
ar
X

iv
:1

10
3.

04
14

v1
  [

m
at

h.
O

C
]  

2 
M

ar
 2

01
1

Convergence analysis of a proximal Gauss-Newton method

Saverio Salzo1 Silvia Villa2

October 23, 2018

1 DISI, Università di Genova,
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Abstract

An extension of the Gauss-Newton algorithm is proposed to find local minimizers of pe-
nalized nonlinear least squares problems, under generalized Lipschitz assumptions. Conver-
gence results of local type are obtained, as well as an estimate of the radius of the convergence
ball. Some applications for solving constrained nonlinearequations are discussed and the nu-
merical performance of the method is assessed on some significant test problems.
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1 Introduction

Given Hilbert spacesX andY, a Fréchet differentiable nonlinear operatorF : X →Y, and a convex
lower semicontinuous penalty functionalJ : X →R∪{+∞}, we consider the optimization problem

min
x∈X

1
2
‖F(x)−y‖2+J(x) := Φ(x). (P)

Problem(P) is in general a nonconvex and nonsmooth problem, having on the other hand a
particular structure: it is in fact the sum of a nonconvex, smooth term and a convex and possibly
nonsmooth one. The aim of the paper is to find a convergent algorithm towards a local minimizer
of Φ, assuming that it exists. Motivated by several applications [13, 40, 16], problem(P) is
receiving an increasing attention. In particular, forJ= 0, (P) is a classical nonlinear least squares
problem [12, 49]. This kind of problems can be solved by general optimization methods, but
typically is solved by more efficient ad hoc methods. In many cases they achieve better than linear
convergence, sometimes even quadratic, even though they donot need computation of second
derivatives. Among the various approaches, one of the most popular is theGauss-Newton method,
introduced in [7]:

xn+1 = xn− [F ′(xn)
∗F ′(xn)]

−1F ′(xn)
∗(F(xn)−y). (1)
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Under suitable assumptions, such a procedure is convergentto a stationary point ofx 7→ 1
2‖F(x)−y‖2,

namely to a point ¯x such thatF ′(x̄)∗(F(x̄)−y) = 0. Moreover, one can easily show that the point
xn+1 defined in (1) is the minimizer of the “linearized” functional:

x 7→ 1
2
‖F(xn)+F ′(xn)(x−xn)−y‖2. (2)

There is a wide literature devoted to the study of convergence results for the Gauss-Newton method
under different perspectives. In particular we can distinguish two main streams of research: the
papers devoted to a local analysis, and the ones devoted to semilocal results. The first class of
studies [12, 1, 2, 31] assume the existence of a local minimizer, and they actually determine
a region of attraction around that point, meaning that if thestarting point is chosen inside that
region the iterative process is guaranteed to converge towards the minimizer. On the contrary, the
semilocal results — also known as Kantorovich type theorems— do not assume the existence of a
local minimizer, they just establish sufficient conditionson the starting point in order to make the
iterative procedure convergent towards a point that is proved to be a local minimizer [3, 14, 18, 27].

In this paper we propose a generalization of the Gauss-Newton algorithm to the case in which
J 6= 0, that reads as follows:

xn+1 = proxH(xn)
J

(

xn− [F ′(xn)
∗F ′(xn)]

−1F ′(xn)
∗(F(xn)−y)

)

, (3)

where proxH(xn)
J is the proximity operator associated toJ (see [33, 34, 35]), with respect to the

metric defined by the operatorH(xn) := F ′(xn)
∗F ′(xn). The algorithmic framework in (3) is de-

termined following the same line of (2), i.e. linearizing the functionalF at the pointxn, and
computing the minimizer of the corresponding “linearized”functional

x 7→ 1
2
‖F(xn)+F ′(xn)(x−xn)−y‖2+J(x)

This approach is the common way to deal with generalizationsof the Gauss-Newton method, as
we better explain in the next section. The convergence results we obtain are of local type, and
they are comparable to those obtained for the classical Gauss-Newton method. In particular, we
get linear convergence in the general case, and quadratic convergence for zero residual problems.
Furthermore, we are able to give an estimate of the radius of the convergence ball around a local
minimizer. It should be noted that the computation of the proximity operator is in general not
straightforward and it may require an iterative algorithm itself, since in general a closed form is
not available. On the other hand, we could have denotedxn+1 simply as the minimizer of the
generalized version of (2). The formulation in terms of proximity operators allows to use the well
developed theory on this kind of operators, and in our opinion enlightens the connections and the
differences with other first order methods that have recently been proposed to solve problem(P)
(see the next section for further details).

The paper is organized as follows: we start with an analysis of the state-of-the art literature
on related problems in Section 2, and then in Section 3 we review the basic concepts that will be
used: generalized Lipschitz conditions, generalized inverses and proximity operators. In Section
4 the minimization problem is precisely stated and some necessary conditions satisfied by local
minimizers are presented. The main result of the paper, Theorem 1, is discussed in Section 5
and proved in Section 6. Section 7 gives an application to theproblem of constrained nonlinear
equations and, finally, in Section 8 numerical tests are set up and analyzed.
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2 Comparison with related work

We review the available algorithms to solve this problem, enlightening the connections and the
differences with our approach.

Convex composite optimization Problem(P) can be cast, in principle, as a composite opti-
mization problem of the form

min
x∈X

h(c(x)), (4)

by settingh : Y×X → R∪{+∞} andc : X →Y×X as follows:

h(s,v) = ‖s‖2+J(v), c(x) = (F(x)−y,x). (5)

Problem (4) has been deeply studied in [10, 26, 28, 29, 47, 48]from different point of views,
mainly in the caseX = R

n andY = R
m, but the hypotheses significantly differ, as well as the

obtained results. More specifically, in [26], the assumptions are too general to capture the features
of problem(P), and allow only to get convergence results much weaker than the ones obtained
in Theorem 1. Regarding all the remaining papers, as a matterof fact, the following special case
of inclusion problemis treated

c(x) ∈C, C= argminh. (6)

In particular, the existence of anx such thatc(x) ∈ argminh is always assumed. That hypothesis is
of course reasonable if we think ofh as a kind of norm, but if we take it as in (5), thenC= {(s,v) :
s= 0,v∈ argminJ} and we are lead to the condition

∃x∈ X, F(x) = y andx∈ argminJ

which is too demanding for our original problem(P).

