets of
the design variables. A trade-off between the two target airfoils is then sought by realizing a
Nash equilibrium associated with the following formulation :

min
Γ1

I1 =

∫

Γc

(

p− psub
)2

(1)

(in which it is implicit that the field is calculated in the subsonic conditions that define the
first point), and

min
Γ2

I2 =

∫

Γc

(p− ptrans)
2 (2)

(in which it is implicit that the field is calculated in the transonic conditions that define the
second point).

Starting with some appropriate initial airfoil, a virtual player performs 5 design cycles
to reduce criterionI1 by acting only on the subset of the design variables associated withΓ1,
and maintaining the other variables fixed. The optimizer is asteepest-descent-type method
based on a functional gradient resulting from discretizinga continuous adjoint equation. In
parallel, another virtual player performs 10 design cyclesto reduce criterionI2 by acting only
on the subset of the design variables associated withΓ2, and maintaining the other variables
fixed. Then, both players exchange their best respective subvectors of design variables, and
so on until an equilibrium is reached. The iterative convergence of this process is indicated
at Fig. 4 (bottom) : both criteria approach a stable asymptote.

Fig. 5 illustrates how the trade-off airfoil shape corresponding to the Nash equilibrium
solution compares with the initial and target airfoils, andFig. 6 provides the pressure distri-
butions over this optimized geometry in the two calculationpoints.

Another example of application of a Nash formulation to the treatment of a complex
geometrical optimization problem is given by [13], in whichtwo disciplines, elasticity and
thermal analysis, have been considered as governing modelsin the competition between the
structural and the cooling material topologies.

Hence, in summary and referring also to [28], in PDE-constrained optimization, the
Nash game formulation has the following most important merits :

1. the iteration applies to a set of design variables, and notto a population of such vectors;
2. it permits straightforwardly to couple physical disciplines represented by independent

codes through the exchange of design variables;
3. parallel computing can be exploited readily;
4. the multiobjective solution satisfies the above propertyof invariance to units and scales.

Keeping the above example in mind, we return now to our general discussion on mul-
tiobjective, or multidiscipline optimization. In optimum-shape design in aerodynamics, we
are facing two major difficulties.
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a) Split of geometrical parameters

b) Convergence of the two criteria

Fig. 4 Split of territory and optimization strategy; informationexchange every 5‖ 10 parallel optimization
iterations (top); asymptotic convergence of the two criteria towards a Nash equilibrium (bottom); from [28]

The first difficulty is related to the fact that only the simulation of a complex flow by
a high-fidelity model (e.g. by the RANS equations) can provide a reliable evaluation of the
aerodynamic coefficients. For instance, the solution of thethree-dimensional compressible
Euler equations, not so long ago considered as an accomplishment, only provides the wave
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Fig. 5 Comparison between the optimized airfoil (solid line) withthe initial airfoil and the target airfoil
associated with the subsonic conditions of the first point (left), and the target airfoil associated with the
transonic conditions of the second point (right); from [28]
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Fig. 6 Pressure distributions over the initial, target and optimized (solid line) shapes in the subsonic condi-
tions of the first point (left), and in the transonic conditions of the second point (right); from [28]

drag and friction forces are neglected, as well as turbulence effects. The computational cost
of an accurate evaluation of the aerodynamic functionals isthus very high.

Secondly, by nature, transonic flows are only weak solutionsto the partial-differential
equations of gasdynamics. As such, they are very sensitive to variations in boundary con-
ditions, such as shape variations. The aerodynamic performance is therefore very fragile,
in particular drag, and tolerance margins are small. By coupling aerodynamics with one or
more other disciplines in a multidisciplinary optimization, it is imperative to maintain the
aerodynamic performance near the optimal level.

This observation has led us to introduce the notion ofprimary functionalw.r.t. which
sub-optimality should be maintained, andsecondary functionalto be reduced under possible
constraints.

In our notations, the dimension of the full design space isN. A first optimization step
is completed in which the sole principal criterionJA is minimized w.r.t. the totality of theN
design variables, yielding a vectorY∗

A that realizes, by hypothesis, a local or global minimum
of this criterion. It is also assumed that at this point,K (K < N) scalar constraints (gk = 0,
k = 1,2, ...,K, or more compactlyg = 0) are active. Then, one wishes to conduct a second
optimization step, multiobjective and competitive in nature, by establishing a Nash equilib-
rium between the criteriaJA andJB. To extend the formulation of the previous experiment,
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the following more generalsplit of territory is introduced :

Y = Y (U,V) = Y∗
A +S

(

U
V

)

(3)

where :

U =







u1
...

uN−p






, V =







vp
...

v1






(4)

in which S is an adjustable matrix of dimensionN×N, referred to as thesplitting matrix,
and to utilize the subvectorsU (U ∈ RN−p) andV (V ∈ Rp) as strategies, or territories of
two virtual playersA andB in charge of the minimization ofJA andJB respectively.

The Nash equilibrium point, if it exists, is denotedY = Y
(

U ,V
)

, and it is associated
with the following coupled optimization formulation :











min
U∈RN−p

JA

[

Y
(

U,V
)

]

Subject to :g
[

Y
(

U,V
)

]

= 0
(5)

and :






min
V∈Rp

JB

[

Y
(

U ,V
)

]

Subject to : no constraints
(6)

The dimensionp of subvectorV which controls the subspace of action of playerB is
adjustable (p≥ 1); however, the dimensionN− p of subvectorU must be at least equal to
1, and at least equal to the numberK (K ≥ 0) of active constraints; this gives the following
bounds onp :

1≤ p≤ N−max(K,1) (7)

In the limiting case (N− p = K), in the above Nash game formulation, the minimization of
JA under constraints reduces to the adjustment of theK components of subvectorU to satisfy
the K scalar constraints. This case has been examined in [7]. Hereafter, unless mentioned
otherwise, a strict inequality is assumed instead.

In the examples cited above, [30] and [28], the split is a partition of theprimitive vari-
ables, that is, the original components of the design vectorY. Our new and more general
formulation encompasses this particular case obtained when the splitting matrix is a permu-
tation matrix.

In a parametric shape optimization, the primitive variables are geometrical control pa-
rameters, such as the weights put on the different Hicks-Henne basis functions, or the co-
ordinates of control points in a Bézier or B-spline parametrization. Thus, typically, these
variables are associated with specific locations of the optimized geometry. Hence, when the
splitting is a permutation, the permutation reflects our intuitive understanding of the de-
pendency of the physical functionals on the geometry, or regions of it. For instance, in the
example of Fig. 4, the split was guided by the knowledge that in a transonic flow, the wave
drag is the result of the shock intensity and it depends mostly on the delicate design of the
geometry on the upper surface near the shock, whereas, in a subsonic flow, the lift is essen-
tially proportional to the airfoil thickness. In his doctoral thesis, Wang [30] demonstrated
that iterations based on choices for the splitting oppositeto this physical sense, unsurpris-
ingly, diverge.
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These considerations lead us to raise the following question : how should the split be
defined in a general and systematic manner to respect the physical sense? In particular, if
the Nash game is initiated from a viable, physically-relevant solution corresponding to an
optimum of the primary criterionJA, can near-optimality of this criterion be maintained at
equilibrium?

