
How good are extrapolated
bi-projection methods for linear
feasibility problems?

NIM Gould

May 2011

 Technical Report
RAL-TR-2011-009

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2011 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

RAL-TR-2011-0xx

How good are extrapolated

bi-projection methods for

linear feasibility problems?

Nicholas I. M. Gould1,2,3

ABSTRACT

We consider extrapolated projection methods for solving linear feasibility problems. Both

successive and sequential methods of a two-set projection scheme are examined. The best

algorithm in the class of algorithms that we considered was an extrapolated sequential

method. When this was compared to an interior point method using the CUTEr/Netlib

linear programming test problems it was found that the bi-projection method was fastest

(or equal fastest) for 31% of the cases, while the interior point code was fastest in 71% of

the cases. The interior-point method succeeded on all examples, but the best bi-projection

method considered here failed to solve 37% of the problems within reasonable CPU time

or iteration thresholds.

1 Computational Science and Engineering Department, Rutherford Appleton Laboratory,

Chilton, Oxfordshire, OX11 0QX, England, UK.

Email: nick.gould@stfc.ac.uk

2 Current reports available from

“http://www.numerical.rl.ac.uk/reports/reports.shtml”.

3 This work was supported by the EPSRC grant EP/E053351/1.

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxfordshire OX11 0QX

May 10, 2011

1 Introduction

This is a follow-up article to [7] in which (linear) convex feasibility problems of the form

find x ∈ C
def
= {x | Ax = b and xl ≤ x ≤ xu} (1.1)

were considered. Here A is m (≤ n) by n and, for simplicity, of full rank, and any of

the bounds xl and xu may be infinite. In [7] a number of successive and simultaneous

bi-projection methods are applied to (1.1) and compared on the well-known Netlib set of

diverse linear programming problems. While we had thought that projection methods, such

as those cited in [7] and elsewhere, provide an effective general-purpose way to satisfy (1.1),

our experiments show that, for the bi-projection methods we considered, this is not so. In

particular, the failure rate—effectively observed as numerical stagnation—of the methods

we considered on this test set was unacceptably high, particularly when compared with

other (non-projection) optimization approaches.

Recently Censor et al. [2] have challenged these conclusions. Most particularly, the

authors objected that [7] use “suboptimal” projection methods in the comparisons made.

Here we extend our experiments to report on the methods recommended in [2]. While these

new experiments support the view in [2] that the recommended methods are generally

better than those reported on in [7], we do not find that the experiments substantively

alter our overall conclusions with respect to the test-set considered.

In §2, we describe the projection methods considered, and in §3, we report on their

comparative performance on the Netlib test set. We draw further conclusions in §4.

2 Projection methods

For the problem (1.1) of interest to us, we view the feasibility problem as that of finding

a point in the intersection of the two sets

CA
def
= {x | Ax = b} and CB

def
= {x | xl ≤ x ≤ xu}.

The projection pA(x) of a point x into CA satisfies the linear system
(

I AT

A 0

)(

pA(x)

q(x)

)

=

(

x

b

)

,

while the projection into CB is trivially

pB(x) = mid(xl, x, xu).

Simple bi-projection methods for (1.1) apply pA and pB either one-at-a-time or simulta-

neously to improve an estimate xk, as we now describe; the cost of finding pA(x) usually

dominates.

We focus on this specific view of the feasiblity problem. Of course, there are many

possible ways to formulate the feasibility problem, such as the intersection of the sets

Ci = {x | aTi x = bi, x
l ≤ x ≤ xu}, i = 1, . . . , m, and each such view of the feasibility

problem leads to a different class of projection methods.

2

2.1 Successive bi-projection methods

A general class of successive bi-projection methods for (1.1) is given in Algorithm 2.1.

Algorithm 2.1: Successive bi-projection.

Given x0 ∈ CA, for k = 0, 1, . . . until convergence, set

xk+1 = (1− αk)xk + αkpA(pB(xk))

for some αk > 0.

In [7], the simple choice αk = 1 (henceforth referred to as A2.1(α = 1)) as well as the

locally-optimal choice (A2.1(α = opt)) in which α = αk minimizes ‖pB(x(α)) − x(α)‖2,

where x(α) = (1 − α)xk + αpA(pB(xk), were considered. The Extrapolated Alternating

Projection Method (EAPM) [1] championed in [2] recommends the alternative

αk = ρ

‖pB(xk))− xk‖
2
2

‖pA(pB(xk))− xk‖22
if xk /∈ CB or

1 otherwise,

where ρ ∈ (0, 2]. The latter choice has the strong advantage that its theoretical convergence

has been established [1, Cor.4.11].