Nonlinear inverse problems with regularization Here the problem is to solve the nonlinear
equation

F(x) = y (7)

in the ill-posed case. Typically a solution is found by introducing a regularization term weighted
with a positive parameter. There are two possible approaches. The first one employsiterative
methodswhich deal directly with problem (7), see [4]. In this case aniterative process is set up by
minimizing at each step a simplified regularized problem (generally linear) having the structure of
(P) — with a weight forJ varying at each iteration. Within this class of methods, onepopular
choice is theiteratively regularized Gauss-Newton method, see [8, 20, 21, 25]. Anyway, we remark
that, despite the name, that algorithm is different from anykind of Gauss-Newton optimization
method above, since it is not designed to “optimize” any objective functionalΦ, but, in fact, it
directly looks for an exact solution of the equation (7).

An alternative approach is the classicalTikhonov method[13] replacing (7) by the minimiza-
tion of the associated Tikhonov functional. A problem of thesame type of(P) arises, withJ
weighted by a properly chosen parameter. Up to our knowledge, besides our method, the papers
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by Ramlau and Teschke, e.g. [37, 38], are the only ones providing algorithms for the minimiza-
tion of such type of functionals. In addition, the scheme they propose is different from ours and in
general it converges only weakly. On the other hand, our algorithm assumes the derivativeF ′(x)
to be injective with closed range — a hypothesis not suitablefor handling the ill-posed case.

3 Preliminaries and notations

We start with some notations. In the whole paperX andY denote a Hilbert space andΩ is a
nonempty open subset ofX. F : Ω ⊆ X →Y is an operator, in general nonlinear, andF ′ denotes
its derivative (Fréchet or Gâteaux).L(X,Y) is the space of bounded linear operators fromX to Y.
If A∈ L(X,Y), R(A) andN(A) shall denote respectively its range and kernel andA∗ its adjoint.

3.1 Generalized Lipschitz conditions

Convergence results for the Gauss-Newton algorithm are typically obtained requiring Lipschitz
continuity of the operatorF ′ [12]. In [44, 45], Wang introduced some weaker notions of Lipschitz
continuity in the context of Newton’s method. Recently, also convergence of the Gauss-Newton
method has been proved under such generalized Lipschitz conditions, see e.g. [31, 1, 2]. In
this section we recall the definitions and review some basic properties of generalized Lipschitz
continuous functions.

First of all recall that a setU ⊂X is calledstar shapedwith respect to some of its pointsx∗ ∈U
if the segment[x∗,x] is contained inU for everyx∈U .

Definition 1. Let f : Ω ⊆ X → Y andU ⊆ Ω be a starshaped set with respect tox∗ ∈ U . Fix
R∈ (0,+∞] such that supx∈U ‖x−x∗‖ ≤ R and letL : [0,R) → R be a positive and continuous
function. The mappingf is said to satisfy theradius Lipschitz conditionof centerx∗ with L
average onU if

‖ f (x)− f (x∗+ t(x−x∗))‖ ≤
∫ ‖x−x∗‖

t‖x−x∗‖
L(u)du (8)

for all t ∈ [0,1] andx∈U .

Note that denoting byΓ : [0,R)→R a primitive function ofL, e.g.Γ(u) =
∫ u

0 L(v)dv, inequal-
ity (8) can be written as

‖ f (x)− f (x∗+ t(x−x∗))‖ ≤ Γ(‖x−x∗‖)−Γ(t‖x−x∗‖).

By definition Γ is absolutely continuous and differentiable, withΓ′(u) = L(u). SinceL ≥ 0, Γ is
monotone increasing. AssumingL to be increasing, we get thatΓ is convex.

Definition 2. Assume the hypotheses of Definition 1. We say thatf : Ω ⊆ X → Y satisfies the
center Lipschitzcondition of centerx∗ with L average onU if it verifies

‖ f (x)− f (x∗)‖ ≤
∫ ‖x−x∗‖

0
L(u)du (9)

for everyx∈U .
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The original definitions of Wang [44] do not require the continuity of the functionL but just an
integrability assumption. Our choice simplifies the proofs, but we remark that this requirement is
not essential. Indeed, the proofs can be modified to handle also the more general case of Wang, at
the cost of slight technical complications. In addition, the most well-known examples of Lipschitz
averages are continuous.

Remark 1. If f is Lipschitz continuous on a convex setU with constantL then it satisfies the
radius and center Lipschitz condition of centerx∗ with average constantly equal toL on U , for
everyx∗ ∈U . Vice versa, in the definitions above, if we takeL constant we obtain two intermediate
concepts of Lipschitz continuity, called radius and centerLipschitz continuity, which are still in
general weaker than the classical notion, being centered ata specific point.

Note also that the center Lipschitz condition is weaker thanthe corresponding radius one.

Let F : Ω ⊆X →Y be a a Fréchet differentiable operator. It is well-known, see e.g. [36], that if
F ′ is Lipschitz continuous with constantL then the following inequality holds for everyx,x∗ ∈ X:

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤ L
2
‖x∗−x‖2. (10)

We are going to show that under the weaker Lipschitz conditions introduced above it is still pos-
sible to prove two estimates which are similar to (10). To this aim we need the following three
propositions. In the first one we prove two key inequalities,and in the subsequent ones we rewrite
them in a form more similar to (10). The subsequent result is contained implicitly in several recent
papers providing local results about Gauss-Newton method,see e.g. [29, 31].

