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Abstract We address the multi-period portfolio optimization problem with the con-
stant rebalancing strategy. This problem is formulated as a polynomial optimization
problem (POP) by using a mean-variance criterion. In order to solve the POPs of
high degree, we develop a cutting-plane algorithm based on semidefinite program-
ming. Our algorithm can solve problems that can not be handled by any of known
polynomial optimization solvers.

Keywords Multi-period portfolio optimization - Polynomial optimization problem -
Constant rebalancing - Semidefinite programming - Mean-variance criterion

1 Introduction

We consider the constant rebalancing strategy (also referred to as constant mix, fixed
mix, constant proportional portfolio and the like) in the multi-period portfolio selec-
tion. In this strategy, we rebalance the portfolio at the beginning of every period so
that the investment proportion will be restored to the fixed constant one. This strategy
is widely used in business. Moreover, it is known that constant rebalancing achieves
the optimal growth rate of wealth if the asset prices in each period are independent
and identically distributed (i.i.d.) (see e.g., [1]). On the assumptions of i.i.d. and in-
finite horizon, the problem to be solved is a relatively easy convex program (e.g.,
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[3, 17]). However, the constant rebalancing strategy generally leads to nonconvex
optimization. Because of its difficulty, most studies (e.g., [5, 26]) have focused on
approximately solving the constant rebalanced portfolio optimization problem. To
the best of our knowledge, only Maranas et al. [19] approached it through global
optimization by developing a specialized branch-and-bound algorithm.

In this paper, we use a mean-variance (M-V) criterion to formulate the constant
rebalanced portfolio optimization problem (see also [19]) as a polynomial optimiza-
tion problem (POP). Although solving POPs has been a challenging task for decades,
recently it turned out that small and medium size POPs can be efficiently solved by
using semidefinite programming (SDP) [10, 11, 15, 22]. In 2001, Lasserre [15] in-
troduced a hierarchy of SDP relaxations and proved that the sequence of obtained
lower bounds monotonically converges to the global optimum of the corresponding
POP. However, it is difficult to solve the corresponding large-scale SDP relaxations
when a POP contains many decision variables and/or a polynomial of high degree.
Although some specific problem structures can be exploited to reduce the size of SDP
relaxations [6, 9, 12, 16, 27], our problem does not have any such special structure.
As a result, when the number of planning periods is large, our POP is intractable for
mentioned approaches due to monomials of high degree. In order to solve POPs of
high degree, we develop a cutting-plane algorithm that solves in each iteration a POP
of reduced degree and converges to an optimum of the original POP.

We conduct computational experiments, and assess the benefit of our cutting plane
approach in comparison with the global optimization solver over polynomials Glop-
tiPoly [7], the global optimization solver BARON [24], and the nonlinear program-
ming (NLP) solver CONOPT [4]. GloptiPoly, which builds up a hierarchy of SDP
relaxations (see [15]), successfully provides a globally optimal solution of small-size
problems. Solutions obtained by CONOPT do not have a guarantee of global optimal-
ity whereas BARON seeks a globally optimal solution. By using our cutting-plane al-
gorithm we solve problems, which were too large to be directly solved by GloptiPoly,
faster than BARON. However, CONOPT reached a locally optimal solution of these
problems in very short time.

The rest of the paper is organized as follows. In Sect. 2, we present the constant re-
balancing strategy and formulate the M-V portfolio optimization problem. In Sect. 3,
our cutting-plane algorithm is established and its application to the M-V portfolio
optimization is described. Here we also prove a global convergence of the algorithm.
The results of computational experiments are given in Sect. 4. Concluding remarks
are given in Sect. 5.

2 Mean-variance portfolio optimization with constant rebalancing strategy

In this section, we provide a mathematical description of a portfolio dynamics under
the constant rebalancing strategy (see also [19]). Further, we derive two equivalent
formulations of the M-V portfolio optimization with the constant rebalancing strat-
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Fig. 1 Portfolio dynamics under scenario s
2.1 Constant rebalancing strategy and portfolio dynamics
We define the terminology and notation as follows:
RV: set of N-dimensional real vectors
Zﬁ: set of N-dimensional nonnegative integer vectors
Index sets
T:={1,2,...,1}: index set of investable financial assets
T :={1,2,...,T}: index set of planning periods
S:={1,2,...,S}: index set of given scenarios
Decision variables
v;: portfolio value at the end of period ¢ under scenario s (t € 7, s € S)
w;: investment proportion in asset i (i € 7) (where w := (wy, wa, ..., wy) € R

Given constants

V. initial wealth for investment

Rist: total return of asset i at period ¢t under scenarios (i € Z,t €7, s €S)

P occurrence probability of scenario s (s € S)
L; (U;): lower (upper) bound of the investment proportion in asset i (i € I)

User-defined parameters
A: trade-off parameter between return and risk (where A € (0, 1))

We consider a self-financing portfolio and assume that there are no transaction
costs. Note that