2.2 Simultaneous bi-projection methods

An alternative general class of simultaneous bi-projection methods for (1.1) is given in

Algorithm 2.2.

Algorithm 2.2: Simultaneous bi-projection.

Given x0 and λ ∈ (0, 1), for k = 0, 1, . . . until convergence, set

xk+1 = (1− αk)xk + αk [λpA(xk) + (1− λ)pB(xk)]

for some αk > 0.

Typically λ = 1

2
. Both the simple choice αk = 1 (A2.2(α = 1)) and the locally-optimal

choice (A2.2(α = opt)), in which α = αk minimizes λ‖pA(x(α))−x(α)‖22+(1−λ)‖pB(x(α))−

3

x(α)‖22, where x(α) = (1−α)xk +α(λpA(xk) + (1−λ)pB(xk)), were considered in [7]. The

Extrapolated Parallel Projection Method (EPPM) [10], for which

αk = ρ

2
‖pA(xk)− xk‖

2 + ‖pB(xk)− xk‖
2

‖pA(x) + pB(xk)− 2xk‖2
if xk /∈ C or

1 otherwise,

where ρ ∈ (0, 2], is recommended as better in [2], and as before, convergence of this

variation is guaranteed [3, Prop.2.2, 10, Thm.1.2].

3 Numerical experience

We modified the GALAHAD [9] fortran 2003 package LCF, which we previously used to

obtain the results reported in [7], to include additionally the EAPM and EPPM methods

described in §2. We used the value ρ = 1.8 that appears to work best in the experiments

in [1], but note that we observed quantitatively similar results with other ρ including ρ = 1.

See [7, §4] for general details of our implementation.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 ω
 o

f b
es

t

Performance Profile: iterations − Successful Netlib/CUTEr LP problems

A2.1(α=1)
A2.1(α=opt)
EAPM
A2.2(α=1)
A2.2(α=opt)
EPPM

Figure 3.1: Performance profile: iteration counts for the 77 problems which are success-

fully solved by all variants under consideration.

As before, we evaluate the competing methods by trying to find a feasible point for

each of the sets C given by the complete set of 118 feasible linear programming Netlib and

other linear programming test problems as distributed with CUTEr [8]—slack variables

are added as necessary as described in [7] to convert the problems into the form (1.1). Our

results are summarised in the iteration/projection and CPU performance profiles [6] given

in Figures 3.1 and 3.2, extending those in [48, Figs.1 & 3] to include results for the EAPM

4

and EPPM strategies. We removed the inferior α = 1 results from the CPU comparisons

to avoid clutter, but instead included the times taken by the GALAHAD interior-point

package LSQP that can also be used to find the projection of x0 onto C. The complete

(additional) results are presented in Tables A.1 and A.2 in Appendix A.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

fr
ac

tio
n

of
 p

ro
bl

em
s

fo
r

w
hi

ch
 s

ol
ve

r
w

ith
in

 ω
 o

f b
es

t
Performance Profile: CPU time − Netlib/CUTEr LP problems

A2.1(α=opt)
EAPM
A2.2(α=opt)
EPPM
LSQP

Figure 3.2: Performance profile, including LSQP: CPU time for the 118 problems under

consideration.

These figures and tables suggest the following:

1. Figure 3.1 confirms that the authors of [2] are correct in saying that EAPM and

EPPM are better than those discussed in [7]. Indeed since the best bi-projection

methods tested in [7] are heuristic, whereas EAPM and EPPM have a convincing

convergence theory, this is a satisfactory outcome.

2. The hierarchy of success is as one might predict in that the sequential methods

generally beat the simultaneous ones. EAPM certainly beats its nearest competitor

A2.1(α = opt), but not overwhelmingly so. But certainly in some cases, EAPM

takes very few iterations.

3. The reliability does not seem to improve with the extrapolation methods. When these

methods work, they generally do better than their competitors. However, there is

a significant failure rate (44 cases out 118 problems tested for EAPM and 43 case

for EPPM) either because a CPU limit (half an hour) or iteration limit (1000000

projections) is reached. Precisely why this should be is unclear, but [2] attribute

it to the examples in the Netlib set generally not having “full-dimensional” feasible

sets. Certainly, the observed convergence prior to these failures is extremely slow.

5

4. It is of course difficult to say whether better variants of EAPM/EPPM will be found

in the future, but to date, on problems of this size from this diverse source, other

alternatives (such as those based on interior-point methods) appear from Figures 3.2

to be both more reliable and considerably better on the CUTEr/Netlib test set.

Since the authors of [2] base many of their early conclusions [2, §2.1] on randomized

problems, we took their random class of examples, and repeated their experiments as best

we could—we didn’t have their pseudo-random number generator, but used that from

GALAHAD instead, and we had to be content with systems of order 700 by 300 since

the factorization code we used was (we discovered) poorly designed for dense problems.

