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Abstract This article aims to contribute to numerical strategiedB¥e-constrained multi-
objective optimization, with a particular emphasis on C&tsranding computational appli-
cations in which the different criteria to be minimized (educed) originate from different
physical disciplines that share the same set of designblasaMerits and shortcuts of the
most-commonly used algorithms to identify, or approximale Pareto set are reviewed,
prior to focusing on the approach by Nash games. A strategsoisosed for the treatment
of two-discipline optimization problems in which one diglane, the primary discipline, is
preponderant, or fragile. Then, it is recommended to ifieriti a first step, the optimum
of this discipline alone using the whole set of design vdesbThen, an orthogonal basis is
constructed based on the evaluation at convergence of th&dthemnatrix of the primary cri-
terion and constraint gradients. This basis is used tothglitvorking design space into two
supplementary subspaces to be assigned, in a second gigp Mictual players in competi-
tion in an adapted Nash game, devised to reduce a secondarioarwhile causing the least
degradation to the first. The formulation is proved to pagdiytprovide a set of Nash equi-
librium solutions originating from the original singlesdipline optimum point by smooth
continuation, thus introducing competition graduallyisTt@pproach is demonstrated over a
testcase of aero-structural aircraft wing shape optingrain which the eigen-split-based
optimization reveals clearly superior. Thereafter, a ltesfuconvex analysis is established
for a general unconstrained multiobjective problem in wutati the gradients are assumed to
be known. This results provides a descent direction commaai triteria, and adapting the
classical steepest-descent algorithm by using this direca new algorithm is defined re-
ferred to as the multiple-gradient descent algorithm (MGDPhe MGDA realizes a phase
of cooperative optimization yielding to a point on the Parsét, at which a competitive
optimization phase can possibly be launched on the baskedbtal eigenstructure of the
different Hessian matrices.
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1 Multidisciplinary competition in complex design optimization

In the engineering office, the optimization problems that mised by designers of com-
plex systems are by natuneultiobjective For instance, in aerodynamic shape optimization
for the design of commercial airplanes, one focus is thentidiximization in the critical
phase of take-off or landing, another is drag minimizatiorthie cruise regime since it di-
rectly determines kerosene consumption or range, but atliteria are also important :
those related to stability or maneuverability that are dithko aerodynamic moments, or
those imposed by manufacturing constraints, etc. Evigethid resulting multiobjective op-
timization problems are inevitably alsoultipoint since they are associated with different
flight regimes (different Mach and Reynolds numbers, andesngf attack) and configu-
rations (e.g. possible deployment of special high-liftides). Consequently, the accurate
evaluation of such criteria by means of high-fidelity modelguires the efficient simulation
of several flowfields by the numerical approximation of thedyamamics equations, typi-
cally by finite volumes. In addition, different couplingsagrodynamics with other physical
phenomena are also of critical importance in the performavaluation of a design : struc-
tural deformation, stress and fatigue, dynamic fluid-stmecinteraction, acoustics, thermal
load analysis, etc. These aspects can be treated in variays with advanced numerical
procedures. For example, in her doctoral thesis [17], M.ddkt, in preparation of an aero-
dynamic aircraft wing shape optimization, has considemaddel in which the compressible
Reynolds-Averaged Navier-Stokes (RANS) equations haee beed to compute the three-
dimensional flow about the wing, whereas the structure has bedeled as a beam subject
to bending and torsion under the aerodynamic forces, arsldbtablished the expression
for the discrete gradient of aerodynamic coefficients acting for this coupling. In this
area, where functional gradients of complex coupled dissgstems are calculatediito-
matic Differentiatioras it is more and more routinely developed in tools suchr@ENADE
(cf. nttp://wvww-sop.inria.fr/itropics), is expected to becomereasingly useful. Considering
more generally, the application of gradient-based methodserodynamic and structural
wing design, the article by Leoviriyakit and Jameson [1#lpets the potentials of state-of-
the-art computational methods.

In a different perspective, in the literature, the expr@ssmultidisciplinary optimiza-
tion” (MDO) most often refers to methodologies for analygirand locally optimizing
single-discipline subsystems, and integrating them imgelacoupled system for purpose of
design. In particular, the design of aeronautical compiestesns has stimulated many ba-
sic developments. A commonly-used approach is the Bi-lmtegrated System Synthesis
(BLISS) of Sobieszczanski-Sobieski and co-authors in Wwhie integration is organized
after a distinction is made among the design variables @ittee global (or public) vari-
ables common ta all disciplines, and the local (or privase)ables associated with separate
subsystems [25] [26]. A formal presentation and a comparig@ollaborative optimization
approaches was made by Alexandrov in [3]. The DIVE appro&¢h3) has been proposed



recently as a variant of the BLISS in which the coupling betweubsystems is reinforced
by the solution of an additional nonlinear equation. Fromdhiginal developments, MDO
concepts have matured and we refer to the textbook by Keah&lain [15] for a general
presentation, and to [29] for a recent review.

In our perspective, MDO processes are viewed as game s&si{&§)[21] of particular
types, and our developments are linked to MDO in this light.

From the standpoint of numerical analysis, how should thiglipwariables be op-
timized concurrently to account for antagonistic critesigginating from different disci-
plines? This article focuses on this question sometimesned to as ¢oncurrent engineer-
ing”. In optimum-shape design, often the different physicambmena are accurately mod-
eled by partial-differential equations to be solved in domeahat are identical or distinct
but share a common geometrical boundary at which apprepcanditions are enforced
and whose shape is to be optimized. Besides the case of thestagctural design of an
aircraft wing cited above, in the design of a stealth airpJane would optimize the wing-
shape w.r.t. an appropriate aerodynamic criterion, orra¢gech criteria, concurrently with
an electromagnetic criterion, such as cross-radar se@6:%) reduction. In the latter case,
both distributed P.D.E. systems are formulated in the dometerior to the aircraft, but have
very different computational characteristics in partigudoncerning mesh requirements.

In the area of pure numerical simulation of multidisciplynaoupled systems, the com-
putational cost to evaluate a configuration may be very Pdiortiori, in multidisciplinary
optimization, one is led to evaluate a number of differemifigurations to iterate on the
design parameters. This observation motivates the seart¢hd most innovative and com-
putationally efficient approaches in all the sectors of thrajgutational chain : at the level of
the solvers (using a hierarchy of physical models), the e®ahd geometrical parametriza-
tions for shape, or shape deformation, the implementationa(sequential or parallel ar-
chitecture; grid computing), and the optimizers (deteistio or semi-stochastic, or hybrid;
synchronous, or asynchronous).

In the present approach, we concentrate on situationsaijypiovolving a small number
of disciplines assumed to be strongly antagonistic, andadively moderate number of
related objective functions. However, our objective fimts$ are functionals, that is, PDE-
constrained, and thus costly to evaluate. The aerodynanucsaauctural optimization of
an aircraft configuration is a prototype of such a contexenvthese disciplines have been
reduced to a few major objectives. This is the case wheniiditip]l many subsystems are
taken into account by local optimizations.

Our developments are focused on the question of approximétie Pareto set in cases
of strongly-conflicting disciplines. For this purpose, angel computational technique is
proposed, guided by a form of sensitivity analysis, withakeitional objective to be more
economical than standard evolutionary approaches.

Classically, the simplest way to account for several datsmmultaneously consists in
agglomerating them all in a single performance index wangheach criterion with an ap-
propriate coefficient, or weight. For example, with two eridJ, andJg, consider :

Ja Js
J=aZ+p=
2Py

whereJX andJ are reference values, for example, those associated withita design.
Here,a andf are positive weights to be chosen somehow. This approamnysemmonly-
used, particularly when one disposes of an initial desigmhighclose to be satisfactory, that
is, only a better, or slightly different optimum is to be shtigHowever, the construction



of the agglomerated criterion involves a large amount oftratiness, in particular (but not
only) w.r.t. the weightsa and 8 that can strongly influence the result and require to be
calibrated by an experienced practitioner. Thus, this@ggr is poorly general, physically
or mathematically relevant.

An alternative to the unique criterion by agglomeration ®fegal objective functions,
consists of a two-step process in which each criterion isdjppgmized alone, possibly under
constraints; for the above two-objective problem, one theisJ; andJg as the solutions
to two independent single-objective optimizations. Tharthe second step, one solves the
following single-objective constrained problem :

min p
subject to the following inequality constraints :
An<Ir+ap and B <JI+Bp

In this alternative, assuming all the cited single-objexfiroblems make sense separately,
without physical coupling, the difficulty is here to treat@lplem with functional inequality
constraints of physically-different nature. Additionallhe same arbitrariness resides in the
calibration of the weightsr andf3.