ZPS=1 and Py>0 forallseS. (1)
seS

Figure 1 illustrates a portfolio dynamics under scenario s. Suppose that the amount
of money V is provided for investment, and that one starts investing V w; in each asset
i at the beginning of the planning horizon. Because of the return of each asset, the
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invested amount Vw; is changed to R ; Vw; over the first period. Accordingly, the
portfolio value at the end of the first perlod under scenario s is given by

v = R V=V R w. )

i€l i€l

The constant rebalancing strategy enforces the rebalancing to the proportion w at
the beginning of each investment period. The amount Rv Vw; is adjusted to vjw;
at the beglnnlng of the second period. Because of the return of each asset, the in-
vested amount vjw; is changed to RS ,Vjw; over the second period. Accordingly, the
portfolio value at the end of the second perlod under scenario s is given by

vy = Z R} yujw; =) Z Rl-s,zwi. 3)
ieZ i€l

Similarly to the first and second period, the investment proportion is adjusted ac-
cording to the constant rebalancing strategy, and the portfolio value changes due to
the return of each asset. Thus, the portfolio value at the end of the planning horizon
of T periods under scenario s is given by

M S N
Ur = V7 Z R; pwi

iel
iel iel teT \ieZ

2.2 Two formulations of constant rebalanced portfolio optimization
We consider the following two performance measures:

Mean of the portfolio value:

> Pl <‘”va]‘[<21¢ ) )

seS seS teT \ieT

Variance of the portfolio value:

2
Var(w) = Z Px(UST)2 - (Z PSUST>

seS seS
2 2
23 p (v I1 (Z R,ﬁ,uu)) - (Z V] (Z R,ﬁ,uu)) ©6)
seS teT \ieT seS teT \ieT

The former is the return measure and the latter is the risk measure. A framework of
the M-V optimization for single-period portfolio selection was initially constructed
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by Markowitz [20], and this framework was also implemented in the multi-period
portfolio selection, see [19].

We consider both, minimizing the variance of the portfolio value and maximizing
the mean of the portfolio value, at the same time by taking the weighted sum of them.
The constant rebalanced portfolio optimization problem is reduced to the following
problem with I decision variables and simple linear constraints (see [19]):

minimize (1 — 1) (Z Fs (V [1 (Z R;"wi>>2

1
weR seS teT \ieT

(Zenfzee)
(T ()

seS teT \ieT
subject to Zwi:l; Li<w; <U;, iel.
iel

We refer to (7) as the NLP formulation.
In the sequel, we reformulate the optimization problem (7) as a POP by using the
following notation:

o= (ozl,ozz,...,ou)eZI+ and w® :=Hw?”'.
iel

Following the above notation, the mean and variance of the portfolio value are trans-
formed into polynomial forms as follows:

> v TT (S )

seS teT \iel

=y r > |v > [1R. |»®

seS  wY =T (i1,02,--,iT) teT
ieT {teT |i;=i}|=q;,i€l
Ci(a,s)
= > (Z PyCi(a, s)) w®, ®)
a Y o;=T \seS
ieZ —_—
Ca (@)

and

o) (e

seS te7 \ieZ seS teT \iel
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2 2
5| Y a@owr | - Y @
seS oy o=T oy ;=T
ieT ieZ

= Z Z ZPscl(u’,s)Cl(oc—oz’,s) w”

o Y o;=2T | o:a/<a, s€S
) i~
ieZ > a;=T
i€

Cs(a)

- Z Z Co()Co(ot —a’) | w®.

Yy o;=2T | o¢:a/<a,
; -
ieZ Z (xifT

iel

Cy(a)

Now, (7) is reformulated as the following POP:

minimize OF(w) :=(1— ) Z Cs(a)w* — A Z Co(a)w®

1
wek a Y o;=2T o Y oi=T
i€l i€l (9)
subject to Zwizl; Li<w; <U;, iel,

ieZ

where Cs(a) := C3(a) — C4(ex). Note that the degree of monomials in OF(w) are T
and 2T . In the sequel, we refer to (9) as the POP formulation.

Remark 1 By using w; =1 — Z{:—f w;, we can eliminate w; in (9). However, we
do not implement this elimination because we do not expect significant impact on
computations.

3 Cutting-plane algorithm

If there is a polynomial of high degree in a POP, then the relaxation order, w (for
details see [15]) is also high. Accordingly, the corresponding SDP relaxations are
also large-scale, and consequently, it is hard to solve them. In this section, we develop
a cutting-plane algorithm to approximately solve POPs of higher degree. The main
idea of the algorithm is to exploit the structure of the problem to obtain tractable
subproblems that iteratively converge to the original problem.
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3.1 General form of the algorithm

Let us consider the following optimization problem:

minimize ro(x)
xeRN
subject to gj(hj(x)) +rix)<0, jedi:={1,2,...,J1) (10)
ri(x)<0, jel={I+1,h+2,..., 0}

where g; : RN - R, j € J1 are continuously differentiable convex functions, and
o=, n, . )T RV S RY jeZiandr; RN - R, j=0,1,...,/
are polynomial functions. Note that the functions g; do not need to be polynomials.
A problem of minimizing go(h°(x)) + ro(x), where go is a continuously differen-

tiable convex function and h° is a polynomial function, can be easily converted to the
form (10) by rewriting the problem as

minimize z + ro(x)
(x,2)eRN xR

subjectto  go(h’(x)) —z<0; g W (X)) +rjx) <0, jesn 1D
ri(x) <0, jeh.