We observed profiles of the form given in [2, Fig.3], with EAPM requiring on average

5 iterations, A2.1(α = opt) 8 iterations and A2.2(α = opt) 75 iterations to obtain full

machine accuracy. So while we certainly accept that our earlier implemented methods

are “suboptimal”, the authors’ suggestion [2, §2.1] that they are not representative of the

best methods is, we would argue, debatable, since the differences are relatively minor.

Moreover, as the average counts on these random examples are considerably lower than

most of the real-life examples from the Netlib set, this suggests that random examples may

not reflect practical experience in many cases.

4 Comments and conclusions

We already mentioned in our conclusions to [7] that there are problems in important

application areas for which projection methods really work well. Moreover, the authors

of [2] stress that the ability to solve larger problems than those in the Netlib set is a

primary advantage of projection methods. Our analysis of the projection methods EAPM

and EPPM suggested by the authors of [2] indicates that these methods yield better

performance than the bi-projection methods studied in [7]. Nonetheless, Figures 3.2 shows

that for the Netlib collection of test problems, an interior point method, on average,

performs better than either EAPM or EPPM. More precisely, the interior point code was

fastest in 71% of the cases.

Of course, other projection methods may well be better than the ones considered here.

For example, when the feasible set is viewed as the intersection of sets of the form Ci,

then the large LPs known as NUG20 and NUG30 were solved more efficiently by projection

techniques in [5] than by either Simplex or interior point-type methods. In [2], for example,

the ISRAEL problem from the Netlib set can be solved very efficiently by splitting Ax = b

into blocks and applying multiple projections to each block successively or in sequence.

We would welcome the development of generally applicable software to implement such

ideas. Preliminary work along these lines is given in [4].

6

Acknowledgement

The authors is grateful to Bill Hager for encouraging him to publish these follow-up results

to [7] and for his helpful suggestions on the text herein.

References

[1] H. H. Bauschke, P. L. Combettes, and S. G. Kruk. Extrapolation algorithm for affine-

convex feasibility problems. Numerical Algorithms, 41(3):239–274, 2006.

[2] Y. Censor, W. Chen, P. L. Combettes, R. Davidi, and G. T. Herman. On the effec-

tiveness of projection methods for convex feasibility problems with linear inequality

constraints. Computational Optimization and Applications, (to appear), 2011.

[3] P. L. Combettes. Hilbertian convex feasibility problem: Convergence of projection

methods. Appllied Mathematics, 35(3):311–330, 1997.

[4] T. A. Davis and W. W. Hager. Dual multilevel optimization. Mathematical Program-

ming, 112(2):403–425, 2008.

[5] T. A. Davis and W. W. Hager. A sparse proximal implementation of the lp dual active

set algorithm. Mathematical Programming, 112(2):275–301, 2008.

[6] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91(2):201–213, 2002.

[7] N. I. M. Gould. How good are projection methods for convex feasibility problems?

Computational Optimization and Applications, 40(1):1–12, 2008.

[8] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr (and SifDec), a Constrained and

Unconstrained Testing Environment, revisited. ACM Transactions on Mathematical

Software, 29(4):373–394, 2003.

[9] N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD—a library of thread-safe

fortran 90 packages for large-scale nonlinear optimization. ACM Transactions on

Mathematical Software, 29(4):353–372, 2003.

[10] G. Pierra. Decomposition through formalization in a product space. Mathematical

Programming, 28(1):96–115, 1984.

7

Appendix A

For reference, we give details of the performance of the authors improved variants EAPM

and EEPM tested on the same (complete) set of Netlib and CUTEr linear programming

test sets used in [7]; these should be compared with [7, online Appendix A]. The columns

marked n and m give the numbers of variables and general linear constraints, status gives

the exit status (0 for success, −10 when the iteration limit is exceeded and −11 when the

CPU time limit is reached), and error gives the value of max(‖pA(x)− x‖2, ‖pB(x)− x‖2)

achieved on termination. A −1 in the columns recording the number of iterations required

to achieve the indicated error simply indicates that this accuracy was not achieved. As

before, these additional experiments were performed on a single processor of a 3.06 GHz

Dell Precision 650 Workstation. The codes are simply those used to obtain our previous

results with additional input options to request EAPM and EEPM. They were compiled

using full optimization with the Intel ifort compiler, and the computation was performed

in double precision.

