Skip to main content
Log in

Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the problem of experimental design for linear ill-posed inverse problems. The minimization of the objective function in the classic A-optimal design is generalized to a Bayes risk minimization with a sparsity constraint. We present efficient algorithms for applications of such designs to large-scale problems. This is done by employing Krylov subspace methods for the solution of a subproblem required to obtain the experiment weights. The performance of the designs and algorithms is illustrated with a one-dimensional magnetotelluric example and an application to two-dimensional super-resolution reconstruction with MRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, A.C., Donev, A.N.: Optimum Experimental Designs. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  2. Bai, Z., Fahey, M., Golub, G.: Some large-scale matrix computation problems. J. Comput. Appl. Math. 74, 71–89 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, O., Laurent, E., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Bardow, A.: Optimal experimental design for ill-posed problems, the meter approach. Comput. Chem. Eng. 32(1–2), 115–124 (2008)

    Article  Google Scholar 

  5. Bauer, I., Bock, H.G., Körkel, S., Schlöder, J.P.: Numerical methods for optimum experimental design in DAE systems. J. Comput. Appl. Math. 120, 1–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Stat. Sci. 10, 237–304 (1995)

    Article  MathSciNet  Google Scholar 

  8. Chung, J., Haber, E., Nagy, J.: Numerical methods for coupled super-resolution. Inverse Probl. 22, 1261–1272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Curtis, A.: Optimal experimental design: Cross borehole tomographic example. Geophys. J. Int. 136, 205–215 (1999)

    Article  Google Scholar 

  10. Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  11. Fedorov, V.V., Hackl, P.: Model-Oriented Design of Experiments. Lecture Notes in Statistics. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  12. Figueiredo, M., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 586–597 (2007)

  13. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008)

    Article  MATH  Google Scholar 

  14. Gilles, L., Vogel, C.R., Bardsley, J.M.: Computational methods for a large-scale inverse problem arising in atmospheric optics. Inverse Probl. 18, 237–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Golub, G., Von Matt, U.: Tikhonov regularization for large scale problems. Technical Report SCCM 4-79 (1997)

  16. Haber, E.: Numerical Strategies for the Solution of Inverse Problems. PhD thesis, University of British Columbia (1997)

  17. Haber, E., Ascher, U., Oldenburg, D.: On optimization techniques for solving nonlinear inverse problems. Inverse Probl. 16, 1263–1280 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haber, E., Horesh, L., Tenorio, L.: Numerical methods for experimental design of large-scale linear ill-posed inverse problems. Inverse Probl. 24(5), 055012 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hanke, M., Hansen, P.C.: Regularization methods for large-scale problems. Surv. Math. Ind. 3, 253–315 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  21. Hansen, P.C., Nagy, J., O’Leary, D.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  22. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. J. Commun. Stat. Simul. 18, 1059–1076 (1990)

    Article  MathSciNet  Google Scholar 

  23. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  24. Lin, C.J., More, J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9, 1100–1127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maurer, H., Boerner, D., Curtis, A.: Design strategies for electromagnetic geophysical surveys. Inverse Probl. 16, 1097–1117 (2000)

    Article  MATH  Google Scholar 

  26. Nagy, J., Palmer, K.: Steepest descent, CG and iterative regularization of ill-posed problems. BIT Numer. Math. 43, 1003–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oldenburg, D.W.: One-dimensional inversion of natural source magnetotelluric measurements. Geophysics 44, 1218–1244 (1979)

    Article  Google Scholar 

  28. O‘Leary, D.P., Simmons, J.A.: A bidiagonalization-regularization procedure for large-scale regularization of ill-posed problems. SIAM J. Sci. Stat. Comput. 2, 474–489 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Orchard, J.: His Brain. Retrieved March 26, 2010, from The University of Waterloo website: http://www.cs.uwaterloo.ca/jorchard/mri/, 2005, April 27

  30. Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)

    MATH  Google Scholar 

  31. Tenorio, L., Andersson, F., de Hoop, M., Ma, P.: Data analysis tools for uncertainty quantification of inverse problems (Submitted)

  32. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  34. Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2001)

    Google Scholar 

  35. Whittall, K.P., Oldenburg, D.W.: Inversion of Magnetotelluric Data for a One Dimensional Conductivity. SEG Monograph, vol. 5 (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldad Haber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haber, E., Magnant, Z., Lucero, C. et al. Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems. Comput Optim Appl 52, 293–314 (2012). https://doi.org/10.1007/s10589-011-9404-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9404-4

Keywords

Navigation