With the formulation of (3), the subspace spanned by the firstN− p column vectors of
the splitting matrixScan be viewed as the territory assigned to playerA in charge of mini-
mizing the primary criterionJA, and the subspace spanned by the lastp column vectors as
the territory assigned to playerB in charge of minimizing the secondary criterionJB. Thus
the above open questions are those of the adequacy of the split of territory. The option which
is adopted here consists in making this choice statically (and not adaptively in the course of
the dynamic game), at completion of the first step of the procedure in which the primary
criterion is minimized alone (possibly under constraints)in full dimensionN, yielding the
optimal design vectorY∗

A , and before any competitive strategy is initiated. Thus thechoice
is made, here once for all, on the basis of the analysis of the sensitivity of this criterion only.
We specifically enforce the following condition : the secondstep of the optimization proce-
dure, the competitive step, should be such that infinitesimal perturbations of the parameters
aboutY∗

A that lie in the subspace identified as the territory of the secondary criterion should
cause the least possible degradation of the primary criterion (w.r.t. the minimum achieved
at completion of the first step). As a basis for the identification of the optimal splitting, one
considers the formal Taylor’s expansion of the primary functional to second order aboutY∗

A
in the direction of a unit vectorω ∈ RN :

JA(Y∗
A + εω) = JA (Y∗

A)+ ε ∇J∗A .ω +
ε2

2
ω .H∗

A ω +O(ε3) (8)

Our goal is to propose a sensible splitting associated with the definition of a vector basis
{ωk} (k = 1, ...,N). To fix the ideas, let us assume that the first few elements,{ωk} (k =
1,2, ...), of the basis are dedicated to player A in charge of reducingthe primary criterionJA,
and inversely, the tail elements,{ωk} (k = N,N−1...), to player B in charge of reducing
the secondary criterionJB. Note that the direction of maximum sensitivity of the primary
criterionJA, or steepest-descent direction, is given by the gradient,∇J∗A atY =Y∗

A . Thus, the
following two conditions should be satisfied by the basis :

1. the first few elements should span the gradient,∇J∗A;
2. inversely, the difference|JA(Y∗

A + εω)−JA (Y∗
A)|, whenε is small and fixed, should be

as small as possible whenω is a tail element of the basis.

At Y = Y∗
A , the optimality conditions imply that the gradient∇J∗A is a linear combination

of the K active constraint gradients, the coefficients being the Lagrange multipliers. Thus
a way to achieve the first condition is to enforce that the firstK elements of the basis have
the same span as the gradients of theK active constraints. For this, one requires that{ωk}
(k = 1,2, ...,K) be the result of applying the Gram-Schmidt orthogonalization process to the
constraint gradients{∇g∗k } (k = 1,2, ...,K). Then, letP be the following projection matrix :

P = I −
K

∑
k=1

[

ωk
] [

ωk
]T

(9)

where
[

ωk
]

denotes the column-vector matrix made of the components of vectorωk, and
consider the following real-symmetric matrix :

H ′
A = PH∗

A P (10)
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We claim that the eigenvectors of the matrixH ′
A, ordered appropriately, constitute the best

choice.
First, these eigenvectors contain the null space of the projection matrixP, that is,{ωk}

(k = 1,2, ...,K). Thus the first condition is satisfied simply if the orderingis such that these
vectors appear first.

Second, the basis is orthogonal; hence the tail elements areorthogonal to the firstK,
and to∇J∗A as a consequence of the first condition. Thus, forω = ωk (k ≥ K + 1), the
principal term in the expansion of the difference,|JA(Y∗

A + εω)−JA(Y∗
A)| is the quadratic

term. This term, including the absolute value, reduces to the Rayleigh quotient associated
with the matrixH ′

A (assuming positive-definiteness), and the classical characterization of
eigenvectors, here by decreasing eigenvalue, holds. ⊓⊔

Starting from the above observations, the following theorem, taken from [7], exploits
this basic principle and draws certain additional consequences related to the Nash game. It
is assumed that the two criteriaJA andJB are strictly positive and such that :

J∗A = JA (Y∗
A) > 0, J∗B = JB(Y∗

A) > 0 (11)

If necessary the problem can easily be reformulated to meet these requirements.

Theorem 1
Let N, p andK be positive integers such that :

1≤ p≤ N−max(K,1) (12)

Let JA, JB and, if K ≥ 1, {gk} (1 ≤ k ≤ K), beK + 2 smooth real-valued functions of the
vectorY ∈ RN. Assume thatJA and JB are positive, and consider the following primary
optimization problem,

min
Y∈RN

JA(Y) (13)

that is either unconstrained (K = 0), or subject to the followingK equality constraints :

g(Y) = (g1, g2, ..., gK )T = 0 (14)

Assume that the above minimization problem admits a local orglobal solution at a point
Y∗

A ∈ RN at whichJ∗A = JA(Y∗
A) > 0 andJ∗B = JB (Y∗

A) > 0, and letH∗
A denote the Hessian

matrix of the criterionJA atY = Y∗
A .

If K = 0, letP= I andH ′
A = H∗

A; otherwise, assume that the constraint gradients,{∇g∗k }
(1≤ k ≤ K), are linearly independent and apply the Gram-Schmidt orthogonalization pro-
cess to the constraint gradients, and let{ωk} (1 ≤ k ≤ K) be the resulting orthonormal
vectors. LetP be the matrix associated with the projection operator onto theK-dimensional
subspace tangent to the hyper-surfacesgk = 0 (1≤ k≤ K) atY = Y∗

A ,

P = I −
K

∑
k=1

[

ωk
] [

ωk
]T

(15)

where
[

ωk
]

denotes the column-vector matrix made of the components of vectorωk, and
consider the following real-symmetric matrix :

H ′
A = PH∗

A P (16)
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Let Ω be an orthogonal matrix whose column-vectors are normalized eigenvectors of the
matrix H ′

A organized in such a way that the firstK are precisely{ωk} (1≤ k ≤ K), and the
subsequentN−K are arranged by decreasing order of the eigenvalue

h′k = ωk .H ′
A ωk = ωk .H∗

A ωk (K +1≤ k≤ N) (17)

Consider the splitting of parameters defined by :

Y = Y∗
A +Ω

(

U
V

)

, U =







u1
...

uN−p






, V =







vp
...

v1






(18)

Let ε be a small positive parameter (0≤ ε ≤ 1), and letYε denote the Nash equilibrium point
associated with the concurrent optimization problem :







min
U∈RN−p

JA

Subject to :g = 0
and

{

min
V∈Rp

JAB

Subject to : no constraints
(19)

in which again the constraintg = 0 is not considered whenK = 0, and

JAB :=
JA

J∗A
+ ε

(

θ
JB

J∗B
−

JA

J∗A

)

(20)

whereθ is a strictly-positive relaxation parameter (θ < 1 : under-relaxation;θ > 1 : over-
relaxation).