Areal alternative to the unique agglomerated objective@ggh, is to establish the front
of Pareto-optimal solutionsTo introduce this, we first recall the notion déminanceand
non-dominance
Definition : When considering the minimization of severékeia concurrently (4, Jg, etc),

a design point BV in the parameter space is said to dominate the desighib efficiency,
which we denote as follows :
DW D@

iff, for all the criteria J to be minimized, the following luis :
J [Dm] <J [D<2>] ,
and if, for at least one criterion, the inequality is strittversely, if instead :
DW % D@ and D? . DW

the two design-points ® and D'?) are said to be non-dominated.

This notion can be used to sort a collection, or populatiodexign-points evaluated
w.r.t. the various criterida, Jg, etc, according to the so-call&areto fronts The first front
is made of all the design-points dominated by no other; toers# the front of those dom-
inated by no other in the remaining set; etc. The result af$brting process is sketched at
Fig. 1.

Relying on this sorting process, Srinivas and Deb [27] haepgsed the genetic al-
gorithm NSGA (Non-dominated Sorting Genetic Algorithaf)ich utilizes essentially the
front index as théitness functionthe engine of the GA. Goldberg [12] improved the method
by introducing aniching technique in order to prevent the accumulation of non-deweith
design-points on a given front. To illustrate tN&GA we present an experiment made by
Marcoet al [18] in which an airfoil shape was optimized to reduce dragt@nsonic flow
conditions) and maximize lift (in subsonic flow conditior)ncurrently. TheNSGAwas
implemented in two independent experiments correspontdirfgnite-volume simulations
of the compressible Euler equations using different meshesarse and a fine. The totality
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Fig. 1 Sketch of a population of design-points sorted in Paretotro

of the design-points accumulated during the successiverggons in the two experiments
indistinctly, are represented on Fig. 2 a). In each expertjtbe set of design-points does
not cover the entire quarter plane : not all pdits, Js) can be achieved by the system. The
boundary of the domain of realizable pairs is made of Pasptonal solutions. The corre-
sponding two (discrete) fronts and the associated shapethé€ fine-mesh experiment only)
are depicted on Fig. 2 b) and c).

This experiment allows us to point out the principal meritgl aveaknesses of this ap-
proach. The method provides the designer with a rich andagebiinformation on the be-
havior of the criteria when the parameters vary, but one tsmragret the lack of hierar-
chy between the Pareto-optimal solutions, among which aitefoperating design-point
requires to be elected on the basis of some other criterilbtodie introduced. Other exper-
iments in the literature have shown that the method is vengig# since it has been applied
to cases where the Pareto-equilibrium front was eitheramwvex or discontinuous. On the
other hand, the computational cost of a standard applicafitheNSGAis fairly high since
a large number of configurations ought to be evaluated, ifcanrate identification of the
front is sought. In our example, this was achieved by ing#aohs of a two-dimensional
Eulerian flow code for purpose of demonstration; howeveaypcealistic flow simulations
about aircraft wings are based on three-dimensional tertbiNavier-Stokes equations. The
cost-efficiency issue can be somewhat alleviated by theeusbparallel computing, which
is possible at several levels : the parallelization of thalysis code by domain decomposi-
tion, the natural parallelization of its independent insigions, as well as the parallelization
the crossover operator in the GA [19]. Various evolutiorglgorithms other than thdSGA
have been proposed for multiobjective optimization on tasidof similar principles (e.g.
NPGA[14], MOGA[11], SPEA[31)).

When the front of Pareto-optimal solutions is convex andaimdt may be possible to
identify it point-wise, by treating all but one criterion @guality constraints, as depicted on
Fig. 3. However this approach is much less general since easioned before, functional
constraints are difficult to implement; additionally, thdentification is usually logically
complex in cases of more than two objectives.

An alternate treatment of multiobjective problems thatwmnvents the usually very
arbitrary question of adjusting penalty constants in thgl@gerated-criterion approach,
and that is much more economical than [M8GAtype method to establish the Pareto-
equilibrium front, consists in simulating a dynamic gameninich the design variables are



a) Realizable design-point accumulation by applicatiothef NSGA
(independent Eulerian flow simulations on coarse and fingsyri
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Fig. 2 An illustration of the NSGA in which an airfoil shape is optirad to reduce drag and maximize lift
concurrently; in c) the upper-left airfoil has the highéft &nd the lower-right the lowest drag.

first split in complementary subsets and distributed tougiriplayers as individual strate-
gies. Symmetrical as well as unsymmetrical (or hierardhgiames can be considered [21],
[5]. In a symmetrical Nash game [21], each player accomnasdés own strategy to the
other players strategies to optimize only one criteriomnfequilibrium point is reached, a
trade-off between the various criteria is achieved.



Ja
Qi

Fig. 3 Schematic of a Pareto front point-wise identification by tile@tment of certain criteria as equality
constraints

In his doctoral thesis, B. Abou El Majd [1] has realized a nembf aero-structural
shape-optimization exercises related to a generic busijeesving using either Nash or
Stackelberg games, some of which are reported here fotrdkien, some of which have
also been reported in [2].

Here, we focus on the symmetrical formulation of Nash gameslving two players
A and B controlling the subvector¥x andYg composing the complete vector of design
variables :

Y = (Ya,Yg)

In this case, the vectdr = (Ya,Yg) is said to realize a Nash equilibrium of the critedja
andJg, iff :
Ya= ArgminYA Ja (YA,VB)

and symmetrically :
Ys = Argminy, Jg (VA,YB)

This formulation is inspired by the negotiation mechanismnwvbich economics and social
sciences provide numerous examples.
The Nash equilibrium-point can be achieved by the followpagallel algorithm [28] :

Step 1:Initialize both subvectors :
Ya=Y? Y=y

Step 2:Perform in parallel optimization iterations of both sulisyss (by independent and
generally different analysis and optimization methods) :

Player A:

e Retrieve and maintain fixed
Yo =Y

e PerformKa minimization steps ofa (YA,Yéo)) by iterating onYa alone and geY,iKA).



Player B:

e Retrieve and maintain fixed
Ya=Y?

e PerformKg minimization steps ol (YA<0),YB> by iterating onYg alone and geYéKB).

Step 3:Update both subvectors in preparation of the informatiacharge :

YAO) — YA(\KA) Yéo) — YE(’KB)
and go back to Step 2 or stop (at equilibrium).

Note that in practice, under-relaxation is very often e8akto convergence. This point
is particularly critical when the two criterid andJg originate from different physical disci-
plines associated with different dependencies and seésis the case for optimum design
w.r.t. aerodynamics and structural mechanics, or elaotgnetics. However, certain rather
general mathematical stabilization techniques existfaeexample [4].

Important remark : invariance of the Nash equilibrium solut ion to units and scales.
Assume thalY = (Ya,Yg) realizes a Nash equilibrium of the criterda and Jg, and let
® and¥ be some arbitrary but smooth and strictly-monotone ingngafsinctions; then,
evidently,Y also realizes a Nash equilibrium of the crite¥dJa] and¥ [Jg]. In other words,
the notion of Nash equilibrium is not only independent of gigsical units used for the
criteria, but also of possible changes in scales applietieamt: for example, replacing
by J? or exg(J) has no effects other than a different conditioning of the etical system.
By this invariance property, the Nash game formulation @sis outstandingly from the
agglomerated criterion approach in which dimensioningpiealty constants has a strong,
and usually unknown influence on the solution. The equilitrisolution, unique or not, is
only determined by the split of the design vector, which issheferred to as theplit of
territory by which each virtual player is allocated a subspace of actioterritory.

This approach has been tested successfully over a numbeses celated to optimum
design in aeronautics, in particular within the framewofkhe Jacques-Louis Lions Labo-
ratory common to the University of Paris 6 and Dassault AeratOne of the earliest con-
tributions has been Wang’s doctoral thesis [30] in whichtiarterion optimization prob-
lems in aerodynamics have been treated by Nash games by thlerbest advantage of a
distributed environment. Nevertheless, note that in scesesof multipoint drag minimiza-
tion, the lift constraint was introduced by the penalty aggh; thus, somewhat artificially,
all the criteria were unconstrained and this results in gbfivation, because it allows the
Nash equilibrium to be sought from an initial point where tinectional gradient is equal to
zero, and the dynamic game develops in a region in which tietifanal is not very sensitive
to parameter changes.