Proposition 1. Let F : Ω →Y be a Ĝateaux differentiable operator. Then:

(i) if F ′ satisfies the radius Lipschitz condition of center x∗ with L average on U⊆ Ω (with L
and U as in Definition 1), then for all x∈U

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤
∫ ‖x−x∗‖

0
L(u)udu. (11)

(ii) if F ′ satisfies the center Lipschitz condition with L average at x∗ on U ⊆ Ω (with L and U
as in Definition 2), then for all x∈U

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤
∫ ‖x−x∗‖

0
(2‖x−x∗‖−u)L(u)du. (12)

Proof. Let x ∈ U and defineφ : [0,1] → Y by settingφ(t) = F(x∗ + t(x− x∗)). Clearly φ is
differentiable andφ ′(t) = F ′(x∗+ t(x−x∗))(x−x∗). Then

F(x)−F(x∗) = φ(1)−φ(0) =
∫ 1

0
F ′(x∗+ t(x−x∗))(x−x∗)dt.

Therefore

F(x∗)−F(x)−F ′(x)(x∗−x) =
∫ 1

0

(

F ′(x∗+ t(x−x∗))−F ′(x)
)

(x∗−x)dt
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and hence

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤
∫ 1

0
‖F ′(x∗+ t(x−x∗))−F ′(x)‖‖x−x∗‖dt.

Let us first prove(i). By (8), we get
∫ 1

0
‖F ′(x∗+ t(x−x∗))−F ′(x)‖‖x−x∗‖dt ≤‖x−x∗‖

∫ 1

0

∫ ‖x−x∗‖

t‖x−x∗‖
L(u)dudt. (13)

Note that in general, settingΓ(u) =
∫ u

0 L(v)dv, it follows
∫ 1

0

(

∫ ρ

tρ
L(u)du

)

ρ dt =
∫ 1

0

(

∫ ρ

0
L(u)du−

∫ tρ

0
L(u)du

)

ρ dt

= ρ Γ(ρ)−
∫ 1

0
Γ(tρ)ρ dt

= [uΓ(u)]ρ0 −
∫ ρ

0
Γ(u)du

=

∫ ρ

0
uΓ′(u)du

=

∫ ρ

0
L(u)udu (14)

where we used the change of variablesu = tρ and an integration by parts. Writing the equality
obtained in (14) forρ = ‖x−x∗‖, (13) becomes

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤
∫ ‖x−x∗‖

0
L(u)udu,

so that(i) is proved.
To show that(ii) holds, observe that the center Lipschitz condition (9) implies

‖F ′(x∗+ t(x−x∗))−F ′(x)‖ ≤ ‖F ′(x∗+ t(x−x∗))−F ′(x∗)‖+‖F ′(x∗)−F ′(x)‖

≤
∫ t‖x−x∗‖

0
L(u)du+

∫ ‖x−x∗‖

0
L(u)du

Reasoning as in the previous case and using the same notations it follows

‖F(x∗)−F(x)−F ′(x)[x∗−x]‖ ≤
∫ 1

0
Γ(tρ)ρ dt +Γ(ρ)ρ

=
∫ ρ

0
Γ(u)du+Γ(ρ)ρ

=
∫ ρ

0
Γ(u)du+

[

(2ρ −u)Γ(u)
]ρ

0

=

∫ ρ

0
(2ρ −u)Γ′(u)du

=

∫ ‖x−x∗‖

0
(2‖x−x∗‖−u)L(u)du.
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The following Propositions are a direct consequence of Lemma 2.2 in [30], and have already
been stated in a slightly different form in [31]. We include the proofs for the sake of completeness.

Proposition 2. Given L: [0,R)→ R a continuous, positive and increasing function, the function
γλ defined by setting

γλ : [0,R)→ R, γλ (r) =



















1

r1+λ

∫ r

0
uλ L(u)du if r ∈ (0,R)

L(0)
1+λ

if r = 0,

(15)

is well-defined, continuous, positive and increasing for all λ ≥ 0. Moreoverγλ is constant and
equal to L/(1+λ ) if L is constant, and it is strictly increasing if L is strictly increasing. Finally
the following inequality holds for every r∈ [0,R)

(1+λ )γλ (r)≤ L(r). (16)

Proof. Clearlyγλ is differentiable on(0,R) since it is a product of differentiable functions and by
definition

r1+λ γλ (r) =
∫ r

0
uλ L(u)du. (17)

Differentiating both members of (17), it follows

(1+λ )rλ γλ (r)+ r1+λ γ ′λ (r) = rλ L(r),

therefore
rγ ′λ (r) = L(r)− (1+λ )γλ (r), (18)

Thus, if we prove (16) we also get thatγλ (r) is increasing. To this aim, taking into account thatL
is increasing, we have

r1+λ γλ (r) =
∫ r

0
uλ L(u)du≤

∫ r

0
uλ L(r)du=

r1+λ

1+λ
L(r) (19)

from which (16) follows. Note that ifL is strictly increasing the inequality in (19) is strict, there-
fore in this case, recalling (18),γ ′λ (r) > 0 on (0,R). On the other hand, ifL is constant the
inequality in (19) is indeed an equality andγ ′λ (r) = 0 by (18) implying thatγλ is constant on
(0,R). The continuity ofγλ at 0 follows by L’Hospital’s rule. In fact, using thatL is continuous at
0:

lim
r→0

γλ (r) = lim
r→0

∫ r
0 uλ L(u)du

r1+λ = lim
r→0

rλ L(r)

(1+λ )rλ =
L(0)
1+λ

.

Using the functionγ0 introduced in Proposition 2 the center Lipschitz conditionwith L average
can be written in the following form, resembling the classical definition of Lipschitz continuity

‖ f (x)− f (x∗)‖ ≤ γ0(‖x−x∗‖)‖x−x∗‖.
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Proposition 3. Under the assumptions of Proposition 2, the function

γc : [0,R)→ R, γc(r) =



















1
r2

∫ r

0
(2r −u)L(u)du if r ∈ (0,R)

3L(0)
2

if r = 0,

(20)

is well-defined, continuous, positive and increasing.