Table A.1: Complete results for EAPM

iterations until error <

name n m status error 0.1 0.01 0.001 0.0001 0.00001 CPU time

25FV47 1571 821 0 1.0E-05 22425 50171 77993 105859 133725 173.2

80BAU3B 9799 2262 0 9.9E-06 642 715 949 1184 1419 5.9

ADLITTLE 97 56 0 9.9E-06 30 42 125 213 301 0.0

AFIRO 32 27 0 7.1E-15 11 12 13 13 13 0.0

AGG2 302 516 -10 3.6E-01 -1 -1 -1 -1 1000001 701.8

AGG3 302 516 -10 1.7E-01 -1 -1 -1 -1 1000001 689.4

AGG 163 488 -10 1.3E+02 -1 -1 -1 -1 1000001 366.4

BANDM 472 305 0 1.0E-05 14722 45130 95403 170832 246262 61.4

BCDOUT 5940 5414 -11 1.6E+01 -1 -1 -1 -1 28963 1800.0

BEACONFD 262 173 0 3.6E-06 47 48 51 54 56 0.0

BLEND 83 74 0 1.0E-05 3878 7693 11508 15322 19137 1.4

BNL1 1175 643 -10 1.9E-01 -1 -1 -1 -1 1000001 627.0

BNL2 3489 2324 -11 1.7E-01 -1 -1 -1 -1 406917 1800.0

BOEING1 384 351 -10 8.6E-01 -1 -1 -1 -1 1000001 345.3

BOEING2 143 166 -10 1.1E-02 55078 -1 -1 -1 1000001 142.4

BORE3D 315 233 -10 6.9E-01 -1 -1 -1 -1 1000001 192.7

BRANDY 249 220 0 1.0E-05 30379 50611 71348 92091 112833 20.7

CAPRI 353 271 -10 1.6E-02 583824 -1 -1 -1 1000001 314.6

CYCLE 2857 1903 -11 5.0E+00 -1 -1 -1 -1 338222 1800.0

CZPROB 3523 929 -10 7.6E-01 -1 -1 -1 -1 1000001 1192.1

D2Q06C 5167 2171 -11 2.3E+01 -1 -1 -1 -1 120074 1800.0

D6CUBE 6184 415 0 7.0E-06 13 20 25 28 32 0.0

DEGEN2 534 444 -10 1.5E+20 -1 -1 -1 -1 1000001 608.7

DEGEN3 1818 1503 0 1.0E-05 41 59 293 2849 9399 27.9

DEGENLPA 20 15 -10 1.4E-05 1 1 1 1 1000001 11.2

DEGENLPB 20 15 -10 1.4E-05 1 1 1 1 1000001 11.2

DFL001 12230 6071 0 1.0E-05 510 879 1252 1626 1999 366.6

E226 282 223 -10 6.2E-05 26302 55736 101868 844064 1000001 202.6

ETAMACRO 688 400 -10 9.4E-02 905852 -1 -1 -1 1000001 569.0

FFFFF800 854 524 -10 1.4E+00 -1 -1 -1 -1 1000001 664.4

FINNIS 614 497 0 1.0E-05 34658 72280 112082 152170 192224 59.3

FIT1D 1026 24 -10 5.2E-01 -1 -1 -1 -1 1000001 492.3

FIT1P 1677 627 -10 1.0E-02 12 -1 -1 -1 1000001 1240.5

FIT2D 10500 25 0 1.0E-05 27814 47774 67730 87684 107638 541.7

FIT2P 13525 3000 -11 1.1E-02 184 -1 -1 -1 171100 1800.0

FORPLAN 421 161 -10 5.5E-01 -1 -1 -1 -1 1000001 233.8

8

Table A.1: Complete results for EAPM (continued)