For purpose of illustration, we reproduce here partially tbsults of a two-point airfoil
shape aerodynamic optimization taken from [28]. The targe¢ to maximize the lift in a
subsonic regime representative of take-off and landihg € 0.2, a = 10.8°) defining the
first point, and concurrently minimize the drag in a transdiow representative of cruise
(Ms, = 0.77, a = 1°) defining the second point. For both points, the airfoil isuased to be
immersed in a compressible Eulerian flow. Here, both opations are treated as inverse
problems. A first airfoil shape is associated with the sulespaint; this airfoil is consid-
ered satisfactory w.r.t. lift in this regime, and the cop@ding pressure distribution along
the airfoil is denotedog,|, This airfoil may be the result of a single-point optimizati
However, this airfoil should be improved w.r.t. drag at trensonic point. A second airfoil



has the opposite characteristics. It is satisfactory.vdrdg at the transonic point, and the
corresponding pressure distribution along the airfoiléaa@edpirgng but not w.r.t. lift at
the subsonic point. Then one seeks an airfoil shape thaupesdin each point a pressure
distribution as close as possible to the relevant targdéil®rpg,,,0r Ptrans

For this, the airfoil boundaryy is split into two complementary territoridg and />,
corresponding approximately to the fore and aft regionhefdirfoil (see Fig. 4, top). The
airfoil is parametrized classically by means of the HicksaHe basis functions, and the
associated weights are the design variables of the expetif®@e such design variable is
allocated to either territory depending on the locatiorhef fnaximum of the corresponding
bell-shaped function. In this way; andl> are associated with specific distinct subsets of
the design variables. A trade-off between the two targéitsrs then sought by realizing a
Nash equilibrium associated with the following formulatio

n}inllz/rc (P—Psup)’ 1)

(in which it is implicit that the field is calculated in the sdnic conditions that define the
first point), and

rT}in lo = /rc (P Ptrans’ 2

(in which it is implicit that the field is calculated in the frgonic conditions that define the
second point).

Starting with some appropriate initial airfoil, a virtudbger performs 5 design cycles
to reduce criteriothy by acting only on the subset of the design variables assatvaith I,
and maintaining the other variables fixed. The optimizer s¢egpest-descent-type method
based on a functional gradient resulting from discretizrgntinuous adjoint equation. In
parallel, another virtual player performs 10 design cytdesduce criteriot, by acting only
on the subset of the design variables associated/wjtand maintaining the other variables
fixed. Then, both players exchange their best respectiweestidrs of design variables, and
so on until an equilibrium is reached. The iterative congeag of this process is indicated
at Fig. 4 (bottom) : both criteria approach a stable asyraptot

Fig. 5 illustrates how the trade-off airfoil shape corresgiog to the Nash equilibrium
solution compares with the initial and target airfoils, &hd. 6 provides the pressure distri-
butions over this optimized geometry in the two calculapomts.

Another example of application of a Nash formulation to tteatment of a complex
geometrical optimization problem is given by [13], in whito disciplines, elasticity and
thermal analysis, have been considered as governing miodaks competition between the
structural and the cooling material topologies.

Hence, in summary and referring also to [28], in PDE-colms&e optimization, the
Nash game formulation has the following most important teeri

1. the iteration applies to a set of design variables, andon@ipopulation of such vectors;

2. it permits straightforwardly to couple physical disaigls represented by independent
codes through the exchange of design variables;

3. parallel computing can be exploited readily;

4. the multiobjective solution satisfies the above propeftpvariance to units and scales.

Keeping the above example in mind, we return now to our géméeaussion on mul-
tiobjective, or multidiscipline optimization. In optimushape design in aerodynamics, we
are facing two major difficulties.



10

a) Split of geometrical parameters

Optimization Strategy
Player 1 Player 2
Optimized Fixed Fixed Optimized
0.15 | 0.85 0.15 0.85
0.95 0.95

b) Convergence of the two criteria

Convergence history of optimization procedure

1.5 T

- = Player2
1.0k — player1

Log(l)

0.5F .

0 100 200 300 400 500 600 700
Design Cycles

Fig. 4 Split of territory and optimization strategy; informati@xchange every § 10 parallel optimization
iterations (top); asymptotic convergence of the two datéswards a Nash equilibrium (bottom); from [28]

The first difficulty is related to the fact that only the simida of a complex flow by
a high-fidelity model (e.g. by the RANS equations) can prevadreliable evaluation of the
aerodynamic coefficients. For instance, the solution ofthinee-dimensional compressible
Euler equations, not so long ago considered as an accomgighonly provides the wave
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Fig. 5 Comparison between the optimized airfoil (solid line) witte initial airfoil and the target airfoil
associated with the subsonic conditions of the first poieft)(l and the target airfoil associated with the
transonic conditions of the second point (right); from [28]
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Fig. 6 Pressure distributions over the initial, target and optedi(solid line) shapes in the subsonic condi-
tions of the first point (left), and in the transonic condisoof the second point (right); from [28]

drag and friction forces are neglected, as well as turbel@fiects. The computational cost
of an accurate evaluation of the aerodynamic functionalsus very high.

Secondly, by nature, transonic flows are only weak soluttorthe partial-differential
equations of gasdynamics. As such, they are very sensitivartations in boundary con-
ditions, such as shape variations. The aerodynamic pesfwenis therefore very fragile,
in particular drag, and tolerance margins are small. By kogmerodynamics with one or
more other disciplines in a multidisciplinary optimizatijat is imperative to maintain the
aerodynamic performance near the optimal level.

This observation has led us to introduce the notioprirnary functionalw.r.t. which
sub-optimality should be maintained, asetondary functiondb be reduced under possible
constraints.

In our notations, the dimension of the full design spach.i#\ first optimization step
is completed in which the sole principal criteridgis minimized w.r.t. the totality of thél
design variables, yielding a vectéf that realizes, by hypothesis, a local or global minimum
of this criterion. It is also assumed that at this pokit(K < N) scalar constraintg¢ = 0,
k=1,2,....K, or more compactly = 0) are active. Then, one wishes to conduct a second
optimization step, multiobjective and competitive in matlby establishing a Nash equilib-
rium between the criterida andJg. To extend the formulation of the previous experiment,
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the following more generaplit of territoryis introduced :

Y:Y(U,V):YA*—I—S(3> 3)
where :
U= , V=1 4)
UN—p Vi

in which Sis an adjustable matrix of dimensidthx N, referred to as theplitting matrix
and to utilize the subvectots (U € RN-P) andV (V € RP) as strategies, or territories of
two virtual playersA andB in charge of the minimization afa andJg respectively.

The Nash equilibrium point, if it exists, is denot¥d=Y (U,V), and it is associated
with the following coupled optimization formulation :

Lmin _Ja hCAY

®)
Subject to :g{Y (U,V)} =0

and :
vrre]]ilgj Je [Y (U’V)}

Subiject to : no constraints

(6)

The dimensionp of subvectorV which controls the subspace of action of plajeis
adjustable p > 1); however, the dimensioN — p of subvectold must be at least equal to
1, and at least equal to the numibe(K > 0) of active constraints; this gives the following
bounds orp:

1< p<N-maxK,1) (7)

In the limiting case | — p = K), in the above Nash game formulation, the minimization of
Ja under constraints reduces to the adjustment oKtbemponents of subvectbr to satisfy
the K scalar constraints. This case has been examined in [7].aHereunless mentioned
otherwise, a strict inequality is assumed instead.

In the examples cited above, [30] and [28], the split is aifyant of the primitive vari-
ables that is, the original components of the design vedto©ur new and more general
formulation encompasses this particular case obtained tigesplitting matrix is a permu-
tation matrix.

In a parametric shape optimization, the primitive variakdee geometrical control pa-
rameters, such as the weights put on the different Hicksaeldrasis functions, or the co-
ordinates of control points in a Bézier or B-spline paraimation. Thus, typically, these
variables are associated with specific locations of thexopéid geometry. Hence, when the
splitting is a permutation, the permutation reflects ouuitite understanding of the de-
pendency of the physical functionals on the geometry, aoregof it. For instance, in the
example of Fig. 4, the split was guided by the knowledge that iransonic flow, the wave
drag is the result of the shock intensity and it depends mastithe delicate design of the
geometry on the upper surface near the shock, whereas, lrsarsia flow, the lift is essen-
tially proportional to the airfoil thickness. In his docédithesis, Wang [30] demonstrated
that iterations based on choices for the splitting oppdsitidis physical sense, unsurpris-
ingly, diverge.
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These considerations lead us to raise the following questimw should the split be
defined in a general and systematic manner to respect thécphgense? In particular, if
the Nash game is initiated from a viable, physically-refévsolution corresponding to an
optimum of the primary criterioda, can near-optimality of this criterion be maintained at
equilibrium?