Then :

– [Optimality of orthogonal decomposition] If the matrix H′
A is positive semi-definite, which

is the case in particular if the primary problem is unconstrained (K= 0), or if it is sub-
ject to linear equality constraints, its eigenvalues have the following structure :

h′1 = h′2 = ... = h′K = 0 h′K+1 ≥ h′K+2 ≥ ... ≥ h′N ≥ 0 (21)

and the tail associated eigenvectors{ωk} (K + 1 ≤ k ≤ N) have the following varia-
tional characterization :

ωN = Argminω |ω .H∗
A ω | s.t.‖ω‖ = 1 andω ⊥

{

ω1, ω2, ..., ωK}

ωN−1 = Argminω |ω .H∗
A ω | s.t.‖ω‖ = 1 andω ⊥

{

ω1, ω2, ..., ωK , ωN}

ωN−2 =
...

Argminω |ω .H∗
A ω | s.t.‖ω‖ = 1 andω ⊥

{

ω1, ω2, ..., ωK , ωN, ωN−1}

(22)

– [Preservation of optimum point as a Nash equilibrium] For ε = 0, a Nash equilibrium
point exists and it is :

Y0 = Y∗
A (23)
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– [Robustness of original design] If the Nash equilibrium pointYε exists forε > 0 and
sufficiently small, and if it depends smoothly on this parameter, the functions :

jA(ε) = JA
(

Yε
)

, jAB(ε) = JAB
(

Yε
)

(24)

are such that :

j ′A(0) = 0 (25)

j ′AB(0) = θ −1≤ 0 (26)

and

jA(ε) = J∗A +O(ε2) (27)

jAB(ε) = 1+(θ −1)ε +O(ε2) (28)

– In case of linear equality constraints, the Nash equilibrium point satisfies identically :

uk(ε) = 0 (1≤ k≤ K) (29)

Yε = Y∗
A +

N−p

∑
k=K+1

uk(ε)ωk +
p

∑
j=1

v j(ε)ωN+1− j (30)

– For K = 1 and p= N−1, the Nash equilibrium pointYε is Pareto optimal.

We have seen already why the proposed basis of eigenvectors is optimal for the problem
raised by the case of a preponderant or fragile discipline, in relation with the performance of
the Nash equilibrium solution; shortly speaking, the spliiting is such that a minimal degra-
dation ofJA is caused by the reduction ofJB. Another aspect is the existence itself of this
equilibrium. With respect to this, and without entering allthe details of the full proof, given
in [7], let us examine the mechanism by which the present choice of territory splitting also
permits to guarantee the preservation of initial optimum point of disciplineA alone,Y∗

A , as a
Nash equilibrium of the above formulation forε = 0, as stated in (23).

For ε = 0, let the criterionJA = J for notational simplicity. The criteriaJAB andJ are
functionally proportional, and so are their gradients. We wish to establish thatU = V = 0
indeed corresponds to a Nash equilibrium.

On one side, for fixedV = 0, the subvectorU = 0 indeed realizes the minimum of
JA = J subject to the constraintg = 0, because the optimization ofU is equivalent to the
minimization ofJA in a subset that contains the solutionY∗

A of the minimization in the full
design space.

On the other side, for fixedU = 0, the (unconstrained) derivative ofJAB w.r.t. V is
proportional to :

∂J
∂V

= ∇J .
∂Y
∂V

= ∇J∗A .
∂Y
∂V

= 0

because, by construction of the split, the vector∂Y
∂V is a linear combination of the tail ele-

ments of the eigenvector basis, and these are orthogonal to the firstK elements, and those
span a subspace containing∇J∗A. Hence, for fixedU = 0, the unconstrained criterionJAB∼ J
is also stationary w.r.t. subvectorV atV = 0. ⊓⊔

In summary, this theorem establishes two main achievementsrelated to the Nash equi-
librium solution :
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– A potential performance result : it permits to identify abstractly an orthogonal decompo-
sition of the parameter-space that is such that for given dimensionp (p≤N−max(K,1)),
the tailp vectors of the basis correspond to the directions of least variation of the primary
functionalJA from its minimum value under possible equality constraints; in this sense,
these eigenvectors span the subspace of dimensionp in which the primary functional is
the most insensitive to the small variations in the design vector that will be made, in a
second phase of optimization, to reduce a secondary functional, JB;

– An existence result : a procedure involving a continuation parameterε (0≤ ε ≤ 1) has
been set up permitting to introduce gradually and smoothly the secondary functionalJB

in competition with the primary functionalJA in a Nash game; forε = 0, it is established
that the original optimal solutionY∗

A is a Nash equilibrium point of the initially-trivial
game formulation; consequently, by continuity, the Nash equilibrium solution exists, at
least forε sufficiently small. Another parameterθ appears in the formulation; it allows
under or over-relaxation of the process; ifθ < 1, the auxiliary criterionJAB at the Nash
equilibrium pointYε decreases whenε increases, but remains sufficiently small; since
Y0 = Y∗

A , the locus ofYε asε varies is viewed as a continuation of the original optimum
point of the primary functional alone.

The construction of the orthogonal basis is made at full convergence of the minimization
of the primary functional by diagonalization of the Hessianmatrix restricted to the subspace
tangent to the hypersurfaces representing the active constraints. To identify this tangent sub-
space, a Gram-Schmidt orthogonalization process is applied to the constraint gradients. In
practice, the Hessian can be calculated exactly either formally or by automatic differen-
tiation; otherwise, an approximation can be made by differentiating ameta-modelfor the
primary functional and constraints valid in a neighborhoodof the optimal solutionY∗

A . This
meta-model can be, for example, an artificial neural networkor a Kriging model (see for
instance [6] [10]).

We close this section by emphasizing again the merit of our formulation, when equality
constraints are active, to remain consistent with the single-criterion minimization of the
primary functional alone at the initial pointε = 0 of the continuation procedure (Y0 = Y∗

A ).
This nontrivial property usually does not hold when the split is made over the primitive
variables as formerly proposed in [30] [28], unless the constraints are treated by the penalty
approach. The variations in the primary functional are initially second-order inε ; thus the
new formulation permits to identify smoothly the locus of Nash equilibrium solutions asε
varies, by an algorithm whose iterative convergence is facilitated by this robustness property,
since the potential antagonism between the two criteria canbe introduced as smoothly as
necessary by small enough steps in the continuation parameter ε .

2 Application of territory splitting to the aero-structura l shape optimization of a
business jet wing

In order to illustrate the influence of the split of territoryon the result of a practical two-
discipline optimization, the main results achieved by B. Abou El Majd in his doctoral thesis
[1] concerning a case of aero-structural shape optimization of a business jet wing, also in
[2], are reproduced here. In his thesis, a number of algorithmic variants, including some
whose formulations rely on a hierarchical Stackelberg game(instead of a symmetrical Nash
game), have been described in details, tested and analyzed systematically.

