Skip to main content
Log in

A preconditioning technique for Schur complement systems arising in stochastic optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Deterministic sample average approximations of stochastic programming problems with recourse are suitable for a scenario-based parallelization. In this paper the parallelization is obtained by using an interior-point method and a Schur complement mechanism for the interior-point linear systems. However, the direct linear solves involving the dense Schur complement matrix are expensive, and adversely affect the scalability of this approach. We address this issue by proposing a stochastic preconditioner for the Schur complement matrix and by using Krylov iterative methods for the solution of the dense linear systems. The stochastic preconditioner is built based on a subset of existing scenarios and can be assembled and factorized on a separate process before the computation of the Schur complement matrix finishes on the remaining processes. The expensive factorization of the Schur complement is removed from the parallel execution flow and the scaling of the optimization solver is considerably improved with this approach. The spectral analysis indicates an exponentially fast convergence in probability to 1 of the eigenvalues of the preconditioned matrix with the number of scenarios incorporated in the preconditioner. Numerical experiments performed on the relaxation of a unit commitment problem show good performance, in terms of both the accuracy of the solution and the execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior-point methods for linear and quadratic optimization. Optim. Methods Softw. 11(1–4), 275–302 (1999)

    Article  MathSciNet  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28(2), 149–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birge, J.R.: Current trends in stochastic programming computation and applications. Tech. rep., Department of Industrial and Operations Engineering, University of Michigan, Ann Harbour, Michigan (1995)

  5. Birge, J.R., Holmes, D.F.: Efficient solution of two stage stochastic linear programs using interior point methods. Comput. Optim. Appl. 1, 245–276 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  7. Birge, J.R., Qi, L.: Computing block-angular Karmarkar projections with applications to stochastic programming. Manag. Sci. 34(12), 1472–1479 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Birge, J.R., Chen, X., Qi, L.: A stochastic Newton method for stochastic quadratic programs with recourse. Tech. rep., Applied Mathematics Preprint AM94/9, School of Mathematics, The University of New South Wales (1995)

  9. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  10. Bunch, J.R., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear systems. Math. Comput. 31(137), 163–179 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8(4), 639–655 (1971)

    Article  MathSciNet  Google Scholar 

  12. Cafieri, S., D’Apuzzo, M., Marino, M., Mucherino, A., Toraldo, G.: Interior-point solver for large-scale quadratic programming problems with bound constraints. J. Optim. Theory Appl. 129, 55–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Castro, J.: A specialized interior-point algorithm for multicommodity network flows. SIAM J. Optim. 10(3), 852–877 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantinescu, E.M., Zavala, V.M., Rocklin, M., Lee, S., Anitescu, M.: A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Trans. Power Syst. 26(1), 431–441 (2011)

    Article  Google Scholar 

  15. Czyzyk, J., Mehrotra, S., Wright, S.J.: PCx user guide. Tech. Rep. OTC 96/01, Optimization Technology Center, Argonne National Laboratory and Northwestern University (1996)

  16. Dantzig, G.B., Infanger, G.: Large-scale stochastic linear programs—Importance sampling and Benders decomposition. In: Computational and Applied Mathematics, I, pp. 111–120. North-Holland, Amsterdam (1992)

    Google Scholar 

  17. D’Apuzzo, M., Simone, V., Serafino, D.: On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods. Comput. Optim. Appl. 45, 283–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J. Sci. Comput. 27(5), 1555–1572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dollar, H.S., Gould, N.I.M., Schilders, W.H.A., Wathen, A.J.: Implicit-factorization preconditioning and iterative solvers for regularized saddle-point systems. SIAM J. Matrix Anal. Appl. 28(1), 170–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ermoliev, Y.M.: Stochastic quasigradient methods. In: Numerical Techniques for Stochastic Optimization. Springer Ser. Comput. Math., vol. 10, pp. 141–185. Springer, Berlin (1988)

    Chapter  Google Scholar 

  21. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29(1), 58–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  23. Gondzio, J.: HOPDM (version 2.12)—a fast LP solver based on a primal-dual interior point method. Eur. J. Oper. Res. 85, 221–225 (1995)

    Article  MATH  Google Scholar 

  24. Gondzio, J., Grothey, A.: Direct solution of linear systems of size 109 arising in optimization with interior point methods. In: PPAM, pp. 513–525 (2005)

    Google Scholar 

  25. Gondzio, J., Grothey, A.: Parallel interior-point solver for structured quadratic programs: application to financial planning problems. Ann. Oper. Res. 152(1), 319–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of interior point methods for optimization. Comput. Manag. Sci. 6(2), 135–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gondzio, J., Makowski, M.: Solving a class of LP problems with a primal–dual logarithmic barrier method. Eur. J. Oper. Res. 80, 184–192 (1995)