With the formulation of (3), the subspace spanned by theNirstp column vectors of
the splitting matrixS can be viewed as the territory assigned to playar charge of mini-
mizing the primary criteriorda, and the subspace spanned by the pasblumn vectors as
the territory assigned to play&in charge of minimizing the secondary criteridg Thus
the above open questions are those of the adequacy of thefgpliritory. The option which
is adopted here consists in making this choice staticatig (@t adaptively in the course of
the dynamic game), at completion of the first step of the mioe in which the primary
criterion is minimized alone (possibly under constraimtsjull dimensionN, yielding the
optimal design vectoY,, and before any competitive strategy is initiated. Thusctheice
is made, here once for all, on the basis of the analysis ofghsitévity of this criterion only.
We specifically enforce the following condition : the secatep of the optimization proce-
dure, the competitive step, should be such that infinitelgredurbations of the parameters
aboutY; that lie in the subspace identified as the territory of thesdary criterion should
cause the least possible degradation of the primary oitdgv.r.t. the minimum achieved
at completion of the first step). As a basis for the identiftcabf the optimal splitting, one
considers the formal Taylor's expansion of the primary fiomal to second order aboMf
in the direction of a unit vectan € RN :

2
JA(YA*+8w):JA(Y,;‘)+£DJ,§.w+%w.H;w+O(s3) (8)

Our goal is to propose a sensible splitting associated wighdefinition of a vector basis
{wK} (k=1,...,N). To fix the ideas, let us assume that the first few elemertk,} (k =
1,2,...), of the basis are dedicated to player A in charge of redutiagrimary criteriora,
and inversely, the tail elementfp‘wk} (k=N,N—1...), to player B in charge of reducing
the secondary criteriods. Note that the direction of maximum sensitivity of the prima
criterionJa, or steepest-descent direction, is given by the gradigiitatY = Y. Thus, the
following two conditions should be satisfied by the basis :

1. the first few elements should span the gradiedg,
2. inversely, the differencia (Yx + ew) — Ja (Y5)], whene is small and fixed, should be
as small as possible wheais a tail element of the basis.

AtY =Yy, the optimality conditions imply that the gradiendy is a linear combination
of the K active constraint gradients, the coefficients being therdrege multipliers. Thus
a way to achieve the first condition is to enforce that the Kr&lements of the basis have
the same span as the gradients ofKhactive constraints. For this, one requires tha}
(k=1,2,...,K) be the result of applying the Gram-Schmidt orthogonaliraprocess to the
constraint gradient§ Og; } (k=1,2,...,K). Then, letP be the following projection matrix :

po1-5 ] o] ©

where [ook} denotes the column-vector matrix made of the componenteatbrvawX, and
consider the following real-symmetric matrix :

Ha=PHxP (10)
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We claim that the eigenvectors of the matkik, ordered appropriately, constitute the best
choice.

First, these eigenvectors contain the null space of theptiop matrixP, that is,{ wX}
(k=1,2,...,K). Thus the first condition is satisfied simply if the orderiaguch that these
vectors appear first.

Second, the basis is orthogonal; hence the tail elementsrtémegonal to the firskK,
and todJ, as a consequence of the first condition. Thus, doe W (k> K + 1), the
principal term in the expansion of the differen¢d (Yx + cw) — Ja(YR)| is the quadratic
term. This term, including the absolute value, reduces ¢oRhyleigh quotient associated
with the matrixH} (assuming positive-definiteness), and the classical ctexfaation of
eigenvectors, here by decreasing eigenvalue, holds. a

Starting from the above observations, the following thegreaken from [7], exploits
this basic principle and draws certain additional consegeg related to the Nash game. It
is assumed that the two criteda andJg are strictly positive and such that :

Ja=3da(Ya) >0, Jg=Jg(Ya)>0 (11)
If necessary the problem can easily be reformulated to rhesetrequirements.

Theorem 1
LetN, p andK be positive integers such that :

1< p<N-maxK,1) (12)

LetJa, Jg and, ifK > 1, {gk} (1 <k <K), beK + 2 smooth real-valued functions of the
vectorY € RN. Assume thafly andJg are positive, and consider the following primary
optimization problem,
min Ja(Y) (13)
YeRN

that is either unconstraine & 0), or subject to the followingK equality constraints :

a(Y) = (91,02, -, k)" =0 (14)

Assume that the above minimization problem admits a localobal solution at a point
Y: € RN at whichJ; = Ja(Y;) > 0 andJ; = Jg (Y;) > O, and letH}; denote the Hessian
matrix of the criteriorda atY = Yy.

IfK =0, letP =1 andH, = H,; otherwise, assume that the constraint gradidritsy; }
(1 <k <K), are linearly independent and apply the Gram-Schmidtogahalization pro-
cess to the constraint gradients, and{lei} (1 < k < K) be the resulting orthonormal
vectors. LeP be the matrix associated with the projection operator dmd&tdimensional
subspace tangent to the hyper-surfagies 0 (L <k <K) atY =Yy,

po1-5 ] o] )

where[wX] denotes the column-vector matrix made of the componenteatbww*, and
consider the following real-symmetric matrix :

Ha=PHxP (16)
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Let Q be an orthogonal matrix whose column-vectors are norntalggenvectors of the
matrixH, organized in such a way that the fikstare precisely W} (1 <k <K), and the
subsequertl — K are arranged by decreasing order of the eigenvalue

=W HAW = HiwX (K+1<Kk<N) (17)
Consider the splitting of parameters defined by :

Up Vp
Y=Yy+Q (3), U= ; , V=1]": (18)
UN_p V]_

Lete be a small positive paramet@< € < 1), and le¥ . denote the Nash equilibrium point
associated with the concurrent optimization problem :

min  Ja min Jag
UcRN-P and VERP (19)
Subjectto g=0 Subject to : no constraints

in which again the constraigt= 0 is not considered whef = 0, and

Ja B Ja
==+ 0 -—— 20
o3 ve (03 3) 0
where@ is a strictly-positive relaxation parametér € 1 : under-relaxationp > 1 : over-
relaxation).
Then :

— [Optimality of orthogonal decompositipif the matrix H, is positive semi-definite, which
is the case in particular if the primary problem is uncongted (K= 0), or if it is sub-
ject to linear equality constraints, its eigenvalues hawe following structure :

hi=h,=..=h¢=0 h 1 >hr,>...>hy>0 (21)

and the tail associated eigenvectdre)X} (K +1 < k < N) have the following varia-
tional characterization :

wN = Argming, |w. Hiw| sit.|w|=1andw L {w!, &? ..., "}

Nt = Argming, |w. Hiw| s.t.]jw]| =landw L {w!, o? ..., o, &N}

OON

2= Argming, |w.HAw| s.t.|lw|| = landw L {w!, &?, ..., o, &V, V1)
(22)

— [Preservation of optimum point as a Nash equilibriufor € = 0, a Nash equilibrium
point exists and it is :

Yo=Yi (23)
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— [Robustness of original desigjtf the Nash equilibrium poin¥; exists fore > 0 and
sufficiently small, and if it depends smoothly on this partaméhe functions :

iae)=3a(Ye) . ins(e) =Jns(Ye) (24)
are such that :
ja(0)=0 (25)
jas(0)=6-1<0 (26)
and
ja(€) = 5 +0(e) (27)
ja(€) =1+(6—1)e+0(e?) (28)

— In case of linear equality constraints, the Nash equilibnipoint satisfies identically :

U(e) =0 (1<k<K) (29)
_ N-p p )
Ye=Yi Uk(e) @+ 5 vj(e) Nt (30)
k=K+1 =1

— For K = 1and p= N — 1, the Nash equilibrium poiif; is Pareto optimal

We have seen already why the proposed basis of eigenvestmpsimal for the problem
raised by the case of a preponderant or fragile disciplmeslation with the performance of
the Nash equilibrium solution; shortly speaking, the §plj is such that a minimal degra-
dation of Ja is caused by the reduction d§. Another aspect is the existence itself of this
equilibrium. With respect to this, and without enteringth# details of the full proof, given
in [7], let us examine the mechanism by which the presentcehof territory splitting also
permits to guarantee the preservation of initial optimurimpof disciplineA alone,Yy, as a
Nash equilibrium of the above formulation fer= 0, as stated in (23).

For € = 0, let the criterionJy = J for notational simplicity. The criteridag andJ are
functionally proportional, and so are their gradients. Wshwo establish thdt =V =0
indeed corresponds to a Nash equilibrium.

On one side, for fixed/ = 0, the subvectotJ = 0 indeed realizes the minimum of
Ja = J subject to the constraig = 0, because the optimization bf is equivalent to the
minimization ofJa in a subset that contains the solutigf of the minimization in the full
design space.