Aerodynamics is treated as the preponderant discipline; itwill also reveal to be a fragile
discipline. The flow about the wing is computed by a finite-volume simulation of the three-



18

dimensional Euler equations. The method handles unstructured grids by the construction of
a dual finite-volume mesh, whose generic cell is around a nodeand its boundary is made of
portions of medians of the elements. The approximation scheme relies on a Roe-type upwind
solver. The computation yields the wave drag coefficient,CD, as well as other aerodynamic
coefficients, such as lift,CL. The simulation point is transonic (M∞ = 0.83, α = 2o). The
primary objective is to minimize the drag coefficient augmented by a penalty term which
is active when a minimal lift coefficient constraint is violated. Thus, the primary criterion
admits the following expression :

JA =
CD

CD0

+104 max

(

0,1−
CL

CL0

)

(31)

in which the reference quantities, indicated by the subscript 0 correspond to an initial geom-
etry defined by an initial three-dimensional unstructured grid about the wing.

Throughout the optimization process, the geometry is iteratively modified according to
the so-calledFree-Form Deformation (FFD)method which originates from computer vi-
sion, and was proposed in the context of an aero-structural design loop by Samareh [24].
In this approach, a formula is givena priori, in a closed form involving adjustable param-
eters, to a three-dimensionaldeformation field, formally and independently of the discrete
or continuous representation of the geometry itself, here an unstructured volume mesh. By
construction, the deformation field is made to be smooth and equal to zero outside of a sup-
port, which is usually a bounding box of simple shape whose boundaries are not made in
general of meshpoints. At a given optimization iteration, the deformation field is redefined
and applied to the meshpoints lying inside the support, thuspermitting an update of the
surface meshpoints, but also of meshpoints in the computed volume in the vicinity of the
optimized surface. In this way, an initial unstructured volume mesh evolves according to a
deformation defined explicitly in terms of theFFD parameters. These parameters are taken
to be the design variables of the optimization loop and they are updated here according to
the Nelder-Mead [22] simplex method to reduce the above criterionJA.

This procedure results in a simple and fairly robust iterative algorithm. In our experience,
this procedure is less subject to mesh overlapping than a volume mesh reconstruction from
the displacement of the boundary meshpoints by a pseudo-elasticity equation, such as the
spring method.

In our experiments, a system of generalized coordinates(ξ ,η ,ζ ) is defined and corre-
sponds to longitudinal, vertical and span-wise directions.When the bounding box is a par-
allelepiped, the transfinite interpolation of the Cartesian coordinates suffices to define these
transformed coordinates throughout the box. Then, the deformation field is defined as a lin-
ear combination of products of three Bernstein polynomialsof these coordinates. Precisely,
an arbitrary pointq is given the following displacement∆q :

∆q =
ni

∑
i=0

n j

∑
j=0

nk

∑
k=0

Bi
ni
(ξq)B j

n j
(ηq)Bk

nk
(ζq)∆Pi jk (32)

in which, for thekth Bernstein polynomial of degreen,

Bk
n(t) =

n!
k! (n−k)!

tk (1− t)n−k (33)

The degrees of the parametrization in the three physical directions,(ni ,n j ,nk), are fixed, and
the vector-valued weighting coefficients{∆Pi jk} (0 ≤ i ≤ ni , 0≤ j ≤ n j , 0≤ k ≤ nk) are
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the design variables of the optimization. Such a geometrical parametrization generalizes the
Bézier curve formula, and combined with the classical degree-elevation process, it facilitates
the construction of multilevel optimization algorithms inspired by multigrid methods. More
details on this method, and more examples of application canbe found in [9] [2].

The deformation field was chosen to be linear span-wise from root to tip (nk = 1). Ad-
ditionally, the leading and trailing edges, and the eight vertices of the bounding box were
fixed throughout the optimization. Finally, only vertical displacements were considered for
simplicity.

In a first experiment (see Fig. 7), 6 control points at the rootand at the tip were consid-
ered, for a total of 12 degrees of freedom.

A S A

A S A

A S A

A S A

Fig. 7 Aero-structural shape optimization of a business jet wing;first split of territory, according to the
primitive variables : parameters marked A are associated toaerodynamics, and those marked S to structural
design.

In order to define an exercise in which the wing shape is optimized w.r.t. two disciplines,
aerodynamics and structural design, that share a common setof design variables, the wing
structure was treated as a thin shell which deforms under theload of aerodynamic forces.
The distribution of stresses over the shell has been calculated by linear-elasticity, using a
code of the public domain, ASTER developed byElectricité de France (EDF).

The four degrees of freedom located at mid-chord (at root andtip, over the upper and
lower surfaces), marked S on Fig. 7, were assigned to a playerB (or S) in charge of mini-
mizing the following secondary criterion :

JB = JS =

∫∫

S
‖σ .n‖dS+K1 max

(

0,1−
V
VA

)

+K2 max

(

0,
S
SA

−1

)

(34)

in which σ is the stress tensor,SA andVA are the wing outer surface and volume at conver-
gence of the purely-aerodynamic optimization, andK1 andK2 and penalty constants. By the
reduction of this criterion, one expects a more uniform distribution of the load, and thus a
more robust structure.
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The remaining 8 degrees of freedom, marked A on Fig. 7, were assigned to a playerA
in charge of minimizing the primary criterion,JA.

It was possible to achieve a Nash equilibrium solution associated with the above split
of the primitive variables, as indicated on Fig. 8 which displays the convergence history
of the aerodynamic and structural criteria. The sudden and occasional peaks correspond to
iterations at which the constraint on lift is violated. The simplex method accommodates
to this situation by discarding the point. Evidently, a stable Nash equilibrium is reached
eventually.

Regrettably, this Nash-equilibrium configuration is totally unacceptable from a physical
standpoint. The drag coefficient has doubled. The wing shapepresents oscillations and the
flow has been profoundly disrupted as indicated by the Mach number field (see Fig. 9).

Besides, the number of iterations in this experiment may be found excessive. It should
be pointed out that drag reduction problems are well known tobe multimodal. They exhibit
a very large number of local minimums. Gradient-based methods are very cost efficient and
useful in the final stage of convergence. But, if they converge in tens of iterations, in prac-
tice, they notably fail to provide a good estimate of the global optimum, unless the initial
point is itself very close to it. Inversely, semi-stochastic methods, such as Genetic Algo-
rithms, or Particle-Swarm optimizers, are far more robust,but often prohibitively expensive
in aerodynamic optimum-shape design, due to the large number of flows required to be com-
puted. For these reasons, for problems of intermediate difficulty, an acceptable compromise
is often realized by the simplex method, which is deterministic, but fairly robust. With this
optimizer, the number of iterations, or computed flows governed by the compressible Euler
equations in three dimensions, can be substantial, to achieve a satisfactory convergence on
a nontrivial mesh, say, in hundreds, as in subsequent experiments (Figures 11 and 13). The
even slower convergence in Figure 8 precisely reveals an inappropriate coupling. Neverthe-
less, by exploiting the resources of a parallel architecture, this experiment could be realized
in a day.