Let us assume that x is an element of the following set:
[xerY @ =0, jen]. (12)
From the convexity of g;, j € J1, we have the following inequalities:
g5 (7 (6%) = g, (T (x1) + Vg (b x )T (W (%) — W (x1)
forallxl,xzeRN, (13)

where Vg; is the gradient of g;(x’) with respect to x’ € R¥ ". Now, it follows from
(13) that for each x from (12) we have

gj(h! (X)) +7;(x)
> g;(h1 (%)) +rj(x) + Vg, (R (¥)T (hf'(x) - hj(i)) for all x € RV,

This implies that every feasible point, x, of the problem (10) satisfies the following
constraint:

g5 (®) +1,(0) + Vg (b @) (W (x0) = 1T (®)) =<0, (14)

for given X. Moreover, if X from (12) is an infeasible point of the problem (10), that
is, gj (W’ (X)) +7;(x) > 0 for some j € Ji, then itis clear that x := ¥ does not satisfy
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the constraint (14). Therefore, we can use (14) to separate an infeasible point x¥ from
the feasible region. Note that (14) is a polynomial inequality in x.

The fundamental principle of our algorithm, which is regarded as a natural ex-
tension of Kelley’s convex cutting-plane algorithm (see e.g., Sect. 14.8 of [18]), is
to solve a sequence of relaxed POPs and to approximate the feasible region of the
original problem by cutting off the current infeasible solution of the relaxed problem.

A general form of the algorithm is as follows:

Algorithm GCP: General Form of Cutting-Plane Algorithm for Solving Problem (10)

Step 0. (Initialization) Define X as (12). Set k < 1.
Step 1. (Lower Bound Estimation) Solve the following POP (for instance, by using
a hierarchy of SDP relaxations of [15]):

minimize ro(x) subjecttox e X. (15)
xeRN

Let x* be the solution.

Step 2. (Feasibility Check) Let J* :={j € Ji | g;j(h/ (&%) + r;(x*) > 0}. If
J* = ¢, terminate the algorithm with the solution xk.

Step 3. (Cut Generation) Set
X XN (x| g &) +rjx) + Vg;(h! @) (W (x) — b/ (1) <
0, j €T,
and k < k + 1. Return to Step 1.

Let us suppose that the functions g; are convex polynomials. Then, in order to
apply the SDP approach of [15] to the problem (10), the relaxation order is

o> max[deg(g;(h’/))/2], and ®> max [deg(r;)/2]
jed j=0,1,....J»

from its definition (see [15]), where deg(f) is the degree of the polynomial f. To
the contrary, when we use the SDP approach of [15] in the above algorithm, w has to
satisfy the following conditions:

> max [deg(h))/2], and ®> max [deg(r})/2].
jed j=0.1,....J»
£=1,2,..,N’
We can prove convergence to the global optimum similarly to Kelley’s convex
cutting-plane algorithm under strong assumptions.

Theorem 1 Suppose that the set (12) is compact, and that we always obtain a glob-
ally optimal solution of the problem (15). Then, every accumulation point of the se-
quence of solutions {¥*} generated by Algorithm GCP is a globally optimal solution
of the problem (10).

Proof Suppose that L C Z., and the sequence (XY exc converges to an accumula-
tion point ¥. Then, for k' > k (k, k' € K) it follows from Step 3 of GCP algorithm:

g5 (7 (&) +r; &) + Vg, )T (W @) -0 @) <0, jed,
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and from (13) and the definition of [7*:

8 (hT G¥)) 41 (&) + Vg (T )T (W] (&) — b7 1))
a3 Joek —k . Tk
<giM &) +rix")<0, j&I .

By means of the Cauchy-Schwarz inequality, we have, for all j € J1,
min! o (h7 (¥ (Y. o (B (2F (¢
gi(h (x%)+r;(x"), gj(h/ (x%)) +r;(x")

’

< max{ \vgj (hj(ik))‘T \(hf'(x’“) - h/(x"))

Ve | |(wh —w@))|) (16)

Since X is compact and g; is continuously differentiable, |[Vg; (h’ (x%))| and
Vg, (h’ (ik’))| are bounded. So, the right-hand side of (16) goes to zero as k and
k" go to infinity. The left-hand side of (16) goes to g j (hj (x)) +rj(x) for the accu-
mulation point x. Therefore, X is a feasible solution of the problem (10).

Let 7* be the global optimum of the problem (10). Then, it follows that ro(x%) < r*
for each k € K, and hence ro(x) < r*. Since X is a feasible solution of the problem
(10), ro(x) = r*. Therefore, the accumulation point X is a globally optimal solution
of the problem (10). O

3.2 Application to mean-variance portfolio optimization

We develop here a cutting-plane algorithm that is specialized for the performance of
the M-V portfolio optimization. Similarly to (11), we rewrite the POP formulation
(9) as follows:

minimize (1-Mz—4 Y Cole)w®
(w,z)eR! xR
a > =T
i€l
subjectto  Var(w) —z <0; Zwi =1, Li<w; <U;, i€, z=0.
iel
(17)

Since Var(w) (see (6)) is always nonnegative, we impose the nonnegative constraint
on z.

Let us suppose that (w, z) is an element of the following set:

[@o|Yw=1Lisw=U,ien: zz0}. (18)
i€l

The gradient of (6) with respect to vy is as follows:

2
_ 9 : ,
G(®) = —— > Pe(vp)? - (Z Ps/v;)
T A\ves s'eS vy=v} (W), s€S
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= 2P () — 2Py | Py} (),

(19)
s'eS

where

vi@) =V [] (Z R,{tw,-) foralls € S. (20)
te7 \iel
Then, considering that

Var() + ) G () (v} — v} ()

seS
L Var@) + 3G [ YT Cila st —vp(@)
seS Yy o=T
ieZ
1900 (Z G,(0)C1 (e, s)) w® — Var(ib), @D
oY ;=T \seS

ieZ

we can show the following property:

Lemma 1 (Underestimator of variance of portfolio value)

Var(w) > Y (ZG‘Y(E)Cl(a,s)>w"‘—Var(ﬁ)),

o Y o;=T \se§S
iel

forall w e R!.

