Skip to main content

Advertisement

Log in

An efficient compact quadratic convex reformulation for general integer quadratic programs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We address the exact solution of general integer quadratic programs with linear constraints. These programs constitute a particular case of mixed-integer quadratic programs for which we introduce in Billionnet et al. (Math. Program., 2010) a general solution method based on quadratic convex reformulation, that we called MIQCR. This reformulation consists in designing an equivalent quadratic program with a convex objective function. The problem reformulated by MIQCR has a relatively important size that penalizes its solution time. In this paper, we propose a convex reformulation less general than MIQCR because it is limited to the general integer case, but that has a significantly smaller size. We call this approach Compact Quadratic Convex Reformulation (CQCR). We evaluate CQCR from the computational point of view. We perform our experiments on instances of general integer quadratic programs with one equality constraint. We show that CQCR is much faster than MIQCR and than the general non-linear solver BARON (Sahinidis and Tawarmalani, User’s manual, 2010) to solve these instances. Then, we consider the particular class of binary quadratic programs. We compare MIQCR and CQCR on instances of the Constrained Task Assignment Problem. These experiments show that CQCR can solve instances that MIQCR and other existing methods fail to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

References

  1. Audet, C., Hansen, P., Savard, G.: Essays and Surveys in Global Optimization. GERAD 25th Anniversary Series. Springer, New York (2005)

    Book  MATH  Google Scholar 

  2. Audet, C., Hansen, P., Jaumard, B., Savard, G.: Links between linear bilevel and mixed 0–1 programming problems. J. Optim. Theory Appl. 93(2), 273–300 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to the case of general mixed integer program. Math. Program. 13(1), 381–401 (2012)

    Article  MathSciNet  Google Scholar 

  4. Billionnet, A., Elloumi, S., Lambert, A.: Linear reformulations of integer quadratic programs. In: Le Thi, H.A., Bouvry, P., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences, Second International Conference, MCO 2008, September 8–10, Metz, France, pp. 43–51 (2008)

    Chapter  Google Scholar 

  5. Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157(6), 1185–1197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods Softw. 11(1), 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  7. Cui, Y.: Dynamic programming algorithms for the optimal cutting of equal rectangles. Appl. Math. Model. 29, 1040–1053 (2005)

    Article  MATH  Google Scholar 

  8. EIQP: http://cedric.cnam.fr/~lambe_a1/siqp/Library/index.php

  9. Elloumi, S.: Contribution à la résolution des programmes non linéaires en variables 0–1, application aux problèmes de placement de tâches dans les systèmes distribués. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers (1991)

  10. Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Floudas, C.A.: Deterministic Global Optimization. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  12. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106, 225–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, H.L., Shiue, L., Cheng, X., Du, D.Z., Kim, J.M.: Quadratic integer programming with application in the chaotic mappings of complete multipartite graphs. J. Optim. Theory Appl. 110(3), 545–556 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completness. Freeman, San Francisco (1979)

    Google Scholar 

  15. globallib: http://www.gamsworld.org/global/globallib/globalstat.htm

  16. Hahn, P., Kim, B.J., Guignard, M., Smith, J., Zhu, Y.R.: An algorithm for the generalized quadratic assignment problem. Comput. Optim. Appl. 40(3), 351–372 (2008). Available online doi:10.1007/s10589-007-9093-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Hua, Z.S., Banerjee, P.: Aggregate line capacity design for PWB assembly systems. Int. J. Prod. Res. 38(11), 2417–2441 (2000)

    Article  MATH  Google Scholar 

  18. IBM-ILOG, IBM ILOG CPLEX 12.1 Reference Manual. IBM ILOG CPLEX (2010)

  19. Liberti, L., Maculan, N.: Nonconvex optimization and its applications. In: Global Optimization: From Theory to Implementation. Springer, New York (2006)

    Google Scholar 

  20. Laguna, M., Mart, R.: GRASP and path relinking for 2-layer straight line crossing minimization. INFORMS J. Comput. 11, 44–52 (1999)

    Article  MATH  Google Scholar 

  21. Lambert, A.: Résolution de programmes quadratiques en nombres entiers. Thèse de doctorat en informatique, Conservatoire National des Arts et Métiers. (ref. CEDRIC 1838) (2009)

  22. Mateus, G.R., Resende, M.G.C., Silva, R.M.A.: GRASP with path-relinking for the generalized quadratic assignment problem. J. Heuristics 17(1), 527–565 (2011)

    Article  MATH  Google Scholar 

  23. minlplib: http://www.gamsworld.org/minlp/minlplib.htm

  24. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: recent advances and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers, pp. 29–63. Springer, Berlin (2005)

    Chapter  Google Scholar 

  25. Sahinidis, N.V., Tawarmalani, M.: BARON 9.0.4: Global optimization of mixed-integer nonlinear programs. User’s manual (2010). Available at http://www.gams.com/dd/docs/solvers/baron.pdf

  26. Sahinidis, N.V., Tawarmalani, M.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sherali, H.D., Adams, W.P.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32(10), 1274–1290 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. TAPLib: http://cedric.cnam.fr/oc/TAP/TAP.html

  29. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Lambert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billionnet, A., Elloumi, S. & Lambert, A. An efficient compact quadratic convex reformulation for general integer quadratic programs. Comput Optim Appl 54, 141–162 (2013). https://doi.org/10.1007/s10589-012-9474-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9474-y

Keywords

Navigation