By this first experiment, we emphasize that even in case of convergence to a Nash equi-
librium, the achieved configuration makes sense only if the split of variables is physically
relevant.

In a second experiment, the number of design variables was reduced to 8 by considering
a deformation field, only vertical and associated with the polynomial degrees(3,1,1) along
the longitudinal, vertical and span-wise directions. After a number of unsuccessful trials, a
certain split of the primitive variables yielded acceptable results. The split corresponds to
assign the 4 degrees of freedom at the root to playerS(=B) in charge of reducing the struc-
tural criterion, and the other 4, at the tip, to playerA in charge of reducing the aerodynamic
criterion (see Fig. 10).

The convergence history of the two criteria in the dynamic game corresponding to this
new split of design variables is indicated at Fig. 11. The aerodynamic criterion is subject
to numerous jumps due to the violation of the constraint on lift, but, as mentioned above,
the simplex method accommodates to this. This phase of optimization is interrupted, some-
what arbitrarily after some 380 structural design steps; strictly speaking, convergence is not
achieved, but the solution satisfactory since it realizes avisible improvement of the struc-
tural criterion of about 5 %, while the aerodynamic criterion has been increased of about the
same percentage (only).

The cross sections at root, mid-span and wing tip corresponding to the initial and op-
timized shapes are represented on Fig. 12. It appears that the structural control parameters
tend to round out very slightly the root cross section for a better load distribution. This trend
augments the drag, but here in proportions still acceptable, because the process was inter-
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Fig. 8 Aero-structural shape optimization of a business jet wing;first split of territory, according to the
primitive variables : convergence history of the aerodynamic and structural criteria.

rupted after a variation of 5 % of each criterion. In fact, at this level of only partial conver-
gence, the shape variations are still very small in amplitude because the coupling mechanism
realized by the dynamic game is very stringent. Additionally, oura priori knowledge of the
flow led us to locate the aerodynamic control parameters nearthe wing tip in the vicinity of
the most sensitive region of the shock wave. Thus, this experiment does not reflect a blind
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a) Purely aerodynamic optimization

b) Nash equilibrium (unacceptable)

Fig. 9 Aero-structural shape optimization of a business jet wing;first split of territory, according to the prim-
itive variables : shape and Mach number field : a) purely aerodynamic optimization, and b) Nash equilibrium.

split of variables, but instead one that was anticipated to be physically sound; and this was
confirmed.

In the third experiment, the split of variables based on the proposed orthogonal decom-
position of the restricted Hessian was implemented. Once the optimum of aerodynamics
alone has been found atY = Y∗

A , a number of independent simulations corresponding to de-
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S S

S S

A A

A A

Fig. 10 Aero-structural shape optimization of a business jet wing;second split of territory, according to the
primitive variables : parameters marked A are associated toaerodynamics, and those marked S to structural
design.
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Fig. 11 Aero-structural shape optimization of a business jet wing;second split of territory, according to the
primitive variables : convergence history of the two criteria

sign vectors close toY∗
A have been made to set up a database to model the behavior of the

primary criterionJA in terms ofY by an RBF neural network [6] [10]. This meta-model
was then used to approximate the gradient ofCD, the primary criterion to be minimized,
the gradient ofCL, the constrained quantity, and the Hessian ofCD to form the restricted
Hessian matrix. After diagonalization, the correspondingeigenvectors have been sorted by
decreasing order of the associated eigenvalue, and split evenly in two subsets of four. Those
associated with the four largest eigenvalues have been assigned to playerA in charge of
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Fig. 12 Aero-structural shape optimization of a business jet wing;second split of territory, according to the
primitive variables : cross-section variations at a) root,b) mid-span, and c) wing tip.

aerodynamics, and the remaining four to playerS (=B) in charge of reducing the criterion
of structural design.

The proposed eigensplit led to a new dynamic Nash game, whoseconvergence history
is indicated on Fig. 13. The process was continued to a stage of convergence similar to
previously in terms of coupling iterations. However, a notably superior performance was
achieved : while the aerodynamic criterion was here only degraded of 3 %, the structural
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criterion was reduced of 8 %; equivalently, at equal stage ofdrag degradation, the improve-
ment on the structural criterion is nearly three times larger. Note how the envelopes of the
two curves are apparently initially tangent to the horizontal axis, a hint that in this formula-
tion, the initial point is a robust design.
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Fig. 13 Aero-structural shape optimization of a business jet wing;split of variables according to the orthog-
onal decomposition; convergence history of the two criteria (after 50 couplings).

Fig. 14 indicates the evolution of cross-sections at root, mid-chord and wing tip. It
clearly appears from this figure that the shape variations are of larger amplitude in this
experiment than before, in the previous two experiments, but more distinctly located, as for
example, on the lower surface of the wing at the root. Thus a wider operational territory for
the secondary criterion is identified to cause a small and acceptable degradation only of the
first criterion.

The split based on the orthogonal decomposition has permitted us to identify by a blind
and automatic procedure, a set of structural parameters forwhich variations of larger am-
plitude, mostly visible on the lower surface of the wing, arepossible without excessively
affecting the shape in the critical region of the shock wave.Consequently, the principal
characteristics of the flow are preserved, as indicated on Fig. 15 which shows that the Mach
number field has not been much altered from that obtained by pure aerodynamic optimiza-
tion.

Thus, in conclusion, a significant reduction of 8 % of the structural criterion was realized
while maintaining the flowfield configuration close to optimality (drag increase< 3 %), by
an automatic procedure of orthogonal decomposition of the parameter space.

3 Cooperative multiobjective optimization

In the previous sections, we have seen how competition between two disciplines could be
organized when starting from an initial design that is optimal w.r.t. one discipline, considered
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Fig. 14 Aero-structural shape optimization of a business jet wing;split of variables according to the orthog-
onal decomposition; cross-section variations at a) root, b) mid-chord, and c) wing tip.

to be preponderant or fragile. However, in more general situations, the initial design solution
may be far from Pareto optimality w.r.t. the criteria under consideration. Then, the possibility
exists to firstly improve all the criteria prior to organizing a competition between them.
Additionally, we would like to provide some recommendationfor cases of more than two
criteria.
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a) Initial aerodynamic optimum solution

b) Aero-structural Nash game solution using the orthogonaldecomposition

Fig. 15 Geometrical configuration and Mach number field : a) initial aerodynamic optimum solution, and b)
aero-structural Nash game solution using the orthogonal decomposition.

In this section, we examine more general situations in whichthe number of disciplines,
n, and the initial design solution are both arbitrary. In suchcases, we define a preliminary
optimization phase, cooperative in nature, throughout which all disciplines improve, to be
followed by a competitive two-criterion optimization phase.