Proof To complete the proof, it is only necessary to show that (6) is a convex function

in (v})ses (see (13) and (21)). The following Hessian matrix of (6) with respect to
(v} )ses is a positive semidefinite matrix:

2P1(1—Py) —2P1 P —2P; Py
—2P, P 2Py(1— P :
Ho— .1 p) 2 ( 2) 7
: —2Ps_1 Ps
—2P, Ps

—2Ps_1Ps 2Ps(1 — Py)
because

1
ExTHx = ZPv(l - Ps)xsz - Z Z Py Poxgxy
seS seS s'eS

s'#s

O3 P D P |22-D0 Y APoxaxy

seS s'eS seS s'eS
s'#s s'#s
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= Z Z PSPS/(XSZ — XgXg')

seS s'eS
s'#s

=D D PPola] = 2xy +x3)
seS s’/eS
§>8
, (D g
= Z Z Py Py (xg —xy)” >0 forallx e R”.
seS s'eS

s'>s

Therefore, (6) is a convex function in (v} )ses. O

Thus, we derive the following inequality similarly to (14):

2= Y (Z G,(w)C (e, s)) w® — Var(). (22)

o Y a;=T \se§S
ieZ

If (w,7) is an infeasible solution of the problem (17), that is, Z < Var(w), then
(w, z) := (w, z) does not satisfy the inequality (22). Moreover, the right-hand side
of (22) is a global underestimator of Var(w) (see Lemma 1).

The algorithm for the M-V portfolio optimization problem (9) is described as fol-

lows:

Algorithm CPMV: Cutting-Plane Algorithm for the M-V Portfolio Optimization Prob-

lem (9)
Step 0. (Initialization) Let ¢ > 0 be a tolerance for optimality, K be the maximum
number of iterations, and w > [T /2] be the relaxation order. Define Z as
(18). Set the initial upper bound as UB( := co. Set k < 1.
Step 1. (Lower-Bound Estimation) Solve the following POP by using the SDP ap-
proach [15] with the relaxation order w:
minimize (1 —A)z — A Z Co(a)w®  subjectto (w,z) € Z.
(w,2)eR! xR (23)
a > o;=T
ieZ
Let LBy be the objective function value, and (ﬁ)k , 7%) be the solution of (23).
Step 2. (Upper-Bound Update) If OF(w*) < UBj_;, then UB; := OF(@*) and
i < wX. Otherwise, UBy := UBy_.
Step 3. (Termination Conditions) If one of the following conditions is satisfied, then
terminate the algorithm with the solution w:
(a) UBy — LBy <&, (b) zF > Var(w®), (c) k =K.
Step 4. (Cut Generation) Set

Z<2Zn {(W,z) EENDY (Z Gs@")cl(oe,s))w“ - Var(wk>},

a Y o;=T “se§
i€l

and k < k + 1. Return to Step 1.
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Itis clear from Lemma 1 that Z always contains the feasible region of the problem
(17) in the algorithm. Hence, it follows that for all k > 1,

LBy < the global optimum of (17) = the global optimum of (9) < UB; < OF(ﬁ)k).

Moreover, if (w*, Z¥) satisfies the condition (b) in Step 3, then it is a feasible solution
of the problem (17), and we have

OF(w") = (1 —)Var@*) = Y Cala)(@*)®
a > ;=T
iel
SU=-0F-2 ) G@®m)*=LB;.
o > =T
i€l

Therefore, @ is an optimal solution of the problem (9). Although the condition (b)
implies the condition (a) in theory, the condition (b) can occur without satisfying the
condition (a) because of numerical instability. For the same reason it might happen
that our algorithm has no improvement in the gap (a). However, this happens rarely
and only when the gap is already small (for more details see Sect. 4). Therefore, if
there is no improvement in the gap (a), we stop the algorithm and call this case (d).

Note that the maximal degree of monomials in the problem (23) is 7 while in the
POP (9) is 2T. Moreover, the CPMV algorithm has an advantage that the associated
cut (22) does not contain a parameter A. This means that even if we set A to a different
value, we can still use the cuts constructed for the previous value of A. In computa-
tional experiments, the number of iterations has been reduced by taking advantage of
this feature. Also, when (ﬁ)k, z%) is not an optimal solution of (23) at Step 1, we set
o < w + 1 and restart the algorithm.

Other risk measures We can implement risk measures other than variance (see e.g.,
[14]) in the cutting-plane algorithm. For instance, minimizing Conditional Value-at-
Risk (CVaR, [23]) is equivalent to minimizing the following function:

1 ,
CVaR(w,a) i=a+ 1 > P (v] —a)

seS

@ 1

= a—i—mzp_y\p (Vl_[ (ZR;YJU)I> _a>,
seS teT \ieZ

where § € [0, 1) is a threshold parameter, and W : R — R is a smoothing function of
max{0, -} (see e.g., [21]). The above function is convex in (vlT, v%, e, vg, a) (see
[21, 23]). Moreover, all coherent risk measures [2] can be used in our cutting-plane
algorithm because of their convexity.