On the other side, for fixed = 0, the (unconstrained) derivative dfg w.r.t. V is
proportional to :

0J oY . 0Y

W7DJ.W75JA.W70
because, by construction of the split, the vetgéris a linear combination of the tail ele-
ments of the eigenvector basis, and these are orthogonia¢ tirstK elements, and those
span a subspace containiig,. Hence, for fixedJ = 0, the unconstrained criterialag ~ J
is also stationary w.r.t. subvectdratV = 0. a

In summary, this theorem establishes two main achievermelastted to the Nash equi-
librium solution :
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— A potential performance result : it permits to identify abstly an orthogonal decompo-
sition of the parameter-space that is such that for giveredsionp (p <N —max(K, 1)),
the tail p vectors of the basis correspond to the directions of leagttian of the primary
functionalJa from its minimum value under possible equality constraiimshis sense,
these eigenvectors span the subspace of dimemsiomvhich the primary functional is
the most insensitive to the small variations in the desigrorethat will be made, in a
second phase of optimization, to reduce a secondary funadfids;

— An existence result : a procedure involving a continuatiarametere (0 < € < 1) has
been set up permitting to introduce gradually and smootigysecondary functiondh
in competition with the primary functiondh in a Nash game; fag = 0, it is established
that the original optimal solutiol; is a Nash equilibrium point of the initially-trivial
game formulation; consequently, by continuity, the Nashildarium solution exists, at
least fore sufficiently small. Another parametérappears in the formulation; it allows
under or over-relaxation of the process@ik 1, the auxiliary criterion)ag at the Nash
equilibrium pointY, decreases whesincreases, but remains sufficiently small; since
Yo =Y, the locus off ¢ ase varies is viewed as a continuation of the original optimum
point of the primary functional alone.

The construction of the orthogonal basis is made at full eagence of the minimization
of the primary functional by diagonalization of the Hesgiaatrix restricted to the subspace
tangent to the hypersurfaces representing the activeragmist To identify this tangent sub-
space, a Gram-Schmidt orthogonalization process is apmi¢he constraint gradients. In
practice, the Hessian can be calculated exactly eitherditynor by automatic differen-
tiation; otherwise, an approximation can be made by difféatéing ameta-modefor the
primary functional and constraints valid in a neighborhobthe optimal solutiorY;. This
meta-model can be, for example, an artificial neural netvasrla Kriging model (see for
instance [6] [10]).

We close this section by emphasizing again the merit of aunditation, when equality
constraints are active, to remain consistent with the shegterion minimization of the
primary functional alone at the initial poist= 0 of the continuation proceduréq= Yx).
This nontrivial property usually does not hold when thetsiglimade over the primitive
variables as formerly proposed in [30] [28], unless the tramnds are treated by the penalty
approach. The variations in the primary functional aregafiit second-order irg; thus the
new formulation permits to identify smoothly the locus ofdldaequilibrium solutions as
varies, by an algorithm whose iterative convergence idifatsgd by this robustness property,
since the potential antagonism between the two criteriabeaimtroduced as smoothly as
necessary by small enough steps in the continuation pagamet

2 Application of territory splitting to the aero-structura | shape optimization of a
business jet wing

In order to illustrate the influence of the split of territoop the result of a practical two-
discipline optimization, the main results achieved by BoAlEl Majd in his doctoral thesis
[1] concerning a case of aero-structural shape optimiaatfoa business jet wing, also in
[2], are reproduced here. In his thesis, a number of alguoi@hvariants, including some
whose formulations rely on a hierarchical Stackelberg géinstead of a symmetrical Nash
game), have been described in details, tested and analyztedrstically.
Aerodynamics is treated as the preponderant discipliméllialso reveal to be a fragile

discipline. The flow about the wing is computed by a finiteewné simulation of the three-
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dimensional Euler equations. The method handles unstectyrids by the construction of
a dual finite-volume mesh, whose generic cell is around a aadets boundary is made of
portions of medians of the elements. The approximationreelrelies on a Roe-type upwind
solver. The computation yields the wave drag coeffici€gt,as well as other aerodynamic
coefficients, such as lifC_. The simulation point is transoni®/, = 0.83, a = 2°). The
primary objective is to minimize the drag coefficient augteenby a penalty term which
is active when a minimal lift coefficient constraint is vitdd. Thus, the primary criterion
admits the following expression :

CD CL
J :—+104max(0,l——) 31
A Co, c. (31)

in which the reference quantities, indicated by the supsgicorrespond to an initial geom-
etry defined by an initial three-dimensional unstructured gbout the wing.

Throughout the optimization process, the geometry istiterly modified according to
the so-called~ree-Form Deformation (FFD)nethod which originates from computer vi-
sion, and was proposed in the context of an aero-structesigd loop by Samareh [24].
In this approach, a formula is givenpriori, in a closed form involving adjustable param-
eters, to a three-dimensiondéformation fieldformally and independently of the discrete
or continuous representation of the geometry itself, hararstructured volume mesh. By
construction, the deformation field is made to be smooth gudlgo zero outside of a sup-
port, which is usually a bounding box of simple shape whoaetaries are not made in
general of meshpoints. At a given optimization iteratidre deformation field is redefined
and applied to the meshpoints lying inside the support, trersitting an update of the
surface meshpoints, but also of meshpoints in the compuikdne in the vicinity of the
optimized surface. In this way, an initial unstructureduwok mesh evolves according to a
deformation defined explicitly in terms of ti&-D parameters. These parameters are taken
to be the design variables of the optimization loop and theyupdated here according to
the Nelder-Mead [22] simplex method to reduce the aboveraoit Ja.

This procedure results in a simple and fairly robust iteeagilgorithm. In our experience,
this procedure is less subject to mesh overlapping thaniamemesh reconstruction from
the displacement of the boundary meshpoints by a pseudtieiya equation, such as the
spring method.

In our experiments, a system of generalized coordingfeg, {) is defined and corre-
sponds to longitudinal, vertical and span-wise directidfteen the bounding box is a par-
allelepiped, the transfinite interpolation of the Cartesiaordinates suffices to define these
transformed coordinates throughout the box. Then, theroheftion field is defined as a lin-
ear combination of products of three Bernstein polynontélhese coordinates. Precisely,
an arbitrary poing is given the following displacemertq :

nonjong
_ i i Kk .
Agq= i; ];)k;Bni (¢q) Ba,; (Na) By, ({a) ARk (32)
in which, for thekth Bernstein polynomial of degrae
BE() = — k(1) k (33)
n K (n—K)!

The degrees of the parametrization in the three physicattians,(n;, nj,ny), are fixed, and
the vector-valued weighting coefficienf#Rj } (0<i<n,0<j<nj, 0<k<ny) are
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the design variables of the optimization. Such a geomépeeametrization generalizes the
Bézier curve formula, and combined with the classical degglevation process, it facilitates
the construction of multilevel optimization algorithmspired by multigrid methods. More
details on this method, and more examples of applicatiorbediound in [9] [2].

The deformation field was chosen to be linear span-wise faohto tip (x = 1). Ad-
ditionally, the leading and trailing edges, and the eightizes of the bounding box were
fixed throughout the optimization. Finally, only verticasplacements were considered for
simplicity.

In a first experiment (see Fig. 7), 6 control points at the eoat at the tip were consid-
ered, for a total of 12 degrees of freedom.

Fig. 7 Aero-structural shape optimization of a business jet wiitgt split of territory, according to the
primitive variables : parameters marked A are associategtodynamics, and those marked S to structural
design.

In order to define an exercise in which the wing shape is opénhiv.r.t. two disciplines,
aerodynamics and structural design, that share a commai design variables, the wing
structure was treated as a thin shell which deforms undelotite of aerodynamic forces.
The distribution of stresses over the shell has been caéézllay linear-elasticity, using a
code of the public domain, ASTER developedHigctricité de France (EDF)

The four degrees of freedom located at mid-chord (at roottgmaver the upper and
lower surfaces), marked S on Fig. 7, were assigned to a pByer S) in charge of mini-
mizing the following secondary criterion :

v
Jo=Js— // o.n]|dS+Ky max<o,1— —) Ko max<o, S_ 1) (34)
JJs Va S

in which o is the stress tensdB, andV, are the wing outer surface and volume at conver-
gence of the purely-aerodynamic optimization, &#dndK, and penalty constants. By the
reduction of this criterion, one expects a more uniformriigtion of the load, and thus a
more robust structure.
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The remaining 8 degrees of freedom, marked A on Fig. 7, wesig@ed to a playeA
in charge of minimizing the primary criteriod.

It was possible to achieve a Nash equilibrium solution a@ssed with the above split
of the primitive variables as indicated on Fig. 8 which displays the convergence tyisto
of the aerodynamic and structural criteria. The sudden acdsonal peaks correspond to
iterations at which the constraint on lift is violated. ThHenglex method accommodates
to this situation by discarding the point. Evidently, a $aNash equilibrium is reached
eventually.