We first refer to the textbook by K. Miettinen [20] for a detailed review of fundamen-
tals in nonlinear multiobjective optimization, and much more. Here, we simply formulate
a number of theoretical results that are basic, but essential to our subsequent algorithmic
construction.
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Thus considern smooth criteriaJi(Y) (Y : design vector;Y ∈ H ; H : working space,
a Hilbert space usually equal toRN, but possibly a subspace ofL2 also). In practice, these
functions or functionals are assumed to be of classC2 in some working open ball of the
design spaceH . Throughout this report, unless specified otherwise, the symbol N denotes
the dimension of the design-spaceH when it is finite, in which case it is assumed that
n≤ N, and the symbol∞ otherwise. Then the following holds :

Lemma 1
Let Y0 be a Pareto-optimal point of the smooth criteriaJi(Y) (1 ≤ i ≤ n ≤ N), and define
the gradient-vectorsu0

i = ∇Ji
(

Y0
)

in which ∇ denotes the gradient operator. There exists a
convex combination of the gradient-vectors that is equal tozero:

n

∑
i=1

αi u
0
i = 0, αi ≥ 0 (∀i) ,

n

∑
i=1

αi = 1. (35)

Proof : The proof can be made by examining different cases accordingto the rank of the
family made of the gradient-vectors. We refer to e.g. [8] fordetails. ⊓⊔

This result has led us to introduce and use throughout the following very natural defini-
tion, although the terminology does not seem to be standard :

Definition 1 (Pareto-stationarity)
The smooth criteriaJi(Y) (1≤ i ≤ n≤N) are said to be Pareto-stationary at the design-point
Y0 iff there exists a convex combination of the gradient-vectors, u0

i = ∇Ji(Y0), that is equal
to zero:

n

∑
i=1

αi u
0
i = 0, αi ≥ 0 (∀i) ,

n

∑
i=1

αi = 1. (36)

Thus, in general, for smooth unconstrained criteria, Pareto-stationarity is a necessary
condition for Pareto-optimality. Inversely, if the smoothcriteria Ji(Y) (1 ≤ i ≤ n) are not
Pareto-stationary at a given design-pointY0, descent directions common to all criteria exist.
We now examine how such a direction can be identified. We have the following :

Lemma 2
Let H be a Hilbert space of finite or infinite dimensionN, and{ui} (1≤ i ≤ n≤N) a family
of n vectors inH . Let U be the set of strict convex combinations of these vectors :

U =

{

w∈ H / w =
n

∑
i=1

αi ui ; αi > 0 (∀i) ;
n

∑
i=1

αi = 1

}

(37)

andU its closure (the convex hull of the family). Then, there exists a unique elementω ∈U

of minimum norm, and :

∀ū∈ U : (ū,ω)≥ (ω ,ω) = ‖ω‖2 := Cω (38)

Proof : the convex hullU is a closed and convex set, and this implies existence and unique-
ness of the elementω of minimum norm inU .

Then, let ¯u be an arbitrary element ofU ; set r = ū−ω so that ¯u = ω + r . Since the
convex hullU is convex,

∀ε ∈ [0,1] , ω + εr ∈ U (39)
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Sinceω is the element ofU of minimum norm,‖ω + εr‖ ≥ ‖ω‖, which writes :

‖ω + εr‖2−‖ω‖2 = (ω + εr,ω + εr)− (ω ,ω) = 2ε (r,ω)+ ε2(r, r)≥ 0 (40)

and sinceε can be arbitrarily small, this requires that :

(r,ω) = (ū−ω ,ω)≥ 0 (41)

from which the result follows directly. ⊓⊔
Combining Lemma 2 with Definition 1 yields the following :

Theorem 2
Let H be a Hilbert space of finite or infinite dimensionN. Let Ji(Y) (1 ≤ i ≤ n ≤ N) be
n smooth functions of the vectorY ∈ H , andY0 a particular admissible design-point, at
which the gradient-vectors are denotedu0

i = ∇Ji(Y0), and

U =

{

w∈ H / w =
n

∑
i=1

αi u
0
i ; αi > 0 (∀i) ;

n

∑
i=1

αi = 1

}

(42)

Let ω be the minimal-norm element of the convex hullU , closure ofU . Then :

1. eitherω = 0, and the criteriaJi(Y) (1≤ i ≤ n) are Pareto-stationary atY = Y0;
2. or ω 6= 0 and−ω is a descent direction common to all the criteria; additionally, if ω ∈

U , the inner product(ū,ω) is equal to‖ω‖2 for all ū∈ U .

Proof : all the elements of this theorem are reformulations of previous results, except for the
statement concerning the inner product(ū,ω) in the second case when additionallyω ∈ U

(and not simplyU ). To establish this last point, observe that under these assumptions, the
elementω is the solution to the following minimization problem :

ω = u =
n

∑
i=1

αiu
0
i , α = Argmin j(u) , j(u) = (u,u) ,

n

∑
i=1

αi = 1 (43)

since by hypothesis, none of the inequality constraints,αi > 0, is saturated. Consequently,
using the vectorα ∈ Rn as the finite-dimensional variable, the Lagrangian writes :

L(α ,λ ) = j+λ

(

n

∑
i=1

αi −1

)

(44)

and the optimality conditions satisfied by the vectorα are the following :

∂L

∂ αi
= 0 (∀i) ,

∂L

∂ λ
= 0 (45)

These equations imply that for all indicesi :

∂ j

∂ αi
+λ = 0 (46)

But, j(u) = (u,u) and foru = ω = ∑n
i=1 αiui , one has :

∂ j

∂ αi
= 2(

∂u
∂ αi

,u) = 2(u0
i ,ω) = −λ =⇒ (u0

i ,ω) = −λ/2 (47)
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independently ofi. Now consider an arbitrary element ¯u∈ U :

ū =
n

∑
i=1

µi u
0
i (48)

whereµi ≥ 0 (∀i) and∑n
i=1 µi = 1. Then :

(ū,ω) =
n

∑
i=1

µi (u
0
i ,ω) = −λ/2 (a constant)= ‖ω‖2 (49)

where the constant has been evaluated by letting ¯u = ω . ⊓⊔
In summary, one is led to identify the vector

ω =
n

∑
i=1

αi u
0
i (50)

by solving the following quadratic-form constrained minimization problem inRn :

min
α∈Rn

∥

∥

∥

∥

∥

n

∑
i=1

αi u
0
i

∥

∥

∥

∥

∥

2

(51)

subject to :

αi ≥ 0 (∀i) ,
n

∑
i=1

αi = 1 (52)

Note that in a finite-dimensional setting, and in a functional-space setting as well, the
above problem can be solved inRn, so long as the gradients{u0

i } (1≤ i ≤ n) and their inner
products{u0

i j := (u0
i ,u

0
j )} are known. Then, a call to a library procedure should be sufficient.

4 Combining cooperation with competition in a strategy for multiobjective
optimization

In this section, we collect the results of the previous two sections to develop a global strategy
for multiobjective optimization. The criteria under consideration, denotedJi(Y) (1≤ i ≤ n),
wheren≥ 2, are again smooth functions of the design vectorY. At the initial design-point
Y0, the condition of Pareto-stationarity is not satisfied. Then, we propose to develop the
optimization process in several stages described in the following subsections.