4 Computational experiments

In this section, we use the following parameter values: the number of assets I €
{4, 7, 10}, the number of periods T € {2, 4, 6}, and the number of scenarios § €
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{100, 1,000}. We set the initial wealth V = 1. The occurrence probability, Py, is set to
1/|S] for all s € S. The lower bound, L;, and the upper bound, U;, of the investment
proportion are set to 0 and 0.5, respectively for each i € Z. We choose for the trade-off
parameter the following eight values A € {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.99}. In
the cutting-plane algorithm, we set the tolerance for optimality & = 107>, and the
maximum number of iterations K = 30. All computations were performed on a PC
with a Core2 Duo CPU (1.40 GHz) and 2 GB memory. We used MATLAB 7.10.0
(R2010a) and a free MATLAB toolbox, GloptiPoly 3.6.1 [7], to formulate and solve
POPs via the SDP relaxations (see [15]). In this toolbox, SeDuMi 1.3 [25] was used
to solve SDP problems. We used the default parameters settings of GloptiPoly and
SeDuMi. We also used a global optimization solver BARON [24], and a NLP solver
CONOPT [4], via NEOS Server.! In BARON, a tolerance for optimality is set to the
same value as in the cutting-plane algorithm, i.e., to 1073, In CONOPT, we do not
set an initial solution, that is, CONOPT seeks the starting point itself.

Numerical data and notations in Tables 2, 3, 4 and 5 are as follows:

Rel.Order: the relaxation order w,
TotalCPU: the total CPU time (in seconds),
CPUSDP: CPU time for solving SDP relaxation problem (in seconds),
#Val.SDP: the number of variables of the corresponding SDP in dual standard
form,
SizeMat.: the size of a semidefinite matrix in the corresponding SDP,
GapSDP: the (average) duality gap associated with the obtained solution for SDP
relaxation problem,
CPUCoef. (in Table 2): CPU time for calculating C; () and Cs(e¢) (in seconds),
CPUCoef. (in Table 3): CPU time for calculating C; (e, s) and C,(e) (in seconds),
#lteration: the number of iterations (i.e., k) in the cutting-plane algorithm,
#Ter.Con.: the number of times each termination condition was satisfied, ({a), (b),
(c), (d)), see CPMYV algorithm and explanations therein,
Ter.Con.: the satisfied termination condition,
Opt.GAP: the optimality gap, i.e., (the best upper bound) — (the best lower bound),
#Mem.Sho.: the occurrence number of memory shortage,
Mem.Sho.: “MS” is written in the case that there was a memory shortage, see Ta-
ble 5,
OMS: out of memory in SeDuMi, and
OMG: out of memory in GloptiPoly.

For each pair of (/, T, S) we solve eight problems corresponding to different val-
ues of the trade-off parameter, A. In Tables 2, 3 and 4, we show the average value
of the eight problems in TotalCPU, CPUSDP, GapSDP and #lteration, and the largest
value of those in Opt.GAP.

s

Scenario generation. We have generated scenarios of total return, R} ,, in a simple

manner similar to [8]. We have first collected historical data of asset price from the

1 http://www-neos.mcs.anl.gov
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Table 1 Mean and variance of total returns

. 1 s . 1 s .
MTR() == 75 DoteT 2 seS R;.r’ VTR(Q) := 75 DoieT ZSES(R;J - MTR(z))2
Asset# 1 2 3 4 5 6 7 8 9 10

MTR  1.0000 1.0056 1.0090 1.0110 1.0052 1.0067 1.0112 1.0032 1.0104 1.0121
VTR  0.0000 0.0009 0.0025 0.0035 0.0019 0.0019 0.0028 0.0005 0.0020 0.0032

Table 2 Numerical results of POP formulation (9)

S =100 I S =1,000
4 7 10 4 7 10
T 2 Rel.Order 2 2 2 T 2 Rel.Order 2 2 2
TotalCPU 0.6 3.0 26.3 TotalCPU 0.6 2.8 26.0
CPUSDP 04 1.9 14.6 CPUSDP 04 1.7 14.3
#Val.SDP 69 329 1,000 #Val.SDP 69 329 1,000
SizeMat. 58 151 289 SizeMat. 58 151 289
GapSDP  8.0E-09 2.8E-08 7.2E-08 GapSDP  6.7E-09 3.7E-08 6.3E-08
CPUCoef. 0.0 0.1 0.3 CPUCoef. 0.0 0.1 0.3
4 Rel.Order 4 4 4 4 Rel.Order 4 4 4
Total CPU 8.5 OMS OMG TotalCPU 8.6 OMS OMG
CPUSDP 74 - - CPUSDP 74 - -
#Val.SDP 494 6,434 - #Val.SDP 494 6,434 -
SizeMat. 353 2,013 - SizeMat. 353 2,013 -
GapSDP 1.2E-08 - - GapSDP 1.8E-08 - -
CPUCoef. 0.1 34 39.4 CPUCoef. 0.2 4.5 53.1
6 Rel.Order 7 6 6 6 Rel.Order 7 6 6
TotalCPU  1,223.2 OMG OMG TotalCPU 1,180.2 OMG OMG
CPUSDP 1,215.0 - - CPUSDP 1,172.1 - -

#Val.SDP 3,059 #Val.SDP 3,059 - -
SizeMat. 2,013 SizeMat. 2,013 - -
GapSDP  8.7E-08 - - GapSDP 1.0E-07 - -

CPUCoef. 1.0 93.0 3,384.4 CPUCoef. 1.4 130.6 4,639.6

Yahoo finance Japan.” Using these data, we estimated the mean vector u € R/” and
the variance-covariance matrix £ € R/7*!T of total returns of asset i € Z at period
t € 7. Then, we generated scenarios of total return by drawing samples from a multi-
variate normal distribution with the estimated statistics (s, X). For reference, Table 1
shows characteristics of the total return.