iterations until error <

name n m status error 0.1 0.01 0.001 0.0001 0.00001 CPU time

GANGES 1681 1309 0 1.0E-05 769 960 2704 9078 15446 13.7

GFRD-PNC 1092 616 -10 8.6E+00 -1 -1 -1 -1 1000001 289.0

GOFFIN 51 50 0 0.0E+00 1 1 1 1 1 0.0

GREENBEA 5405 2392 -11 6.2E-02 322621 -1 -1 -1 358103 1800.0

GREENBEB 5405 2392 -11 5.9E-01 -1 -1 -1 -1 347878 1800.0

GROW15 645 300 0 0.0E+00 1 1 1 1 1 0.0

GROW22 946 440 0 0.0E+00 1 1 1 1 1 0.0

GROW7 301 140 0 0.0E+00 1 1 1 1 1 0.0

ISRAEL 142 174 -10 2.4E+01 -1 -1 -1 -1 1000001 210.1

KB2 41 43 0 1.0E-05 18133 66837 115008 163342 211691 6.7

LINSPANH 97 33 0 9.6E-06 73 79 89 93 106 0.0

LOTFI 308 153 0 1.0E-05 47411 78963 110514 142066 173617 19.5

MAKELA4 21 40 0 0.0E+00 1 1 1 1 1 0.0

MAROS-R7 9408 3136 0 1.5E-11 11 11 11 11 11 0.6

MAROS 1443 846 -10 2.3E+01 -1 -1 -1 -1 1000001 1604.8

MODSZK1 1620 687 0 7.1E-06 21 23 26 28 30 0.0

MPSBCD03 5940 5414 -11 5.8E+02 -1 -1 -1 -1 37228 1800.0

NESM 2923 662 0 1.0E-05 1380 3033 4786 6545 8305 13.0

OET1 3 1002 0 3.1E-15 2 2 2 2 2 0.0

OET3 4 1002 0 5.6E-16 2 2 2 2 2 0.0

PEROLD 1376 625 -10 2.7E+01 -1 -1 -1 -1 1000001 1269.4

PILOT4 1000 410 -10 4.9E-01 -1 -1 -1 -1 1000001 1006.6

PILOT87 4883 2030 -11 2.6E+00 -1 -1 -1 -1 30601 1800.0

PILOT-JA 1988 940 -11 4.6E+00 -1 -1 -1 -1 205118 1800.0

PILOTNOV 2172 975 -11 1.2E+00 -1 -1 -1 -1 587830 1800.0

PILOT 3652 1441 -11 1.5E+00 -1 -1 -1 -1 73010 1800.0

PILOT-WE 2789 722 -10 6.3E+00 -1 -1 -1 -1 1000001 1304.7

PT 2 501 0 2.2E-16 1 2 2 2 2 0.0

QAP12 8856 3192 0 8.7E-16 1 1 1 1 1 3.3

QAP15 22275 6330 0 1.3E-15 1 1 1 1 1 20.3

QAP8 1632 912 0 2.8E-15 1 1 1 1 1 0.1

QPBD OUT 263 211 -10 6.4E-05 26174 55275 105025 849423 1000001 192.1

READING2 6003 4000 0 4.1E-14 3 4 4 4 4 0.0

RECIPELP 180 91 0 1.0E-05 14077 51823 124853 197920 271020 29.2

S277-280 4 4 0 6.7E-16 2 2 2 2 2 0.0

SC105 103 105 0 1.2E-14 3 3 3 3 3 0.0

SC205 203 205 0 2.2E-16 4 8 8 8 8 0.0

SC50A 48 50 0 4.5E-14 3 4 4 4 4 0.0

SC50B 48 50 0 4.5E-12 5 6 6 6 6 0.0

SCAGR25 500 471 0 1.0E-05 6691 10668 14644 18620 22595 4.4

SCAGR7 140 129 0 9.9E-06 445 633 820 1007 1194 0.0

SCFXM1 457 330 0 1.0E-05 15021 30919 46937 62957 78975 19.8

SCFXM2 914 660 -10 9.1E-03 695704 988566 -1 -1 1000001 496.5

SCFXM3 1371 990 -10 9.3E-03 696911 990822 -1 -1 1000001 751.4

SCORPION 358 388 -10 1.6E+25 -1 -1 -1 -1 1000001 286.5

SCRS8 1169 490 -10 2.4E-03 3909 508599 -1 -1 1000001 329.0

SCSD1 760 77 0 2.4E-16 1 2 2 2 2 0.0

SCSD6 1350 147 0 2.9E-15 2 2 2 2 2 0.0

SCSD8 2750 397 0 1.4E-14 2 2 2 2 2 0.0

SCTAP1 480 300 0 1.0E-05 747 4463 11130 17927 24723 4.4

SCTAP2 1880 1090 0 1.0E-05 353 1202 2158 3491 4846 3.3

SCTAP3 2480 1480 0 1.0E-05 484 1574 2899 4272 5665 5.3

SEBA 1028 515 -10 3.4E-03 562938 860780 -1 -1 1000001 447.2

SHARE1B 225 117 -10 5.1E-01 -1 -1 -1 -1 1000001 92.3

SHARE2B 79 96 0 1.0E-05 5477 17872 31068 44263 57458 3.8

SHELL 1775 536 0 9.9E-06 388 484 580 676 772 0.3

SHIP04L 2118 402 0 1.0E-05 5256 28325 51407 74489 97571 40.3

SHIP04S 1458 402 0 1.0E-05 5810 29140 52476 75814 99151 31.1

SHIP08L 4283 778 0 1.0E-05 26 31 36 45 84 0.0

SHIP08S 2387 778 0 9.7E-06 31 35 40 57 81 0.0

9

Table A.1: Complete results for EAPM (continued)

iterations until error <

name n m status error 0.1 0.01 0.001 0.0001 0.00001 CPU time

SHIP12L 5427 1151 0 1.0E-05 6170 12634 19319 26084 32850 35.8

SHIP12S 2763 1151 0 1.0E-05 6180 25487 88570 151654 214738 146.9

SIERRA 2036 1227 -10 7.9E+20 -1 -1 -1 -1 1000001 1205.0

SIPOW1M 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW1 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW2M 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW2 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW3 4 2000 0 8.9E-15 2 3 3 3 3 0.0