Regrettably, this Nash-equilibrium configuration is thtainacceptable from a physical
standpoint. The drag coefficient has doubled. The wing shegeents oscillations and the
flow has been profoundly disrupted as indicated by the Machbau field (see Fig. 9).

Besides, the number of iterations in this experiment mayobed excessive. It should
be pointed out that drag reduction problems are well knowretmultimodal. They exhibit
avery large number of local minimum&radient-based methods are very cost efficient and
useful in the final stage of convergence. But, if they corseéngtens of iterations, in prac-
tice, they notably fail to provide a good estimate of the glatptimum, unless the initial
point is itself very close to it. Inversely, semi-stochastiethods, such as Genetic Algo-
rithms, or Particle-Swarm optimizers, are far more roblost,often prohibitively expensive
in aerodynamic optimum-shape design, due to the large nuaofilews required to be com-
puted. For these reasons, for problems of intermediateuwliffi an acceptable compromise
is often realized by the simplex method, which is deterntiimisut fairly robust. With this
optimizer, the number of iterations, or computed flows gogdrby the compressible Euler
equations in three dimensions, can be substantial, toahisatisfactory convergence on
a nontrivial mesh, say, in hundreds, as in subsequent expets (Figures 11 and 13). The
even slower convergence in Figure 8 precisely reveals gpmogariate coupling. Neverthe-
less, by exploiting the resources of a parallel architegtilnis experiment could be realized
in a day.

By this first experiment, we emphasize that even in case ofergence to a Nash equi-
librium, the achieved configuration makes sense only if fii# sf variables is physically
relevant.

In a second experiment, the number of design variables wasee to 8 by considering
a deformation field, only vertical and associated with thigimpamial degree$3, 1,1) along
the longitudinal, vertical and span-wise directions. Aienumber of unsuccessful trials, a
certain split of the primitive variables yielded acceptal#sults. The split corresponds to
assign the 4 degrees of freedom at the root to pl&feB) in charge of reducing the struc-
tural criterion, and the other 4, at the tip, to playein charge of reducing the aerodynamic
criterion (see Fig. 10).

The convergence history of the two criteria in the dynamimgaorresponding to this
new split of design variables is indicated at Fig. 11. Theodgnamic criterion is subject
to numerous jumps due to the violation of the constraint findut, as mentioned above,
the simplex method accommodates to this. This phase of matiion is interrupted, some-
what arbitrarily after some 380 structural design stepg;tst speaking, convergence is not
achieved, but the solution satisfactory since it realizesible improvement of the struc-
tural criterion of about 5 %, while the aerodynamic critarftas been increased of about the
same percentage (only).

The cross sections at root, mid-span and wing tip correspgrid the initial and op-
timized shapes are represented on Fig. 12. It appears thatrthctural control parameters
tend to round out very slightly the root cross section fordrdoad distribution. This trend
augments the drag, but here in proportions still acceptdigleause the process was inter-
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Fig. 8 Aero-structural shape optimization of a business jet wiirgt split of territory, according to the
primitive variables : convergence history of the aerodyiceeind structural criteria.

rupted after a variation of 5% of each criterion. In fact,ras tevel of only partial conver-
gence, the shape variations are still very small in ampditoecause the coupling mechanism
realized by the dynamic game is very stringent. Additionalura priori knowledge of the
flow led us to locate the aerodynamic control parameterstheawing tip in the vicinity of
the most sensitive region of the shock wave. Thus, this @xgert does not reflect a blind
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Fig. 9 Aero-structural shape optimization of a business jet wiingf; split of territory, according to the prim-
itive variables : shape and Mach number field : a) purely gerachic optimization, and b) Nash equilibrium.

split of variables, but instead one that was anticipatecetphysically sound; and this was
confirmed.

In the third experiment, the split of variables based on tloppsed orthogonal decom-
position of the restricted Hessian was implemented. Oneeotliimum of aerodynamics
alone has been found ¥t= Yy, a number of independent simulations corresponding to de-
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Fig. 10 Aero-structural shape optimization of a business jet waagond split of territory, according to the
primitive variables : parameters marked A are associategtodynamics, and those marked S to structural

design.
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Fig. 11 Aero-structural shape optimization of a business jet weggond split of territory, according to the
primitive variables : convergence history of the two cider

sign vectors close t¥; have been made to set up a database to model the behavior of the
primary criterionJa in terms ofY by an RBF neural network [6] [10]. This meta-model
was then used to approximate the gradien€Cpef the primary criterion to be minimized,

the gradient ofC,, the constrained quantity, and the HessiaiCgfto form the restricted
Hessian matrix. After diagonalization, the corresponddigenvectors have been sorted by
decreasing order of the associated eigenvalue, and sefityein two subsets of four. Those
associated with the four largest eigenvalues have beegnaskio playerA in charge of
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Fig. 12 Aero-structural shape optimization of a business jet weggond split of territory, according to the
primitive variables : cross-section variations at a) redtnid-span, and c) wing tip.

aerodynamics, and the remaining four to plaggrB) in charge of reducing the criterion
of structural design.

The proposed eigensplit led to a new dynamic Nash game, wdwsergence history
is indicated on Fig. 13. The process was continued to a sthgerwergence similar to
previously in terms of coupling iterations. However, a mbfasuperior performance was
achieved : while the aerodynamic criterion was here onlyatbed of 3 %, the structural
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criterion was reduced of 8 %; equivalently, at equal stagdrafi degradation, the improve-
ment on the structural criterion is nearly three times larljete how the envelopes of the
two curves are apparently initially tangent to the horiabaixis, a hint that in this formula-

tion, the initial point is a robust design.

NASH GAME COUPLING THE EULER EQUATIONS WITH A THIN-SHELL MODEL
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Fig. 13 Aero-structural shape optimization of a business jet wapdjt of variables according to the orthog-
onal decomposition; convergence history of the two catégifter 50 couplings).

Fig. 14 indicates the evolution of cross-sections at roat-chord and wing tip. It
clearly appears from this figure that the shape variatioesoaarger amplitude in this
experiment than before, in the previous two experimentsiiare distinctly located, as for
example, on the lower surface of the wing at the root. Thusdemoeperational territory for
the secondary criterion is identified to cause a small andable degradation only of the
first criterion.

The split based on the orthogonal decomposition has peaits to identify by a blind
and automatic procedure, a set of structural parameterstimh variations of larger am-
plitude, mostly visible on the lower surface of the wing, possible without excessively
affecting the shape in the critical region of the shock wawensequently, the principal
characteristics of the flow are preserved, as indicated gnibiwhich shows that the Mach
number field has not been much altered from that obtained @ gerodynamic optimiza-
tion.

Thus, in conclusion, a significant reduction of 8 % of thectital criterion was realized
while maintaining the flowfield configuration close to optlitya(drag increase< 3 %), by
an automatic procedure of orthogonal decomposition of #rarpeter space.

3 Cooperative multiobjective optimization

In the previous sections, we have seen how competition leetwgo disciplines could be
organized when starting from an initial design that is opfim.r.t. one discipline, considered
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Fig. 14 Aero-structural shape optimization of a business jet wapdjf of variables according to the orthog-
onal decomposition; cross-section variations at a) rganid-chord, and c) wing tip.

to be preponderant or fragile. However, in more generahaus, the initial design solution
may be far from Pareto optimality w.r.t. the criteria undensideration. Then, the possibility
exists to firstly improve all the criteria prior to organigira competition between them.
Additionally, we would like to provide some recommendation cases of more than two

criteria.
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Fig. 15 Geometrical configuration and Mach number field : a) initedlcalynamic optimum solution, and b)
aero-structural Nash game solution using the orthogor@irdposition.