2http://ﬁnance.yahoo.co.jp
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Table 3 Numerical results of algorithm CPMV

S =100 1 S = 1,000 1
4 7 10 4 7 10
T 2 Rel.Order 2 2 2 T 2 Rel.Order 2 2 2
Total CPU 13.0 65.6 960.9 TotalCPU 12.9 114.0 733.1
#lteration 3.4 5.1 7.9 #lteration 3.3 6.8 6.4
#Ter.Con. (8,0,0,0) (8,0,0,0) (8,0,0,0) #Ter.Con. (8,0,0,0) (8,0,0,0) (8,0,0,0)
Opt.Gap 8.8E-06 9.9E-06 9.9E-06 Opt.Gap 9.4E-06 1.0E-05 9.5E-06
GapSDP 2.2E-07 4.9E-07 9.4E-07 GapSDP 84E-08 4.5E-07 4.7E-07
CPUCoef. 0.0 0.0 0.0 CPUCoef. 0.0 0.0 0.0
4 Rel.Order 2 2 2 4 Rel.Order 2 2 2
TotalCPU 5.7 60.6 498.7 TotalCPU 11.3 68.8 616.7
#lteration 2.9 74 6.4 #lteration 5.0 8.6 7.8
#Ter.Con. (6,0,0,2) (1,0,0,7) (5,0,0,3) #Ter.Con. (7,1,0,0) (2,4,0,2) (6,0,0,2)
Opt.Gap 14E-04 9.0E-05 1.2E-04 Opt.Gap 1.7E-05 1.1E-04 3.2E-05
GapSDP  34E-07 9.8E-07 1.4E-06 GapSDP  2.5E-07 1.0E-06 1.1E-06
Rel.Order 3 3 3 Rel.Order 3 3 3
TotalCPU 34.2 9,0784  OMG TotalCPU 49.4 5,610.0 OMG
#lteration 3.5 9.5 - #lteration 4.6 6.6 -
#Ter.Con. (8,0,0,0) (3,1,0,4) — #Ter.Con. (7,1,0,0) (6,2,0,0) —
Opt.Gap 94E-06 5.7E-05 - Opt.Gap 1.2E-05 7.3E-05 -
GapSDP  8.7E-08 4.1E-07 - GapSDP  1.6E-07 2.2E-07 -
CPUCoef. 0.0 0.4 29 CPUCoef. 0.1 0.5 35
6 Rel.Order 3 3 3 6 Rel.Order 3 3 3
Total CPU 29.9 6,743.2  OMG TotalCPU 46.3 52154  OMG
#lteration 4.0 10.4 - #lteration 6.0 7.6 -
#Ter.Con. (8,0,0,0) (1,6,0,1) — #Ter.Con. (8,0,0,0) (2,4,0,2) —
Opt.Gap 94E-06 S59E-05 - Opt.Gap 9.6E-06 1.7E-04 -
GapSDP  4.2E-07 14E-06 - GapSDP 3.9E-07 1.0E-06 -
Rel.Order 4 4 4 Rel.Order 4 4 4
TotalCPU 329.2 OMG OMG Total CPU 483.1 OMG OMG
#lteration 3.9 - - #lteration 5.4 - -
#Ter.Con. (8,0,0,0) — - #Ter.Con. (8,0,0,0) — -
Opt.Gap 8. 7E-06 - - Opt.Gap 1.0E-05 - -
GapSDP  8.0E-08 - - GapSDP  1.7E-07 - -
CPUCoef. 0.5 31.9 1,094.0 CPUCoef. 0.8 41.0 1,195.6

4.1 Numerical results of POP approaches

Numerical results of the POP formulation (9) and the cutting-plane algorithm are
shown in Tables 2 and 3, respectively. We use the software GloptiPoly to solve
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the POP formulation (9) and the problem (23) in the cutting-plane algorithm. We
have also tested other MATLAB toolboxes for solving POPs, i.e., SOST OOLS3 and
SparsePOP [28]. In most cases SparsePOP solved the POP formulation a bit faster
than GloptiPoly. SparsePOP failed to provide an optimal solution of the problem (23)
with the smallest relaxation order w = T /2. GloptiPoly solved problems (9) and (23)
faster than SOSTOOLS. For all these reasons, we omit results obtained by SOS-
TOOLS and SparsePOP.

Note that all solutions reported in Table 2 are globally optimal. It is clear that in
the case of the POP formulation the number of scenarios has little impact on a CPU
time. There, most of the total CPU time was consumed on solving SDP (see TotalCPU
and CPUSDP in Table 2), while CPU time of calculating C; () and Cs5(ex) was much
shorter than TotalCPU and CPUSDP (see CPUCoef. in Table 2). However, only the
problem involving four assets was solved when the number of periods was four or
six, and it took about 1,200 seconds to solve the problem when (I, T) = (4, 6).