    Article  MATH  Google Scholar 

  28. Gondzio, J., Sarkissian, R.: Parallel interior point solver for structured linear programs. Math. Program. 96, 561–584 (2000)

    Article  MathSciNet  Google Scholar 

  29. Gould, N.I.M., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming problems arising in optimization. SIAM J. Sci. Comput. 23(4), 1376–1395 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM Series on Frontiers in Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  31. Güler, O.: Existence of interior points and interior paths in nonlinear monotone complementarity problems. Math. Oper. Res. 18(1), 128–147 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300–1317 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. King, A.J.: An implementation of the Lagrangian finite-generation method. In: Numerical Techniques for Stochastic Optimization. Springer Ser. Comput. Math., vol. 10, pp. 295–311. Springer, Berlin (1988)

    Chapter  Google Scholar 

  35. Linderoth, J., Wright, S.J.: Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim. Appl. 24(2–3), 207–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Luks̆an, L., Vlc̆ek, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5(3), 219–247 (1998)

    Article  MathSciNet  Google Scholar 

  37. Lustig, I.J., Marsten, R.E., Shanno, D.F.: On implementing Mehrotra’s predictor–corrector interior-point method for linear programming. SIAM J. Optim. 2(3), 435–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  39. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mehrotra, S., Ozevin, M.G.: Decomposition-based interior point methods for two-stage stochastic semidefinite programming. SIAM J. Optim. 18(1), 206–222 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mehrotra, S., Ozevin, M.G.: Decomposition based interior point methods for two-stage stochastic convex quadratic programs with recourse. Oper. Res. 57(4), 964–974 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mehrotra, S., Ozevin, M.G.: On the implementation of interior point decomposition algorithms for two-stage stochastic conic programs. SIAM J. Optim. 19(4), 1846–1880 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Monteiro, R.D.C., Pang, J.S.: Properties of an interior-point mapping for mixed complementarity problems. Math. Oper. Res. 21(3), 629–654 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pflug, G.C., Halada, L.: A note on the recursive and parallel structure of the Birge and Qi factorization for tree structured linear programs. Comput. Optim. Appl. 24(2–3), 251–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Poulson, J., Marker, B., van de Geijn, R.A.: Elemental: A new framework for distributed memory dense matrix computations (flame working note #44). Tech. Rep., Institute for Computational Engineering and Sciences. The University of Texas at Austin (2010)

  47. Rockafellar, R.T., Wets, R.J.B.: A Lagrangian finite generation technique for solving linear-quadratic problems in stochastic programming. Math. Program. Stud. 28, 63–93 (1986). Stochastic programming 84. II

    Article  MathSciNet  MATH  Google Scholar 

  48. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rosa, C.H., Ruszczyński, A.: On augmented Lagrangian decomposition methods for multistage stochastic programs. Ann. Oper. Res. 64, 289–309 (1996). Stochastic programming, algorithms and models (Lillehammer, 1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35, 309–333 (1986)

    Article  MATH  Google Scholar 

  51. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MPS/SIAM Series on Optimization, vol. 9. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  52. Van Slyke, R., Wets, R.J.: L-shaped linear programs with applications to control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wright, S.J.: Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  54. Zavala, V.M., Laird, C.D., Biegler, L.T.: Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems. Chem. Eng. Sci. 63(19), 4834–4845 (2008)

    Article  Google Scholar 

  55. Zavala, V.M., Constantinescu, E.M., Krause, T., Anitescu, M.: On-line economic optimization of energy systems using weather forecast information. J. Process Control 19, 1725–1736 (2009)

    Article  Google Scholar 

  56. Zhang, D., Zhang, Y.: A Mehrotra-type predictor-corrector algorithm with polynomiality and Q-subquadratic convergence. Ann. Oper. Res. 62, 131–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, Y.: Solving large-scale linear programs by interior-point methods under the Matlab environment. Tech. Rep. TR96-01, University of Maryland Baltimore County (1996)

  58. Zhao, G.: A log-barrier method with Benders decomposition for solving two-stage stochastic linear programs. Math. Program. 90(3), 507–536 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Anitescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petra, C.G., Anitescu, M. A preconditioning technique for Schur complement systems arising in stochastic optimization. Comput Optim Appl 52, 315–344 (2012). https://doi.org/10.1007/s10589-011-9418-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-011-9418-y

Keywords

Navigation