4.1 Optional preliminary reformulation of criteria

In numerical experiments, it is preferable that the variouscriteria all be positive, and scaled
in a somewhat unified way. To achieve this, we propose to modify the definitions of the
criteria without altering the sense of the associated minimization problems.

For this purpose, let :
BR = B

(

Y0,R
)

(53)

be a working ball in the design space about the initial design-pointY0.
In a first step, we propose to replace each criterionJi(Y) by the following :

J̃i(Y) = exp

(

αi

∥

∥H0
i

∥

∥

∥

∥∇J0
i

∥

∥

2

(

Ji(Y)−J0
i

)

)

(54)

where :
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– the superscript0 indicates an evaluation atY = Y0;
– ∇J0

i andH0
i denote the gradient-vector and the Hessian matrix, and

∥

∥H0
i

∥

∥ can be com-

puted economically as :

√

trace
[

(

H0
i

)2
]

;

– αi is a dimensionless constant.

In this way, the new criteria are dimensionless, they vary inthe same sense as the original
ones, and :

∀i , J̃i(Y
0) = 1, ∇Ji(Y

0) =
γ
R

(55)

provided the constantsαi ’s are chosen to satisfy :

αi

∥

∥H0
i

∥

∥

∥

∥∇J0
i

∥

∥

=
γ
R
∼ 1 (56)

In the above, the dimensionless constantγ is given a value equal or close to the possibly-
dimensional measure ofR in the utilized system of units.

For a reason that will appear later, without altering the regularity of the criteria, we
would like them to be infinite when‖Y‖ is infinite. For this, define the following function :

φ(x) =











0 if x≤ 0

xexp

(

−
1
x2

)

if x > 0
(57)

This function isC∞ including at 0, andφ(x) ∼ x asx→ +∞. The new criterion

˜̃Ji(Y) = J̃i(Y)+ ε0φ

(

∥

∥Y−Y0
∥

∥

2

R2 −1

)

(58)

in which ε0 is some strictly-positive constant, is identical to the former one,J̃, inside the
working ballBR, and grows at least like‖Y‖2 outside. The match of̃̃Ji(Y) with J̃i(Y) and
Ji(Y) at the boundary of the working ball is infinitely smooth. Additionally :

lim
‖Y‖→∞

˜̃Ji(Y) = ∞ (59)

In what follows, it is implicit that the original criteria have been replaced by{ ˜̃Ji(Y)}
(1≤ i ≤ n) and the double superscript˜̃ is omitted.

4.2 Cooperative-optimization phase : the Multiple-Gradient Descent Algorithm (MGDA)

TheMGDA relies on the results of Theorem 2. TheMGDAconsists in iterating the following
sequence :

1. Compute the gradient-vectorsu0
i = ∇Ji(Y0), and determine the minimum-norm element

ω in the convex hullU . If ω = 0, stop.
2. Otherwise, determine the step-sizeh which is, presumably optimally, the largest strictly-

positive real number for which all the functionsj i(t) = Ji(Y0 − tω) (1 ≤ i ≤ n) are
monotone-decreasing over the interval[0,h].

3. ResetY0 to Y0−hω , and return to 1.
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In practice, the testω = 0 will be made with a tolerance (‖ω‖ < tol). In addition, note
that the determination of the step-sizeh can be realized by the adaptation of nearly all
standard one-dimensional search methods. This algorithm can be repeated a finite number
of iterations if these iterations yield a design-point at which the Pareto-stationarity condition
is satisfied, or indefinitely, if this never occurs.

Since at each iteration of theMGDA, all the criteria diminish, we refer to this process as
a cooperative-optimizationphase.

4.3 Convergence of theMGDA

The aboveMGDA can stop after a finite number of iterations if a Pareto-stationary design-
point is reached. Otherwise, we have the following :

Theorem 3
If the sequence of iterates{Yr} of the MGDA is infinite, it admits a weakly convergent
subsequence. (Here, the working Hilbert spaceH is assumed to be reflexive.)

Proof : the following elements hold, in part by virtue of the reformulation of the criteria :

– Since the sequence of values of any considered criterion, say {J1(Yr )}, is positive and
monotone-decreasing, it is bounded.

– SinceJ1(Y) is infinite whenever‖Y‖ is infinite, the sequence of design-vectors{Yr} is
itself bounded, and this implies the statement. ⊓⊔

Let Y∗ be the limit. We conjecture that the design-pointY∗ is Pareto-stationary. In what
follows,Y0 is then reset toY∗.

4.4 Competitive-optimization phase : strategy of the greatest payoff

From the initial cooperative optimization phase, one inherits a Pareto-stationary design-
pointY0, at which (36) holds for some coefficients{αi} (1≤ i ≤ n). The whole optimization
process can then be interrupted if the performance of the design-point is already considered
satisfactory. Otherwise, the process can be continued by acompetitive optimizationphase.
The competitive-optimization phase can be accomplished bya Nash game based on an ap-
propriate split of variables.

In the case of two disciplines, the split may be guided by the spectral properties of local
Hessian matrices (see Appendix A).

For cases of more than two disciplines the strategy is more delicate. We propose to
define two criteria,JA andJB and to apply the strategy of Section 1. In order to maintain, at
best possible, the Pareto-stationarity condition, one canlet :

JA =
n

∑
i=1

αiJi JB = Jk (60)

so that∇JA(Y0) = 0, and choose the indexk appropriately. Of course, the choice of split
may be directed by the designer’s bias to improve one criterion particularly. Otherwise,
we propose to choose the indexk to maximize the orthogonal projection of the gradient
∇Jk

(

Y0
)

onto the subspace assigned to the virtual playerB to reduceJB. We have seen
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that this subspace is entirely defined by the diagonalization of the reduced Hessian ofJA.
Technically, for eachk, one lets

u0
k = ∇Jk

(

Y0)=
N

∑
i=1

β 0
i ω i (61)

whereβ 0
i = (u0

k,ω
i) by orthogonality. Then one choosesk to maximize

√

∑N
N−p+1(β 0

i )2.

In proceeding in this way, we approximately maintain the Pareto optimality of the solu-
tion, while maximizing the potential payoff to be achieved on Jk in the subsequent competi-
tive optimization phase.

5 Conclusions

The multiobjective optimization of an aerodynamic criterion concurrently with one or more
criteria originating from other disciplines raises delicate problems to solve since the flow-
fields are very sensitive to parameter changes, such as perturbations in shape parameters,
particularly when the flow is transonic or supersonic and contains shocks.

A theoretical formulation has been proposed for situationsof this type, permitting to
identify a suboptimal solution as a Nash-equilibrium solution between virtual players in
charge of reducing two independent criteria. An orthogonaldecomposition of the design
space is made to assign the player in charge of the secondary criterion a subspace of action,
or territory, in which the primary criterion has little sensitivity.