To the contrary, by appropriately setting the relaxation order, the cutting-plane
algorithm solved all the problems with satisfactory accuracy except when (I, T) =
(10, 6) (see Table 3). Our algorithm did not work well with the smallest relaxation
order, w = T /2 when the number of periods was two. In other cases (i.e., when T =4
or 6), a globally optimal solution of the problem (23) was always provided by the SDP
relaxation regardless of whether w =T /2 or w = T /2 4 1. Note that the termination
condition (c) was never satisfied, i.e., the number of iteration in the cutting-plane
algorithm was always less than 30. Also, the algorithm has terminated several times
due to the numerical instability. For instance, when (I, T, S) = (7, 6, 1000) and w =
T /2, the condition (b) was satisfied four times, and the algorithm has terminated two
times because of the numerical issue (d). Although it is possible that the attained
solution is not very good in such cases, the obtained optimality gap was sufficiently
small (see worst-case optimality gap, Opt.GAP in Table 3).

Moreover, our numerical experiments show that by increasing the relaxation order
fromw =T/2to w=T/2+ 1, we can reduce the duality gap for SDP relaxation, and
the number of times the termination condition (d) is satisfied when (I, T) = (4,4)
and (7, 4) (see GapSDP and #Ter.Con. in Table 3). In addition, it is clear that GapSDP
tends to be large in the problems that cause numerical instability. From these observa-
tions, we can see that numerical instability does not come from the algorithm frame-
work but the quality of solutions of SDP relaxation problems, and that an effective
remedy for numerical instability might be increasing the relaxation order. However,
the larger relaxation order leads to the larger underlined SDP problem that needs to be
solved. In the cutting-plane algorithm, CPU time for calculating C; (e, s) and C» ()
was much shorter than the total CPU time (see CPUCoef. in Table 3).

4.2 Comparison with BARON and CONOPT

Numerical results of BARON and CONOPT are shown in Table 4, where four peri-
ods and 1,000 scenarios are considered. CPU times for solving problems by BARON

3http://www.cds.caltech‘edu/sostools and http://www.mit.edu/~parrilo/sostools.
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Table 4 Numerical results of BARON and CONOPT

BARON CONOPT
S =1,000 1 S§=1,000 1
4 7 10 4 7 10

T 4 TotalCPU 804.2 5,031.7 7,537.8 T 4 TotalCPU 05 08 1.7
Opt.Gap 34E-03 1.0E-05 1.2E-02 Opt.Gap - - -
#Mem.Sho. 4 0 5 #Mem.Sho. 0 0 0

=
208 4
go7
g 0.6
S5 W Asset 4 W Asset 4
%04 = Asset 3 " Asset 3
‘g 0.3 W Asset 2 W Asset 2
2 02 m Asset 1 m Asset 1
“0a
0 .
001 01 02 03 04 05 06 099 ..
trade-off parameter trade-off parameter
(i) POP (9) (i) CPMV (w = 2)
1
09 +— —
€
2 08 +
§o7
e 0.6
E 0.5 W Asset 4 W Asset 4
S04  Asset 3  Asset 3
g 0.3 1 W Asset 2 W Asset 2
g 0.2 4 m Asset 1 m Asset 1
01
0 - .
001 01 02 03 04 05 06 099 001 01 02 03 04 05 06 099
trade-off parameter trade-off parameter
(iif) BARON (iv) CONOPT

Fig. 2 Optimal investment proportion (I =4, T =4, § = 1,000)

were very large in comparison to the cutting-plane algorithm with the smallest relax-
ation order. In some cases, BARON stopped due to the memory shortage and returned
a locally optimal solution (see the last row in Table 4). However, CONOPT attained
locally optimal solutions in very short time without leading to memory shortage.

In Figs. 2, 3 and 4, the optimal investment proportions provided by different ap-
proaches are shown. The difference between the investment proportions provided by
BARON and those by CONOPT was always less than 1.1- 107 regardless of whether
or not BARON caused memory shortage. POP formulation (9) was solved only when
I =4 (T =4, § =1,000), and in this case, the maximum difference in the obtained
investment proportions between POP formulation and both BARON and CONOPT
was 1.4 - 1073, The solutions of the cutting-plane algorithm were slightly different
from others. For instance, the proportion in Asset 4 for A = 0.6 was larger than other
approaches (see Fig. 3). Also the proportion in Asset 7 for A = 0.5 and 0.6 differs
from other approaches (see Fig. 4).

@ Springer



Y. Takano, R. Sotirov

662

Tissym
zissym
£1assy m
vRssYm
SRSSYH
9SSy m
Liessym
g1essv m
6 1355y
0T j@ssy m

119557 m
zissym
€155y W
riassym
Slassym
9185y m
L3assym

LJONOD (111)
Jaewesed yo-apen
660 90 SO ¥0 €0 T0 TO 100

LJONOD (1)

Jajawesed yo-apesy
660 90 SO0 ¥0 €0 0 TO0 100

‘llil- :

Pdﬂllﬂl!l

| |
| |
||
g
g
i
-
[ |
Ng

En%ezen

Tiessym
Tssym
Elassym
viessym
Slessym
9lassy m
Li1essym
g1essv m
61885y
0T 1955y m

Tiassym
Ziassym
£lassym
tiassym
Slassym
93ssym

L3essy

(000°T =S8 ‘¢ = ‘01 = ) uontodoxd yuounsoaut ewndo ‘814

NOUve (1)
J3jaweled yo-apesy
660 90 S0 ¥0 €0 TO TO 100

Nouve (1)
J3jawesed yo-apesy
66'C 90 S0 ¥O0 €0 €0 TO0 T00

Tissym
Zissym
£ 1355y m
sy m
SIESSY
gjassym
LiEssym
g1essy m
61355y

oT 1SSy

11955y W
Zissym
£1a55v
viassvm
Giassy m
LREEA
Liessym

(z=m) AINdD (1)
1ayeweled yo-apen
660 90 S0 ¥0 ED O TD 100

| ]
(TN |
-Ah
N B
|\ |
N B
~ |
\8| |
N
B

‘1=¢ ‘¢ =1 ‘L= 1) uoniodoid yuounsoaur reumdo ¢ "1

(z=m) Ado (1

Jajawesed yo-apesy
660 90 S0 ¥0 €0 T0 TO0 100

pringer

s



A polynomial optimization approach to constant rebalanced portfolio selection 663