SIPOW4 4 2000 0 2.2E-14 2 3 3 3 3 0.0

SSEBLIN 194 72 0 8.7E-06 68 79 91 102 114 0.0

STAIR 467 356 0 1.0E-05 852 1700 2554 3408 4262 1.5

STANDATA 1075 359 0 1.0E-05 57692 239178 420826 604734 788646 199.3

STANDGUB 1184 361 0 1.0E-05 56680 238698 420852 605292 789734 207.0

STANDMPS 1075 467 0 1.0E-05 36186 85836 171500 257442 343388 109.3

STOCFOR1 111 117 0 8.7E-06 30 42 54 66 82 0.0

STOCFOR2 2031 2157 0 1.0E-05 147 1313 4103 6893 9683 11.8

STOCFOR3 15695 16675 0 1.0E-05 1137 2227 4239 7045 9850 102.1

TESTDECK 14 15 0 8.9E-16 2 2 2 2 2 0.0

TFI2 3 101 0 4.4E-15 2 3 3 3 3 0.0

TRUSS 8806 1000 0 5.7E-13 2 2 2 2 2 0.0

TUFF 587 333 -10 3.2E+00 -1 -1 -1 -1 1000001 1251.4

VTP-BASE 203 198 -10 1.2E+01 -1 -1 -1 -1 1000001 197.2

WOOD1P 2594 244 0 1.0E-05 2 619 31753 68181 104609 616.8

WOODW 8405 1098 0 1.0E-05 45 107 5032 12760 25314 65.0

Table A.2: Complete results for EEPM

iterations until error <

name n m status error 0.1 0.01 0.001 0.0001 0.00001 CPU time

25FV47 1571 821 0 1.0E-05 33873 52247 70623 88999 107375 47.8

80BAU3B 9799 2262 0 9.9E-06 2805 3380 3524 3668 3812 5.9

ADLITTLE 97 56 0 9.9E-06 842 1098 1356 1612 1870 0.0

AFIRO 32 27 0 9.6E-06 40 62 83 105 127 0.0

AGG2 302 516 -10 2.8E-01 -1 -1 -1 -1 1000001 281.3

AGG3 302 516 -10 3.7E-02 911277 -1 -1 -1 1000001 282.1

AGG 163 488 -10 1.2E+03 -1 -1 -1 -1 1000001 185.0

BANDM 472 305 0 1.0E-05 37114 88888 140970 193052 245134 25.8

BCDOUT 5940 5414 -11 1.6E+01 -1 -1 -1 -1 66646 1800.0

BEACONFD 262 173 0 9.3E-06 100 122 144 166 188 0.0

BLEND 83 74 0 1.0E-05 5481 8153 10825 13499 16171 0.4

BNL1 1175 643 -10 2.1E+00 -1 -1 -1 -1 1000001 241.9

BNL2 3489 2324 -10 4.9E-01 -1 -1 -1 -1 1000001 917.9

BOEING1 384 351 -10 7.2E+00 -1 -1 -1 -1 1000001 144.4

BOEING2 143 166 -10 1.5E-01 97236 -1 -1 -1 1000001 56.1

BORE3D 315 233 -10 2.2E+01 -1 -1 -1 -1 1000001 100.3

BRANDY 249 220 0 1.0E-05 40025 54667 69309 83949 98591 7.5

CAPRI 353 271 -10 1.1E+00 -1 -1 -1 -1 1000001 167.0

CYCLE 2857 1903 -11 1.0E+01 -1 -1 -1 -1 729014 1800.0

CZPROB 3523 929 -10 2.2E+00 -1 -1 -1 -1 1000001 565.9

D2Q06C 5167 2171 -11 2.4E+00 -1 -1 -1 -1 247089 1800.0

D6CUBE 6184 415 0 9.6E-06 42 55 76 98 120 0.2

DEGEN2 534 444 0 9.3E-06 75 97 119 141 164 0.0

DEGEN3 1818 1503 0 9.8E-06 91 113 135 158 183 0.7

DEGENLPA 20 15 -10 2.2E-04 33 53 75 -1 1000001 18.3

DEGENLPB 20 15 -10 2.2E-04 33 53 75 -1 1000001 17.7

DFL001 12230 6071 0 1.0E-05 493 725 957 1189 1421 142.3

E226 282 223 -10 4.1E-04 64160 175798 723642 -1 1000001 102.4

ETAMACRO 688 400 -10 6.5E+00 -1 -1 -1 -1 1000001 347.8

FFFFF800 854 524 -10 9.6E+00 -1 -1 -1 -1 1000001 409.9

10

Table A.2: Complete results EEPM (continued)