The method has been tested over a simplified testcase of aero-structural shape optimiza-
tion of a business jet wing combining drag reduction under lift constraint in a transonic
cruise configuration with the reduction of an integral of thestress over the structure. In this
example, after a first phase of pure aerodynamic optimization, the primary criterion (drag)
was modeled at convergence by an RBF neural network in order to approximate gradients
and Hessians necessary to the construction of the orthogonal basis. This basis was then used
as the support of a dynamic Nash game in a novel formulation. The numerical experiments,
taken from B. Abou El Majd’s doctoral thesis, have clearly demonstrated the superiority of
concurrent optimizations realized using the orthogonal decomposition as a support, in terms
of asymptotic convergence stability, and achieved performance as well.

In more general situations, we propose to conduct the multidisciplinary optimization in
two phases:

1. A preliminary “cooperative-optimization” phase at eachiteration of which all criteria
improve until the Pareto set is reached by application of theproposed Multiple-Gradient
Descent Algorithm (MGDA);

2. A subsequent “competitive-optimization” phase, in which a Nash equilibrium is sought
after virtual players have been assigned supplementary subspaces as strategies; the split
should be defined according to a local eigenstructure analysis of Hessians and constraint
gradients in order to define the equilibrium by a smooth continuation process.
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A The two-discipline case revisited : Nash game from a Pareto-stationary
design-point (n = 2)

In this section, we propose recommendations to construct a Nash game to carry out the competitive-optimization
phase, after completion of the cooperative-optimization phase, in the case of two disciplines (n = 2).

In the report [7], a split of territory was defined from the knowledge of a stationary point of one discipline,
the preponderant discipline. Since critical points of one discipline are particular Pareto-stationary points, this
subsection is meant to generalize the results of the former report.

For simplicity, we consider the case of two disciplines only(n = 2). An initial Pareto-stationary design-
pointY0 is known, and should be used to define a split of variables based on local eigensystems, and a Nash
equilibrium-point determined subsequently.

Here, the two criteria are denotedJA andJB, and atY = Y0, the following holds :

αA ∇J0
A +αB ∇J0

B = 0 αA +αB = 1 (62)

for someαA ∈ [0,1]. Therefore, three cases are possible :

1. Pareto-stationarity of type I :∇J0
A = ∇J0

B = 0;
2. Pareto-stationarity of type II :∇J0

A = 0 and∇J0
B 6= 0 (or vice versa);

3. Pareto-stationarity of type III :∇J0
A +λ∇J0

B = 0 for λ = 1−αA
αA

> 0 since 0< αa < 1.

The question is what to do next to reaching a design-pointY0 of Pareto-stationarity of the criteria
(JA , JB)? To better understand the question, let us examine first the above three cases assuming both cri-
teria are locally convex.

Convex case :

1. Pareto-stationarity of type I : then, both criteria have simultaneously achieved atY = Y0 local minimums
of their own. In general the optimization process is terminated.

2. Pareto-stationarity of type II : e.g.∇J0
A = 0 and∇J0

B 6= 0. Then,JA has achieved a local minimum, whereas
JB is still reducible. The decision can be to interrupt the process if the achieved design is acceptable, or
to continue it using the formulation of the former theory [7]: a Nash equilibrium is sought based on a
hierarchical split of variables in the orthogonal basis made of the eigenvectors of matrixH0

A.
3. Pareto-stationarity of type III :∇J0

A +λ ∇J0
B = 0 (λ > 0). Here, Pareto-optimality has been achieved and

in the absence of an additional criterion, the optimizationprocess is terminated.

We now turn to the general case in which the criteria are not assumed to be locally convex atY = Y0.

Non convex case :In what follows, we discuss the different cases according tovarious assumptions that
can be made on the eigenvalues of the Hessian matricesH0

A andH0
B of the two criteria atY = Y0.

1. Pareto-stationarity of type I :
Since both gradients are equal to zero, the principal term inthe expansion of the variations of the two
criteria caused by a perturbationδY of the design vectorY aboutY0 are the quadratic terms associated
with the respective Hessian matrices, one of which, at least, is not positive-definite by assumption, and
perhaps both.
If H0

A is positive-definite andH0
B alone has some negative eigenvalues,JA has achieved a minimum

whereasJB is still reducible. Then we propose to terminate the optimization process, or to continue it
using the formulation of the former theory [7] : a Nash equilibrium is sought with a hierarchical split of
variables based on the eigensystem of matrixH0

A.
If both Hessian matricesH0

A andH0
B have some negative eigenvalues, define the following families of

linearly independent eigenvectors associated with these eigenvalues :

FA = {u1 , u2 , ... , up} FB = {v1 , v2 , ... , vq} (63)

Then :
– If the family FA∪FB is linearly dependent, say

p

∑
i=1

αi ui −
q

∑
j=1

β j vj = 0 (64)
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in which {αi}i=1,...,p∪{β j} j=1,...,q 6= {0}, the vector

wr =
p

∑
i=1

αi ui =
q

∑
j=1

β j vj (65)

is not equal to zero (by linear independence of the familiesFA andFB separately), and it is a
descent direction for both criteria. We then propose to makea step in that direction.

– Otherwise,SpFA ∩SpFB = {0}: then we propose to stop, or to determine the Nash equilibrium
point usingFA (resp.FB) as the strategy ofA (resp.B).

2. Pareto-stationarity of type II : say∇J0
A = 0 and∇J0

B 6= 0.
If the Hessian matrixH0

A is positive-definite, the criterionJA has achieved a local minimum and this
setting has been analyzed in [7] : a Nash equilibrium is sought with a hierarchical split based on the
structure of the eigenvectors ofH0

A.
If instead the matrixH0

A has some negative eigenvalues, let

FA = {u1 , u2 , ... , up} (66)

be a family of associated eigenvectors. Then :

– if ∇J0
B is not orthogonal toSpFA : a descent direction common toJA andJB exists inSpFA: use it

to reduce both criteria.
– otherwise,∇J0

B ⊥ SpFA : we propose to identify the Nash equilibrium usingFA as the strategy of
playerA and the remaining eigenvectors ofH0

A as the strategy of playerB.

3. Pareto-stationarity of type III :∇J0
A +λ∇J0

B = 0 (λ > 0).
Consider the direction defined by the vector :

uAB =
∇J0

A
∥

∥∇J0
A

∥

∥

= −
∇J0

B
∥

∥∇J0
B

∥

∥

(67)

Along this direction, the two criteria vary in opposite waysand no rational decision can be made in the
absence of other criteria. Thus consider instead possible move in the hyperplane orthogonal touAB. For
this, consider reduced Hessian matrices :

H0
A
′
= PABH0

A PAB H0
B
′
= PABH0

B PAB (68)

where :
PAB = I − [uAB] [uAB]t . (69)

In this hyperplane, by orthogonality to the gradient-vectors, the analysis is that of Pareto-stationary point
of type I in a subspace of dimensionN−1.

References

1. Abou El Majd, B.: Algorithmes hiérarchiques et stratégies de jeux pour l’optimisation multidisciplinaire
– Application à l’optimisation de la voilure d’un avion d’affaires. Ph.D. thesis, Université de Nice-Sophia
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