In this section, we examine more general situations in witietnumber of disciplines,
n, and the initial design solution are both arbitrary. In saeBes, we define a preliminary
optimization phase, cooperative in nature, throughouttvkil disciplines improve, to be
followed by a competitive two-criterion optimization pleas

We first refer to the textbook by K. Miettinen [20] for a detallreview of fundamen-
tals in nonlinear multiobjective optimization, and muchredHere, we simply formulate
a number of theoretical results that are basic, but es$eéat@ur subsequent algorithmic

construction.
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Thus considen smooth criterial;(Y) (Y : design vectorY € J#; 7 : working space,
a Hilbert space usually equal BV, but possibly a subspace bf also). In practice, these
functions or functionals are assumed to be of clé&sn some working open ball of the
design space?’. Throughout this report, unless specified otherwise, tiebgyN denotes
the dimension of the design-spag€ when it is finite, in which case it is assumed that
n <N, and the symbodk otherwise. Then the following holds :

Lemmal

LetY? be a Pareto-optimal point of the smooth critekigY) (1 <i < n < N), and define
the gradient—vectora,0 =03 (YO) in whichO denotes the gradient operator. There exists a
convex combination of the gradient-vectors that is equakto:

n n

;aiu?:o, a; >0 (Vi), ;aizl. (35)

Proof : The proof can be made by examining different cases accotditige rank of the
family made of the gradient-vectors. We refer to e.g. [8]details. ad

This result has led us to introduce and use throughout tt@fiolg very natural defini-
tion, although the terminology does not seem to be standard :

Definition 1 (Pareto-stationarity)
The smooth criterig (Y) (1 <i <n<N) are said to be Pareto-stationary at the design-point
YO iff there exists a convex combination of the gradient-ves;tf = 03 (Y°), that is equal

to zero:
n n

_;aiu?:o, a; >0 (Vi) _;aizl. (36)

Thus, in general, for smooth unconstrained criteria, Bastdtionarity is a necessary
condition for Pareto-optimality. Inversely, if the smoattiteria J (Y) (1 <i < n) are not
Pareto-stationary at a given design-poifif descent directions common to all criteria exist.
We now examine how such a direction can be identified. We Heevéotlowing :

Lemma 2
Let.# be a Hilbert space of finite or infinite dimensidpand{u; } (1 <i <n<N) a family
of n vectors inz”. Let% be the set of strict convex combinations of these vectors :

%—{wejf/w—iaiui;ai>0(Vi);iai—l} (37)

and?/ its closure (the convex hull of the family). Then, there ex@unique elemenb € %
of minimum norm, and :

VUEZ : (I,w) > (w,w) = ||w|? = Ce (38)

Proof : the convex hulZ is a closed and convex set, and this implies existence aqgieni
ness of the elememd of minimum norm in% .

Then, letu be an arbitrary element & ; setr = U— w so thatu = w+r. Since the
convex hullZ is convex,

Vec[0,1], wterc# (39)
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Sincew is the element 0% of minimum norm,||w+ &r|| > ||w||, which writes :
|w+er|? - [|w]|? = (w+er, w+er) — (w,w) = 2 (r,w) + €2(r,r) >0 (40)
and sincee can be arbitrarily small, this requires that :
(rw)=(U-w,w)>0 (41)

from which the result follows directly. ad
Combining Lemma 2 with Definition 1 yields the following :

Theorem 2

Let # be a Hilbert space of finite or infinite dimensidh Let J(Y) (L<i<n<N) be

n smooth functions of the vectat ¢ ¢, andY® a particular admissible design-point, at
which the gradient-vectors are denotéd= 0J(Y°), and

%—{WE%/W—‘iaiuio;ai>O(Vi);‘iai_l} (42)

Let w be the minimal-norm element of the convex Hid|, closure of?% . Then :

1. eitherw = 0, and the criterid; (Y) (1 < i < n) are Pareto-stationary it="Y°;
2. orw # 0 and—w is a descent direction common to all the criteria; additignd w €
% , the inner productu, w) is equal tq|oo||2 forallue % .

Proof : all the elements of this theorem are reformulations of previresults, except for the
statement concerning the inner prod(ictw) in the second case when additionadlye %
(and not simplyZ). To establish this last point, observe that under thesanastions, the
elementw is the solution to the following minimization problem :

n n

w=u= Zl aiw?, a = Argminj(u), j(u) = (u,u), 21 ai=1 (43)

since by hypothesis, none of the inequality constraimts; 0, is saturated. Consequently,
using the vectoo € R" as the finite-dimensional variable, the Lagrangian writes :

L(a,A) =j+A (iai—l> (44)

and the optimality conditions satisfied by the veaioare the following :

aL oL
-— = — = 4
30— 0 (), g3 =0 (45)
These equations imply that for all indices

dj B

oo +A=0 (46)

But, j(u) = (u,u) and foru= w= ¥, aju;, one has :

dj du

d_alzz(a_alau)zz(u?aw):_)\ :>(u?,w):—)\/2 (47)
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independently of. Now consider an arbitrary elememe % :

u=S wu’ (48)

wherep; > 0 (Vi) andy; pj = 1. Then:

n
(0, w) = 21 pi (W, w) = —A /2 (a constant- ||| (49)
i=
where the constant has been evaluated by lettingw. ad
In summary, one is led to identify the vector
n
0
w="Y ajy (50)
2

by solving the following quadratic-form constrained miration problem irR" :
2
(51)

subject to :
a; >0 (Vi), a=1 (52)
2

Note that in a finite-dimensional setting, and in a functlesace setting as well, the
above problem can be solved#, so long as the gradien{s®} (1 <i < n) and their inner
products{u := (u’,u?)} are known. Then, a call to a library procedure should be serffic

4 Combining cooperation with competition in a strategy for rmultiobjective
optimization

In this section, we collect the results of the previous twatises to develop a global strategy
for multiobjective optimization. The criteria under cotsiation, denoted (Y) (1 <i < n),
wheren > 2, are again smooth functions of the design ve¥toAt the initial design-point
YO, the condition of Pareto-stationarity is not satisfied. T,hee propose to develop the
optimization process in several stages described in thafivlg subsections.

4.1 Optional preliminary reformulation of criteria

In numerical experiments, it is preferable that the variouigria all be positive, and scaled
in a somewhat unified way. To achieve this, we propose to mdt#é definitions of the
criteria without altering the sense of the associated mgation problems.
For this purpose, let :
Pr=%(Y’.R) (53)
be a working ball in the design space about the initial depigint Y°.
In a first step, we propose to replace each critedjévi) by the following :

0
J(Y)=exp <ai M (3(Y) - JP)) (54)

where :
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— the superscript indicates an evaluation ¥t=Y?;
— 032 andHY denote the gradient-vector and the Hessian matrix,|gfti| can be com-

puted economically as;/ trace{(HiO)z] ;
—qaj is a dimensionless constant.

In this way, the new criteria are dimensionless, they vatii@same sense as the original
ones, and :

vi, $0Y0) =1, 03(v0) = £ (55)

provided the constants’s are chosen to satisfy :
I )

[Iehg G

In the above, the dimensionless constgiig given a value equal or close to the possibly-
dimensional measure &in the utilized system of units.

For a reason that will appear later, without altering theutagty of the criteria, we
would like them to be infinite wheffY || is infinite. For this, define the following function :

0 if x<0
P(x) = 1\ . (57)
Xexp| —— if x>0
X
This function isC* including at 0, andp(x) ~ x asx — 0. The new criterion
; Iy =Y Y°||
() =3(Y)+eao -1 (58)

in which & is some strictly-positive constant, is identical to thenfer one,J, inside the
working ball Zg, and grows at least likdY ||* outside. The match af (Y) with J(Y) and
Ji(Y) at the boundary of the working ball is infinitely smooth. Atilally :

Jim_30) = o0 (59)

In what follows, it is implicit that the original criteria e been replaced b{/J:i(Y)}
(1 <i <n)and the double superscripis omitted.

4.2 Cooperative-optimization phase : the Multiple-Gratli@escent AlgorithmNIGDA)

TheMGDArelies on the results of Theorem 2. TM&DA consists in iterating the following
sequence :

1. Compute the gradient- vectcm,% 0J; YO) and determine the minimum-norm element
w in the convex hulf . If w =0, stop.

2. Otherwise, determine the step-die&hich is, presumably optimally, the largest strictly-
positive real number for which all the functiorjgt) = J(Y° —tw) (1 <i < n) are
monotone-decreasing over the interi@h].

3. Resel?toY°—hw, and return to 1.
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In practice, the tesiv = 0 will be made with a tolerancd| (|| < tol). In addition, note
that the determination of the step-sizecan be realized by the adaptation of nearly all
standard one-dimensional search methods. This algoriimrbe repeated a finite number
of iterations if these iterations yield a design-point atehtthe Pareto-stationarity condition
is satisfied, or indefinitely, if this never occurs.

Since at each iteration of tMGDA, all the criteria diminish, we refer to this process as
acooperative-optimizatiophase.

4.3 Convergence of tidGDA

The abovaeMIGDA can stop after a finite number of iterations if a Pareto-statiy design-
point is reached. Otherwise, we have the following :

Theorem 3
If the sequence of iteratey"} of the MGDA is infinite, it admits a weakly convergent
subsequence. (Here, the working Hilbert spai€ds assumed to be reflexive.)

Proof : the following elements hold, in part by virtue of the refollation of the criteria :

— Since the sequence of values of any considered criterign{E&QY")}, is positive and
monotone-decreasing, it is bounded.

— SinceJ;(Y) is infinite whenevel]Y]|| is infinite, the sequence of design-vectdxs } is
itself bounded, and this implies the statement. a

Let Y* be the limit. We conjecture that the design-poffritis Pareto-stationary. In what
follows, YO is then reset t&y*.