Proof. The definition ofγc immediately implies

r2γc(r) =
∫ r

0
(2r −u)L(u)du= 2r

∫ r

0
L(u)du−

∫ r

0
uL(u)du (21)

and differentiating both members of (21)

2rγc(r)+ r2(γc)′(r) = 2
∫ r

0
L(u)du+ rL(r)

Dividing by r, and using the notations of Proposition 2, we obtain

r(γc)′(r) = 2(γ0(r)− γc(r))+L(r).

Therefore, in order to prove thatγc is increasing we just need to show that

2γc(r) ≤ 2γ0(r)+L(r). (22)

In fact, using the definitions of the functionsγc andγ0 and the monotonicity ofL we have:

2r2γc(r) = 2
∫ r

0
rL(u)du+2

∫ r

0
(r −u)L(u)du

≤ 2r2γ0(r)+2L(r)
∫ r

0
(r −u)du

= 2r2γ0(r)+ r2L(r),

that clearly implies (22). The continuity ofγc at 0 can be deduced as follows

lim
r→0

γc(r) = lim
r→0

2γ0(r)− γ1(r) = 2L(0)− L(0)
2

=
3
2

L(0).

relying on the continuity ofγ0 andγ1 proved in Proposition 2.

Remark 2. Using the functionsγ0,γ1 and γc introduced in (15) and in (20), the inequality (9)
written for F ′ becomes

‖F ′(x)−F ′(x∗)‖ ≤ γ0(‖x−x∗‖)‖x−x∗‖.

The inequalities (11) and (12) can be written respectively as

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤ γ1(‖x−x∗‖)‖x−x∗‖2 (23)
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and

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖ ≤ γc(‖x−x∗‖)‖x−x∗‖2, (24)

that generalize the inequality (10).
Note moreover that the functionsrγ0(r), r2γ1(r) andr2γc(r) are always strictly increasing and

if L is a constant function equal toL, then

γ0(r) = L, γ1(r) =
L
2
, γc(r) =

3
2

L.

Remark 3. It is worth noting that, even though only a Gâteaux differentiability has been required,
the previous inequalities together with the hypothesis on the functionL implies Fréchet differen-
tiability at x∗.

3.2 Generalized inverses

In this section we collect some well-known results regarding theMoore-Penrose generalized in-
verse(also known aspseudoinverse) A† of a linear operatorA. They will be useful in the rest of
the paper. For the definition and a comprehensive analysis ofthe properties of the Moore-Penrose
inverse we refer the reader to [17].

Assume thatA ∈ L(X,Y) has a closed range. The pseudoinverse ofA is the linear operator
A† ∈ L(Y,X) defined by means of the four “Moore-Penrose equations”

AA†A= A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A. (25)

Denoting byPN(A) andPR(A) the orthogonal projectors onto the kernel and the range ofA respec-
tively, from the definition it is clear that

A†A= I −PN(A), AA† = PR(A). (26)

In caseA is injective,N(A) = {0} andA†A= I , that isA† is a left inverse ofA. Furthermore, for
eachA∈ L(X,Y) the following statements are equivalent:

• A is injective and the range ofA is closed;

• A∗A is invertible inL(X,X).

and if one of those equivalent conditions is true thenA† = (A∗A)−1A∗ and‖A†‖2 = ‖(A∗A)−1‖.
The following lemma gives a perturbation bound for the Moore-Penrose pseudoinverse, see

[42, 46].

Lemma 1. Let A,B ∈ L(X,Y) with A injective and R(A) closed. If‖(B−A)A†‖ < 1, then B is
injective, R(B) is closed and

‖B†‖ ≤ ‖A†‖
1−‖(B−A)A†‖ .

Moreover
‖B†−A†‖ ≤

√
2‖A†‖‖B†‖‖B−A‖,

and therefore

‖B†−A†‖ ≤
√

2
‖A†‖2‖B−A‖

1−‖A†‖‖B−A‖ .
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3.3 The proximity operator

This section consists of an introduction on proximity operators, which were first introduced by
Moreau in [33], and further investigated in [34, 35] as a generalization of the notion of convex
projection operator. LetH : X → X be a continuous, positive and selfadjoint operator, bounded
from below, and therefore invertible. Then we can define a newscalar product onX by setting
〈x,z〉H = 〈x,Hz〉. The corresponding induced norm‖·‖H is equivalent to the given norm onX,
since the following inequalities hold true

1
‖H−1‖‖x‖2 ≤ ‖x‖2

H ≤ ‖H‖‖x‖2. (27)

TheMoreau-Yosida approximationof a convex and lower semicontinuous functionϕ : X →
R∪{+∞} with respect to the scalar product induced byH is the functionMϕ : X → R defined by
setting

Mϕ(z) = inf
x∈X

{

ϕ(x)+
1
2
‖x−z‖2

H

}

. (28)

For everyz∈ X, the infimum in equation (28) is attained at a unique point, denoted proxHϕ (z).
In this way, an operator

proxH
ϕ : X → X

is defined, which is called theproximity operatorassociated toϕ w.r.t. H. In caseH = I is the
identity, the proximity operator is denoted simply by proxϕ . Writing the first order optimality
conditions for (28), we get

p= proxH
ϕ (z)⇐⇒ 0∈ ∂ϕ(p)+H(p−z)⇐⇒ Hz∈ (∂ϕ +H)(p), (29)

which gives
proxH

ϕ (z) = (H +∂ϕ)−1(Hz).

We remark that the map(H + ∂ϕ)−1 (in principle multi-valued) is single-valued, since we
know that the minimum is attained at a unique point.