iterations until error <

name n m status error 0.1 0.01 0.001 0.0001 0.00001 CPU time

FINNIS 614 497 0 1.0E-05 254381 412323 558387 668308 696478 99.9

FIT1D 1026 24 -10 5.2E+00 -1 -1 -1 -1 1000001 235.1

FIT1P 1677 627 -10 5.7E-02 1102 -1 -1 -1 1000001 696.6

FIT2D 10500 25 0 1.0E-05 53323 67687 82051 96415 110781 249.2

FIT2P 13525 3000 -11 3.6E-02 1260 -1 -1 -1 362659 1800.0

FORPLAN 421 161 -10 7.4E-01 -1 -1 -1 -1 1000001 115.7

GANGES 1681 1309 0 1.0E-05 2239 2870 4646 6432 8216 4.2

GFRD-PNC 1092 616 -10 7.5E+01 -1 -1 -1 -1 1000001 113.9

GOFFIN 51 50 0 0.0E+00 1 1 1 1 1 0.0

GREENBEA 5405 2392 -11 1.0E-02 516325 772125 -1 -1 777032 1800.0

GREENBEB 5405 2392 -11 1.2E+00 -1 -1 -1 -1 733355 1800.0

GROW15 645 300 0 9.9E-06 29 51 73 95 116 0.0

GROW22 946 440 0 9.4E-06 30 47 69 91 113 0.0

GROW7 301 140 0 9.8E-06 33 55 77 98 120 0.0

ISRAEL 142 174 -10 2.2E+02 -1 -1 -1 -1 1000001 183.2

KB2 41 43 0 1.0E-05 33765 67219 100675 134131 167587 4.2

LINSPANH 97 33 0 9.6E-06 83 98 119 141 163 0.0

LOTFI 308 153 0 1.0E-05 58774 81006 103240 125472 147704 9.0

MAKELA4 21 40 0 0.0E+00 1 1 1 1 1 0.0

MAROS-R7 9408 3136 0 9.7E-06 116 138 159 181 203 6.3

MAROS 1443 846 -10 2.9E+02 -1 -1 -1 -1 1000001 785.8

MODSZK1 1620 687 0 1.0E-05 109 131 153 175 196 0.0

MPSBCD03 5940 5414 -11 3.1E+02 -1 -1 -1 -1 72513 1800.0

NESM 2923 662 0 1.0E-05 137310 176354 227116 291220 356948 321.7

OET1 3 1002 0 9.9E-06 45 67 89 111 132 0.0

OET3 4 1002 0 9.4E-06 44 65 87 109 131 0.0

PEROLD 1376 625 -10 3.3E+02 -1 -1 -1 -1 1000001 663.0

PILOT4 1000 410 -10 2.0E+00 -1 -1 -1 -1 1000001 439.4

PILOT87 4883 2030 -11 1.1E+01 -1 -1 -1 -1 59040 1800.0

PILOT-JA 1988 940 -11 1.2E+01 -1 -1 -1 -1 384324 1800.0

PILOTNOV 2172 975 -10 4.0E+00 -1 -1 -1 -1 1000001 1539.2

PILOT 3652 1441 -11 4.1E+00 -1 -1 -1 -1 145775 1800.0

PILOT-WE 2789 722 -10 2.0E+01 -1 -1 -1 -1 1000001 684.0

PT 2 501 0 9.9E-06 31 53 75 97 118 0.0

QAP12 8856 3192 0 9.8E-06 51 73 95 116 138 22.5

QAP15 22275 6330 0 9.6E-06 56 78 99 121 143 126.5

QAP8 1632 912 0 1.0E-05 44 66 88 110 131 0.8

QPBD OUT 263 211 -10 6.1E-04 51286 175544 822366 -1 1000001 96.5

READING2 6003 4000 0 1.0E-05 53 141 1363 3543 5723 3.6

RECIPELP 180 91 0 1.0E-05 72459 223959 411043 602947 795035 105.8

S277-280 4 4 0 9.3E-06 34 56 78 100 122 0.0

SC105 103 105 0 9.1E-06 28 50 72 94 116 0.0

SC205 203 205 0 9.5E-06 39 60 82 104 126 0.0

SC50A 48 50 0 9.6E-06 35 57 78 100 122 0.0

SC50B 48 50 0 9.5E-06 32 49 71 93 115 0.0

SCAGR25 500 471 0 1.0E-05 5541 7615 9691 11765 13841 1.3

SCAGR7 140 129 0 9.8E-06 607 799 991 1183 1377 0.0

SCFXM1 457 330 0 1.0E-05 181043 266701 352359 438017 523675 62.7

SCFXM2 914 660 -10 2.0E-03 648749 855421 -1 -1 1000001 256.5