4.4 Competitive-optimization phase : strategy of the grsigbayoff

From the initial cooperative optimization phase, one iitheat Pareto-stationary design-
pointY?, at which (36) holds for some coefficierfts;} (1 <i < n). The whole optimization
process can then be interrupted if the performance of thigmg®int is already considered
satisfactory. Otherwise, the process can be continueddoyrgpetitive optimizatiophase.
The competitive-optimization phase can be accomplishea Hash game based on an ap-
propriate split of variables.

In the case of two disciplines, the split may be guided by geesal properties of local
Hessian matrices (see Appendix A).

For cases of more than two disciplines the strategy is molieate. We propose to
define two criteria,Ja andJg and to apply the strategy of Section 1. In order to maintdin, a
best possible, the Pareto-stationarity condition, ondetan

n

Ja = Zl a;J; Js =Xk (60)

so that0Ja(Y?) = 0, and choose the indexappropriately. Of course, the choice of split
may be directed by the designer’s bias to improve one asiteparticularly. Otherwise,
we propose to choose the indkxo maximize the orthogonal projection of the gradient
O (YO) onto the subspace assigned to the virtual pldy¢o reducels. We have seen
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that this subspace is entirely defined by the diagonaliaatiothe reduced Hessian df.
Technically, for eack, one lets

u = 0%k (YO) = i Blw (61)

whereB? = (u, ') by orthogonality. Then one choosleto maximize, /SN _,.1(8°)2.

In proceeding in this way, we approximately maintain theeRaoptimality of the solu-
tion, while maximizing the potential payoff to be achievedlgin the subsequent competi-
tive optimization phase.

5 Conclusions

The multiobjective optimization of an aerodynamic criberconcurrently with one or more

criteria originating from other disciplines raises defeca@roblems to solve since the flow-
fields are very sensitive to parameter changes, such aglgartns in shape parameters,
particularly when the flow is transonic or supersonic andaios shocks.

A theoretical formulation has been proposed for situatiohthis type, permitting to
identify a suboptimal solution as a Nash-equilibrium siolutbetween virtual players in
charge of reducing two independent criteria. An orthogatedomposition of the design
space is made to assign the player in charge of the seconianjon a subspace of action,
or territory, in which the primary criterion has little sétnsty.

The method has been tested over a simplified testcase ofaaotural shape optimiza-
tion of a business jet wing combining drag reduction undircthnstraint in a transonic
cruise configuration with the reduction of an integral of sikess over the structure. In this
example, after a first phase of pure aerodynamic optimiaattee primary criterion (drag)
was modeled at convergence by an RBF neural network in oodgpproximate gradients
and Hessians necessary to the construction of the orthbgasis. This basis was then used
as the support of a dynamic Nash game in a novel formulatibe.riimerical experiments,
taken from B. Abou El Majd’s doctoral thesis, have clearlyndastrated the superiority of
concurrent optimizations realized using the orthogonabdgosition as a support, in terms
of asymptotic convergence stability, and achieved perémce as well.

In more general situations, we propose to conduct the nisdffginary optimization in
two phases:

1. A preliminary “cooperative-optimization” phase at eathation of which all criteria
improve until the Pareto set is reached by application optoposed Multiple-Gradient
Descent Algorithm (MGDA);

2. A subsequent “competitive-optimization” phase, in whicNash equilibrium is sought
after virtual players have been assigned supplementagpaabs as strategies; the split
should be defined according to a local eigenstructure asalfslessians and constraint
gradients in order to define the equilibrium by a smooth cwatiion process.
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A The two-discipline case revisited : Nash game from a Paretetationary
design-point (= 2)

In this section, we propose recommendations to construessh iJame to carry out the competitive-optimization
phase, after completion of the cooperative-optimizatibage, in the case of two disciplings=¢ 2).

In the report [7], a split of territory was defined from the lledge of a stationary point of one discipline,
the preponderant discipline. Since critical points of oiseigline are particular Pareto-stationary points, this
subsection is meant to generalize the results of the forepant.

For simplicity, we consider the case of two disciplines dfmy= 2). An initial Pareto-stationary design-
pointY? is known, and should be used to define a split of variableschasdocal eigensystems, and a Nash
equilibrium-point determined subsequently.

Here, the two criteria are denotdgl andJg, and aty = Y9, the following holds :

apn0R +0g0X =0 ap+asg=1 (62)

for somean € [0,1]. Therefore, three cases are possible :
1. Pareto-stationarity of type 333 = 0J3 = 0;
2. Pareto-stationarity of type 1I3J2 = 0 andDJg = 0 (or vice versa);
3. Pareto-stationarity of type 111138 + A 033 = 0 for A = 1284 > 0 since 0< az < 1.

The question is what to do next to reaching a design-pethof Pareto-stationarity of the criteria
(Ja, Jg)? To better understand the question, let us examine firsttibeeathree cases assuming both cri-
teria are locally convex.

Convex case :

1. Pareto-stationarity of type | : then, both criteria hamewtaneously achieved &t= Y local minimums
of their own. In general the optimization process is terigda

2. Pareto-stationarity of type Il : e.@.],&’ =0 andDJg =+ 0. ThenJa has achieved a local minimum, whereas
Jg is still reducible. The decision can be to interrupt the psscif the achieved design is acceptable, or
to continue it using the formulation of the former theory {4 Nash equilibrium is sought based on a
hierarchical split of variables in the orthogonal basis eatithe eigenvectors of matrb(g.

3. Pareto-stationarity of type IIIDJ2+)\ DJg =0 (A > 0). Here, Pareto-optimality has been achieved and
in the absence of an additional criterion, the optimizapoocess is terminated.

We now turn to the general case in which the criteria are reiragsd to be locally convex ¥t= Y©.

Non convex case In what follows, we discuss the different cases accordingatious assumptions that
can be made on the eigenvalues of the Hessian matigesdHg of the two criteria ay = YO.

1. Pareto-stationarity of type | :
Since both gradients are equal to zero, the principal terthérexpansion of the variations of the two
criteria caused by a perturbati@ of the design vectoy aboutY? are the quadratic terms associated
with the respective Hessian matrices, one of which, at léasiot positive-definite by assumption, and
perhaps both.
If HY is positive-definite andHg alone has some negative eigenvalubshas achieved a minimum
whereas]s is still reducible. Then we propose to terminate the opttin process, or to continue it
using the formulation of the former theory [7] : a Nash edmilim is sought with a hierarchical split of
variables based on the eigensystem of matgx
If both Hessian matriceblg and Hg have some negative eigenvalues, define the following famiif
linearly independent eigenvectors associated with thigemealues :

Fa={uL, Uz, .., up}  F={v1, V2, ..., g} (63)
Then:

— If the family %5 U %3 is linearly dependent, say

_;aiuifz Bjvj=0 (64)
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in which {ai}i=1,...pU{Bj}j=1....q # {0}, the vector
w : : B (65)
=) aiu= Y]
izi : jzl Y

is not equal to zero (by linear independence of the famill@ésand .#g separately), and it is a
descent direction for both criteria. We then propose to nzegip in that direction.
— Otherwise,SpZaNSpZg = {0}: then we propose to stop, or to determine the Nash equifibriu
point using.#p (resp.%g) as the strategy oA (resp.B).
2. Pareto-stationarity of type Il : sayJ? = 0 and0J3 # 0.

If the Hessian matri)HR is positive-definite, the criteriods has achieved a local minimum and this

setting has been analyzed in [7] : a Nash equilibrium is sbugth a hierarchical split based on the

structure of the eigenvectors bif.

If instead the matri)HE has some negative eigenvalues, let

Fa={u, uz, ..., up} (66)

be a family of associated eigenvectors. Then :
—if DJg is not orthogonal t&pZ, : a descent direction common Jdg andJg exists inSp%a: use it
to reduce both criteria.
- otherwise,IZIJg 1 SpZ%, : we propose to identify the Nash equilibrium usigg, as the strategy of
playerA and the remaining eigenvectors rfbf as the strategy of playd.
3. Pareto-stationarity of type IIZJ2 +A0JI3 =0 (A > 0).
Consider the direction defined by the vector :

0R 038
UaB = =-
[Ex{ ]

(67)

Along this direction, the two criteria vary in opposite waysd no rational decision can be made in the
absence of other criteria. Thus consider instead possibleiim the hyperplane orthogonal igg. For
this, consider reduced Hessian matrices :

HY =PagHPas  HY =PagHIPas (68)

where :
Pag = | — [uag] [uag]' - (69)

In this hyperplane, by orthogonality to the gradient-vestthe analysis is that of Pareto-stationary point
of type | in a subspace of dimensidh— 1.
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