Lemma 2. The proximity operatorproxH
ϕ : X → X is Lipschitz with constant

√

‖H‖‖H−1‖ with
respect to‖·‖, namely

‖proxH
ϕ (z1)−proxH

ϕ (z2)‖ ≤
√

‖H‖‖H−1‖‖z1−z2‖. (30)

Proof. Being the proximity operator firmly nonexpansive with respect to the scalar product in-
duced byH (see e.g. Lemma 2.4 in [11]) we have

‖proxH
ϕ (z1)−proxH

ϕ (z2)‖H ≤ ‖z1−z2‖H .

Using the inequalities in (27) relating‖·‖ and‖·‖H we get the desired result.

It is also possible to show that in some cases the computationof the proximity operator with
respect to the scalar product induced byH can be brought back to the computation of the proximity
operator with respect to the original norm. In particular, the following proposition holds.
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Proposition 4. Let A∈ L(X,Y). Let us suppose A to be injective with closed range. Set H= A∗A
and assumeϕ : X → R∪{+∞} a proper, convex and lower semicontinuous functional. Then

proxH
ϕ = A†proxϕ◦A†A

Proof. BeingA injective,H is positive and invertible, thus

proxH
ϕ : X → X proxH

ϕ (x) = argmin
z∈X

{

ϕ(z)+
1
2
‖z−x‖2

H

}

where
‖z−x‖2

H = 〈A∗A(z−x),z−x〉= 〈A(z−x),A(z−x)〉= ‖A(z−x)‖2.

Therefore

proxH
ϕ (x) = argmin

z∈X

{

ϕ(z)+
1
2
‖A(z−x)‖2

}

. (31)

On the other hand, sinceϕ ◦A† : Y → R∪{+∞} is convex and lower semicontinuous the corre-
sponding proximity operator with respect to‖·‖ is well-defined and

proxϕ◦A† : Y →Y proxϕ◦A†(y) = argmin
t∈Y

{

ϕ(A†t)+
1
2
‖t −y‖2

}

If we setx= proxH
ϕ (x), by (31) we obtain

ϕ(x)+
1
2
‖Ax−Ax‖2 ≤ ϕ(z)+

1
2
‖Az−Ax‖2 ∀z∈ X.

Moreover, by settingy= Ax, takingt ∈Y, with t = t1+ t2 such thatt1 ∈ R(A) andt2 ∈ R(A)⊥ and
z= A†t ∈ X, we have

ϕ(A†t)+
1
2
‖t −Ax‖2 = ϕ(A†t)+

1
2
‖t1+ t2−Ax‖2

= ϕ(A†t)+
1
2
‖PR(A)t −Ax‖2+‖t2‖2

≥ ϕ(A†t)+
1
2
‖AA†t −Ax‖2

= ϕ(z)+
1
2
‖Az−Ax‖2

≥ ϕ(x)+
1
2
‖Ax−Ax‖2

= ϕ(A†y)+
1
2
‖y−Ax‖2.

We finally get

y= argmin
t∈Y

{

ϕ(A†t)+
1
2
‖t −Ax‖2

}

= proxϕ◦A†(Ax)

and thus using (26)
proxH

ϕ (x) = x= A†Ax= A†y= A†proxϕ◦A†(Ax).
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Since in the sequel the proximity operators will be computedwith respect to a variable norm
‖·‖H , we are interested in the behavior of the proximity operatorwhenH varies.

Lemma 3. Let H1 and H2 two continuous positive selfadjoint operators on X, both bounded from
below. It holds

‖proxH1
ϕ (z)−proxH2

ϕ (z)‖ ≤ ‖H−1
1 ‖‖(H1−H2)(z−proxH2

ϕ (z))‖. (32)

Proof. By (29) it follows

Hi(z−proxHi
ϕ (z)) ∈ ∂ϕ(proxHi

ϕ (z)), i = 1,2.

Then, by definition of subdifferential the following inequalities hold true

ϕ(proxH2
ϕ (z))≥ϕ(proxH1

ϕ (z))

+ 〈H1(z−proxH1
ϕ (z)),proxH2

ϕ (z)−proxH1
ϕ (z)〉

ϕ(proxH1
ϕ (z)) ≥ϕ(proxH2

ϕ (z))

+ 〈H2(z−proxH2
ϕ (z)),proxH1

ϕ (z)−proxH2
ϕ (z)〉.

Summing up them, we obtain

0≥ 〈H2(z−proxH2
ϕ (z))−H1(z−proxH1

ϕ (z)),proxH1
ϕ (z)−proxH2

ϕ (z)〉,

and equivalently

〈H1proxH1
ϕ (z)−H2proxH2

ϕ (z),proxH1
ϕ (z)−proxH2

ϕ (z)〉 ≤
〈(H1−H2)z,proxH1

ϕ (z)−proxH2
ϕ (z)〉.

Adding and subtracting the same term, the previous inequality can also be written as

〈H1(proxH1
ϕ (z)−proxH2

ϕ (z)),proxH1
ϕ (z)−proxH2

ϕ (z)〉 ≤
〈(H1−H2)(z−proxH2

ϕ (z),proxH1
ϕ (z)−proxH2

ϕ (z)〉,

from which (32) follows.

Note that in the previous lemmaH1 andH2 play a symmetric role, so that they can be inter-
changed.

Remark 4. Combining (30) and (32), we get:

‖proxH1
J z1−proxH2

J z2‖ ≤ ‖proxH1
J z1−proxH1

J z2‖+‖proxH1
J z2−proxH2

J z2‖
≤

(

‖H1‖‖H−1
1 ‖

)1/2‖z1−z2‖ (33)

+‖H−1
1 ‖‖(H1−H2)(z2−proxH2

J z2)‖,

for everyz1,z2 ∈ X andH1,H2 continuous and positive selfadjoint operators onX, bounded from
below.
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4 Setting the minimization problem

In this section we collect some basic properties of the solutions of problem(P). The following
will be standing hypotheses throughout the paper.