SCFXM3 1371 990 -10 2.9E-03 680703 887719 -1 -1 1000001 397.2

SCORPION 358 388 0 9.8E-06 49 71 93 114 136 0.0

SCRS8 1169 490 -10 1.4E-02 522104 -1 -1 -1 1000001 155.2

SCSD1 760 77 0 9.9E-06 15 37 59 81 102 0.0

SCSD6 1350 147 0 9.9E-06 30 52 74 96 117 0.0

SCSD8 2750 397 0 9.9E-06 56 78 100 122 143 0.0

SCTAP1 480 300 0 1.0E-05 12168 18042 23926 29810 35694 3.2

SCTAP2 1880 1090 0 1.0E-05 12200 17632 23068 28508 33946 12.8

SCTAP3 2480 1480 0 1.0E-05 12126 17528 22938 28348 33758 16.8

SEBA 1028 515 -10 3.4E+00 -1 -1 -1 -1 1000001 166.6

SHARE1B 225 117 -10 4.3E+00 -1 -1 -1 -1 1000001 51.3

11

Table A.2: Complete results EEPM (continued)

iterations until error <

name n m status error 0.1 0.01 0.001 0.0001 0.00001 CPU time

SHARE2B 79 96 0 1.0E-05 34048 65612 97176 128740 160302 6.3

SHELL 1775 536 -10 2.1E+22 -1 -1 -1 -1 1000001 426.2

SHIP04L 2118 402 0 1.0E-05 14693 30743 46793 62843 78893 15.5

SHIP04S 1458 402 0 1.0E-05 14569 30839 47117 63395 79673 11.2

SHIP08L 4283 778 0 1.0E-05 2443 6233 10029 13825 17621 7.4

SHIP08S 2387 778 0 1.0E-05 2479 6227 10145 14061 17979 4.2

SHIP12L 5427 1151 0 1.0E-05 7819 12583 17351 22117 26883 14.6

SHIP12S 2763 1151 0 1.0E-05 8043 12953 17865 22777 27689 7.8

SIERRA 2036 1227 -10 2.2E+01 -1 -1 -1 -1 1000001 565.0

SIPOW1M 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW1 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW2M 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW2 2 2000 0 0.0E+00 1 1 1 1 1 0.0

SIPOW3 4 2000 0 9.3E-06 27 41 63 85 107 0.0

SIPOW4 4 2000 0 9.3E-06 28 42 64 86 108 0.0

SSEBLIN 194 72 0 9.8E-06 355 429 503 577 651 0.0

STAIR 467 356 0 9.9E-06 1601 2263 2923 3583 4245 1.1

STANDATA 1075 359 0 1.0E-05 405430 534472 663704 793010 922314 113.9

STANDGUB 1184 361 0 1.0E-05 405440 534482 663720 793024 922328 116.8

STANDMPS 1075 467 0 1.0E-05 170843 231489 292135 352781 413427 61.0

STOCFOR1 111 117 0 9.5E-06 73 86 108 130 152 0.0

STOCFOR2 2031 2157 0 9.9E-06 287 449 609 771 931 0.6

STOCFOR3 15695 16675 0 1.0E-05 2209 3091 3973 4855 5737 48.9

TESTDECK 14 15 0 9.7E-06 35 57 79 100 122 0.0

TFI2 3 101 0 9.6E-06 31 53 74 96 118 0.0

TRUSS 8806 1000 0 9.4E-06 89 111 133 155 177 0.2

TUFF 587 333 -10 1.2E+01 -1 -1 -1 -1 1000001 250.4

VTP-BASE 203 198 -10 3.9E+01 -1 -1 -1 -1 1000001 76.7

WOOD1P 2594 244 0 1.0E-05 72 14942 40796 66650 92502 265.9

WOODW 8405 1098 0 1.0E-05 4520 11642 20802 30168 39536 56.9

12

	RAL-TR-2011-009-cover.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner_2011.pdf
	RALTR cover&inner.pdf
	RALTR cover&inner
	DLTR-2007-004.pdf
	DLTR inner cover

	RALTR inner cover.pdf

	RALTR inner cover

	RALTR inner cover

	RALTR inner cover

	RAL-TR-2011-009-report