Table 5 Cause for termination of CPMV (w = 2) and BARON (T =4, § = 1,000)

Trade-off parameter
0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.99

I 4 CPMV TerCon. (a) (a) (a) (a) (a) (b) (a) (a)
Opt.Gap. 9.3E-06 7.5E-06 7.0E-06 4.0E-06 9.0E-06 1.7E-05 8.3E-06 3.8E-07

BARON Mem.Sho. MS MS MS MS - - - -
Opt.Gap. 3.4E-03 3.3E-03 2.9E-03 1.3E-03 1.0E-05 1.0E-05 1.0E-05 1.0E-05

7 CPMV Ter.Con. (a) (d) (d) (b) (b) (b) (b) (a)
Opt.Gap. 6.9E-06 1.4E-05 2.2E-05 3.9E-05 1.5E-05 6.6E-05 1.1E-04 1.7E-06

BARON Mem.Sho. — - - - - - - -
Opt.Gap. 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05

10 CPMV Ter.Con. (a) (d) (d) (a) (a) (a) (a) (a)
Opt.Gap. 8.8E-06 2.8E-05 3.2E-05 9.8E-06 6.7E-06 4.7E-06 9.5E-06 3.8E-06

BARON Mem.Sho. MS MS MS MS MS - - -
Opt.Gap. 1.2E-02 1.0E-02 7.4E-03 3.9E-03 2.6E-04 1.0E-05 1.0E-05 1.0E-05

Cause for termination of the algorithm CPMV with v = 2 and BARON are shown
in Table 5. It is found from Table 5 that BARON causes a memory shortage when the
trade-off parameter A < 0.4; and that the algorithm CPMV terminates because of the
condition (d) only when A < 0.2. Note that the small differences in the investment
proportions mentioned above appear also in cases where the cutting-plane algorithm
was not terminated due to the numerical instability. It seems to be difficult for our al-
gorithm to always attain a high accuracy solution. As discussed above, this is due to
solving one POP at each iteration of the algorithm. We expect that using the SDPA-
GMP solver* under GloptiPoly will improve the quality of our solution. However,
high precision computations provided by the mentioned solver result in high run-
ning times and therefore such solver is not acceptable for our iterative algorithm. As
mentioned before, another way to improve a quality of the solution is to increase the
relaxation order. However, the larger relaxation order leads to the larger underlined
SDP problem that needs to be solved.

In Fig. 5, we show the efficient frontiers of the solutions provided by different ap-
proaches together with the value of the trade-off parameter. The horizontal axis and
the vertical axis are mean and variance of the portfolio value, respectively. Some solu-
tions of the cutting-plane algorithm were slightly different from solutions obtained by
other solvers; i.e., the solutions that correspond to (Z, A) = (4, 0.6), (7,0.4), (7, 0.6)
and (10, 0.1). Those solutions satisfied termination conditions {(a), (b), (b) and (d),
respectively. Note that condition (a) is our tolerance for optimality, i.e., £ = 107>,
However, it is also clear that solutions of the cutting-plane algorithm are not far from
the frontiers of other approaches.

It was reported in [19] that an implemented NLP solver (for details see [19])
clearly failed to find a globally optimal solution of the problem (7). Meanwhile, our

4 Available at http://sdpa.indsys.chuo-u.ac.jp/sdpa/software.html.
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A polynomial optimization approach to constant rebalanced portfolio selection 665

numerical results indicate that CONOPT reached a globally optimal solution. This
observation is in common with Fleten et al. [5]. In [5], the constant rebalanced port-
folio optimization problem, in which the second order below-target risk is minimized,
was solved using the NLP solver MINOS, and it was reported that MINOS always
reached the same solution for an instance regardless of starting values.

5 Concluding remarks

We have developed the cutting-plane algorithm for solving the constant rebalanced
portfolio optimization problem. Our algorithm, which is regarded as an extension of
Kelley’s convex cutting-plane algorithm, iteratively solves POPs by combining the
SDP approach of [15] and valid cuts. The computational experiments show that the
algorithm can solve large-size problems that can not be directly solved by global
optimization solver over polynomials GloptiPoly [7]. This success is due to imple-
mentation of the reduced degree polynomials in the iterative algorithm. Our numer-
ical results show that our algorithm provides solutions with adequate accuracy for
practical purposes. Moreover, our algorithm is comparable to state-of-the-art global
optimization solver BARON.

Furthermore, if there is an effective warm-starting approach for SDP, then our
cutting-plane algorithm might be even more efficient by starting a SDP solver from
the solution attained in the previous iteration.

A further direction of this study is to apply polynomial optimization approaches to
other portfolio optimization problems. For instance, by taking into account skewness
of the portfolio value as in [13], the problem can be formulated as a POP. Considering
the current performance of SDP solvers it is difficult to solve POPs of high degree
via SDP relaxations. However, SDP relaxation techniques and particularly large-scale
SDPs are areas of active research, and thus, various POPs arising from portfolio op-
timization might be handled in the future.
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