(SH)







F : Ω ⊆ X →Y is Gâteaux differentiable

J : X → R∪{+∞} is proper, lower semicontinuous and convex.

Recall thatJ proper means theeffective domaindom(J) := {x∈ X : J(x)<+∞} is nonempty.
Without loss of generality, we shall assumey= 0 in the problem(P), since the general case

can be recovered just by replacingF with F − y. Thus, hereafter, the following optimization
problem will be considered

min
x∈X

1
2
‖F(x)‖2+J(x) := Φ0(x). (P0)

The functionalΦ0 is in general nonconvex and searching for global minimizersturns out to be a
challenging task. Therefore, the focus of this paper is on local minimizers ofΦ0, whose existence
shall be assumed from now on. Generally speaking, Gauss-Newton methods are of a local charac-
ter, and allow to find a local minimizer. As it is well-known alocal minimizer x∗ of Φ0 is a point
such thatx∗ ∈ dom(J)∩Ω and there exists a neighborhoodU of x∗ such thatΦ0(x∗)≤ Φ0(x) for
all x∈U .

By the way, hypotheses(SH) are not enough to guarantee the existence of a global mini-
mizer of the problem(P0). Such existence can be proved relying on the Weierstrass theorem
as soon as we imposeF to be weak to weak continuous andΦ0 (weakly) coercive, namely
lim‖x‖→+∞ Φ0(x) = +∞.

We start by providing first order conditions for local minimizers.

Proposition 5. Suppose(SH) are satisfied and let x∗ ∈ Ω be a local minimizer ofΦ0. Then the
following stationary conditionholds

−F ′(x∗)
∗F(x∗) ∈ ∂J(x∗).

Moreover, if F′(x∗) is injective and R(F ′(x∗)) is closed, then x∗ satisfies thefixed point equation

x∗ = proxH(x∗)
J (x∗−F ′(x∗)

†F(x∗)),

with H(x∗) := F ′(x∗)∗F ′(x∗).

Proof. Suppose thatx∗ is a local minimizer ofΦ0. Denoting byΦ′
0(x∗,v) the directional derivative

of Φ0 atx∗ in the directionv∈X, which exists thanks to(SH), the first order optimality conditions
for x∗ implies

Φ′
0(x∗,v)≥ 0 ∀v∈ X. (34)

As a consequence of the differentiability ofF and the convexity ofJ (34) can be rewritten as

−F ′(x∗)
∗F(x∗)v≤ J′(x,v) ∀v∈ X,
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and consequently, by Proposition 3.1.6 in [9], also as

−F ′(x∗)
∗F(x∗) ∈ ∂J(x∗), (35)

which is the stationary condition of the thesis. To prove that x∗ satisfies the fixed point equation
note that addingH(x∗)x∗ to both members of (35) we have

H(x∗)x∗−F ′(x∗)
∗F(x∗) ∈ (H(x∗)+∂J)(x∗).

SinceH(x∗) is invertible, then the previous equation can be also rewritten as

H(x∗)(x∗−H(x∗)
−1F ′(x∗)

∗F(x∗)) ∈ (H(x∗)+∂J)(x∗).

Recalling equation (29) and the properties enjoyed by the pseudoinverse we obtain the second
assertion.

5 The algorithm - convergence analysis

In this section we state the main result of the paper, consisting in the study of the convergence of
a generalized Gauss-Newton method for solving problem(P0). The flavor is similar to the most
recent results concerning the standard Gauss-Newton method, proved in [31]. We start describing
some basic properties of the proposed algorithmic framework.

Fix x0 ∈ dom(J), and then, givenxn, definexn+1 by setting

xn+1 = argmin
x∈X

1
2
‖F(xn)+F ′(xn)(x−xn)‖2+J(x). (36)

Note that since the quantity inside the norm has been linearized, this problem can be solved explic-
itly, for instance using first order methods for the minimization of nonsmooth convex functions,
such as bundle methods or forward-backward methods (see [19, 11]). Writing down the first order
optimality conditions we will get a similar formula to the one in Proposition 5 for a minimizerx∗.

Proposition 6. Suppose F′(xn) is injective with closed range and set H(xn) = F ′(xn)
∗F ′(xn).

Then, the formula(36)defining xn+1 is equivalent to

xn+1 = proxH(xn)
J (xn−F ′(xn)

†F(xn)). (37)

Proof. Thanks to the assumptions made onF ′(xn) the operatorH(xn) is invertible. Writing the
first order necessary conditions, which are satisfied byxn+1 we obtain

0∈ F ′(xn)
∗[F(xn)+F ′(xn)(xn+1−xn)]+∂J(xn+1)

⇐⇒ F ′(xn)
∗F ′(xn)xn−F ′(xn)

∗F(xn) ∈ (F ′(xn)
∗F ′(xn)+∂J)(xn+1)

⇐⇒ xn+1 = (F ′(xn)
∗F ′(xn)+∂J)−1(F ′(xn)

∗F ′(xn)xn−F ′(xn)
∗F(xn))

⇐⇒ xn+1 = (F ′(xn)
∗F ′(xn)+∂J)−1F ′(xn)

∗F ′(xn)
(

xn−F ′(xn)
†F(xn)

)

⇐⇒ xn+1 = proxH(xn)
j

(

xn−F ′(xn)
†F(xn)

)

14



In the next theorem we provide a local convergence analysis of the proximal Gauss-Newton
method, under the generalized Lipschitz conditions onF ′ introduced in Section 3.1. The proof is
postponed to Section 6.

Theorem 1. Suppose that (SH) are satisfied. Let U⊆ Ω be an open starshaped set with respect to
x∗, where x∗ ∈ dom(J)∩U is a local minimizer ofΦ0. Moreover assume

1. F′(x∗) is injective with closed range;

2. F′ : Ω ⊆ X → L(X,Y) is center Lipschitz continuous of center x∗ with L average on U (L as
in the definition 2 and increasing);

3. [(1+
√

2)κ +1]αβ 2L(0)< 1, whereα = ‖F(x∗)‖,β = ‖F ′(x∗)†‖, κ = ‖F ′(x∗)†‖‖F ′(x∗)‖,
the conditioning number of F′(x∗).

DefineR̄ and q: [0,R̄)→ R+ by settingR̄= sup{r ∈ (0,R) : γ0(r)r < 1/β} and

q(r) =
β

1−βγ0(r)r

{

βγ0(r)γc(r)r2+κγc(r)r
(1−βγ0(r)r)

+
(1+

√
2)αβ 2γ0(r)2r

1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}

.

The function q is continuous and strictly increasing. If we define

r̄ = sup{r ∈ (0,R̄] : q(r) < 1}, (38)

and we fix r∈R, with 0< r ≤ r̄, such that Br(x∗)⊆U, we get that the sequence

x0 ∈ Br(x∗),

xn+1 = proxH(xn)
J

(

xn−F ′(xn)
†F(xn)

)

with H(xn) := F ′(xn)
∗F ′(xn), is well-defined, i.e. xn ∈ Br(x∗) and F′(xn) is injective with closed

range and it holds
‖xn−x∗‖ ≤ qn

0‖x0−x∗‖,
where q0 := q(‖x−x0‖)< 1.
More precisely, the following inequality is true

‖xn+1−x∗‖ ≤C2‖xn−x∗‖2+C1‖xn−x∗‖,

for constants C1 ≥ 0 and C2 > 0 defined as

C1 =
[(1+

√
2)κ +1]αβ 2γ0(ρx0)

(1−βγ0(ρx0)ρx0)
2 ;

C2 =
κβγc(ρx0)+ (1+

√
2)αβ 3γ0(ρx0)

2+β 2γ0(ρx0)γc(ρx0)ρx0

(1−βγ0(ρx0)ρx0)
2 ,

with ρx0 = ‖x−x0‖.
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Since ¯r is chosen as the biggest value ensuringq(r) ≤ 1 (a sufficient condition making the
Gauss-Newton sequence convergent), ¯r can be thought as the radius of the basin of attraction
around the local minimum pointx∗, even though in general we can’t prove the optimality of this
value.

Remark 5. An analogous theorem is true if in the assumption 2 we supposeF ′ to satisfy the
radius Lipschitz condition. All the statements remain true, just replacingγc with γ1. For instance
the expression ofq(r) becomes

q(r) =
β

1−βγ0(r)r

{

βγ0(r)γ1(r)r2+κγ1(r)r
1−βγ0(r)r

+
(1+

√
2)αβ 2γ0(r)2r

1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}

.

Remark 6. The hypotheses we impose are in line with the state-of-art literature about classical
Gauss-Newton method (J = 0), see [31]. It is worth noting that the expression of ¯r is not affected
by the choice ofJ. On the other hand, the presence of the functionJ reduces the radius of con-
vergence of the Gauss-Newton method. Indeed, the expression for r̄ obtained in (38), which is
valid also in the caseJ= 0 is always smaller than the maximum radius of convergence that can be
derived from equation (3.4) in [31], namely

r0 = sup{r ∈ (0,R̄) : q0(r)< 1},

with

q0(r) =
β

1−βγ0(r)r

{

γc(r)r +
√

2βαγ0(r)
}

.

The reason is that the bound (30) we use, is not sharp in caseJ = 0, and this causes an additional
term in the expression ofq(r).

Conditions ensuring quadratic convergence.As in the classical case, also with the additional
term J, for zero residual problems quadratic convergence holds. In fact, from the expression of
C1, we see thatC1 = 0 if α = 0, i.e.F(x∗) = 0.

5.1 The case of constant averageL

In case the functionL is constant, we can derive also an explicit expression for the maximum ray
of convergence ¯r .

Corollary 1. Let the assumptions of Theorem 1 be satisfied and moreover assume F′(x∗) to be
center Lipschitz continuous of center x∗ with constantaverage L on U. Define q: [0,1/(βL)) →
R+ as

q(r) =
β

1−βLr

{

3(βL2r2+κLr)
2(1−βLr)

+
(1+

√
2)αβ 2L2r

1−βLr
+

[(1+
√

2)κ +1]αβL
1−βLr

}

, (39)
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which is continuous and strictly increasing in its domain. If we define

h= [(1+
√

2)κ +1]αβ 2L (< 1),

r̄ =
1

βL



−
(

2+
3κ
2

+(1+
√

2)αβ 2L

)

+

√

(

2+
3κ
2

+(1+
√

2)αβ 2L

)2

+2(1−h)





and we fix r∈R with 0< r ≤ r̄ such that Br(x∗)⊆U the conclusions of Theorem 1 hold with

C1 =
[(1+

√
2)κ +1]αβ 2L

(1−βLρx0)
2 ;

C2 = β
3κ +(1+

√
2)αβ 2L2+3βL2ρx0

2(1−βLρx0)
2 .

Proof. Using the expressions ofγ0 andγc found in Remark 2, one can easily show thatR= 1/(βL)
andq can be written as in (39).

As beforeq is continuous and strictly increasing on the interval[0,1/(βL)), and

q(0) = h< 1, lim
r→1/(βL)

q(r) = +∞.

Therefore ¯r defined in (38) is the unique solution in(0,1/(βL)) of the equationq(r) = 1. We are
going to find that point explicitly by solving the equationq(r) = 1. The latter is equivalent to the
following quadratic equation

z2+(4+3κ +2(1+
√

2)αβ 2L)z−2(1−h) = 0,

with z∈ [0,1), z= βLr. That equation has the two distinct solutions

z=−
(

2+
3
2

κ +(1+
√

2)αβ 2L

)

±

√

(

2+
3
2

κ +2(1+
√

2)αβ 2L

)2

+2(1−h).

Of course, we discard the negative solution, and we keep the one with the plus sign, which can be
easily checked to belong to(0,1).

Along the same line, a similar result concerning the case of radius Lipschitz continuity can be
proved.

Corollary 2. Let the assumptions of Theorem 1 be satisfied and moreover assume F′(x∗) to be
radius Lipschitz continuous of center x∗ with constantaverage L on U. Define q: [0,1/(βL)) →
R+ as

q(r) =
β

1−βLr

{

βL2r2+κLr
2(1−βLr)

+
(1+

√
2)αβ 2L2r

1−βLr
+

[(1+
√

2)κ +1]αβL
1−βLr

}

,

17



which is continuous and strictly increasing in its domain. If we define

h= [(1+
√

2)κ +1]αβ 2L(< 1),

r̄ =
1

βL

[

(

2+
κ
2
+(1+

√
2)αβ 2L

)

−
√

(

2+
κ
2
+(1+

√
2)αβ 2L

)2
−2(1−h)

]

and we fix r∈R with 0< r ≤ r̄ such that Br(x∗)⊆U the conclusions of Theorem 1 hold with

C1 =
[(1+

√
2)κ +1]αβ 2L

(1−βLρx0)
2 ;

C2 = β
κ +(1+

√
2)αβ 2L2+βL2ρx0

2(1−βLρx0)
2 .

for r < 1/(βL).

6 Proof of Theorem 1

We are going to state some auxiliary results for proving convergence of the algorithm discussed
in the previous section. The following proposition will be one of the building blocks to show that
convergence holds.

Proposition 7. Let G: D ⊆ X → X, be a mapping and x∗ ∈ D a fixed point of G. Let U⊆ D be an
open starshaped set with respect to x∗ ∈U. Assume G to satisfy the inequality

‖G(x)−G(x∗)‖ ≤ q(‖x−x∗‖)‖x−x∗‖, for all x ∈U (40)

for a given increasing function q: [0,R)→ [0,+∞), continuous at 0 and such that q(0)< 1. Define

r̄ = sup{r ∈ (0,R) : q(r) < 1}.

Thenr̄ > 0 and given r∈ R with 0< r ≤ r̄ and Br(x∗) ⊆U, it follows G(Br(x∗)) ⊆ Br(x∗), thus,
given x0 ∈Br(x∗) the sequence defined by setting xn+1 =G(xn) is well-defined. Moreover, denoting
q0 = q(‖x0−x∗‖) it holds q0 < 1 and

‖xn+1−x∗‖ ≤ qn
0‖x0−x∗‖.

Proof. First note that ¯r = sup{r ∈ (0,R) : q(r) < 1} > 0 beingq(0) < 1 andq continuous at 0.
Fix r ∈R, 0< r ≤ R̄such thatBr(x∗)⊆U andx∈Br(x∗). Then by definition of ¯r, q(‖x−x∗‖)< 1
and therefore (40) implies that

‖G(x)−x∗‖ ≤ ‖x−x∗‖< r,

i.e. G(x) ∈ Br(x∗). ThusG(Br(x∗))⊆ Br(x∗) and a sequence can be defined inBr(x∗) by choosing
x0 ∈ Br(x∗) and settingxn+1 = G(xn). Being‖xn−x∗‖< r̄, again from the definition of ¯r we have
q(‖xn−x∗‖)< 1, and from (40) we get

‖xn+1−x‖= ‖G(xn)−x∗‖ ≤ q(‖xn−x∗‖)‖xn−x∗‖< ‖xn−x∗‖.
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This implies thatq(‖xn+1−x∗‖)≤ q(‖xn −x∗‖), sinceq is increasing. Therefore, denotingq(‖x0−x∗‖)=:
q0 we getq(‖xn−x∗‖)≤ q0 < 1 for all n∈ N and

‖xn+1−x∗‖ ≤ q(‖xn−x∗‖)‖xn−x∗‖ ≤ q0‖xn−x∗‖ ≤ . . .≤ qn
0‖x0−x∗‖.

We now introduce some notations, allowing for rewriting theconditions which have been
described in Proposition 5 for a local minimizer ofΦ0. DefineG andG̃ by setting

G(x) = x−F ′(x)†F(x) and G̃(x) = proxH(x)
J (G(x)), (41)

whereH(x) = F ′(x)∗F ′(x). The domain ofG andG̃ is the subsetD of Ω defined as

D = {x∈ Ω : F ′(x) is injective andR(F ′(x)) is closed}. (42)

If x∗ ∈ D is a local minimizer of (P0) the fixed point equation of Proposition 5 can be restated
by saying thatx∗ is a fixed point forG̃, namely

x∗ = G̃(x∗). (43)

Proposition 8. Assume(SH) and let x∗ be a local minimizer ofΦ0 belonging to D. Suppose that
U ⊆ Ω is open and starshaped with respect to x∗. Moreover assume

i) F ′ : Ω ⊆ X → L(X,Y) is center Lipschitz continuous of center x∗ with L : [0,R) → R+

average on U⊆ Ω;

ii) α = ‖F(x∗)‖, β = ‖F ′(x∗)†‖ andκ = ‖F ′(x∗)†‖‖F ′(x∗)‖.

Then, definingR̄ by setting

R̄= sup{r ∈ (0,R) : γ0(r)r < 1/β}

it follows that for all r∈R with 0< r ≤ R̄ and Br(x∗)⊆U, G̃ satisfies

‖G̃(x)−x∗‖ ≤ q(‖x−x∗‖)‖x−x∗‖,

for all x ∈ Br(x∗), where q: [0,R̄)→ R+ is defined as

q(r) =
β

1−βγ0(r)r

{

βγ0(r)γc(r)r2+κγc(r)r
(1−βγ0(r)r)

+
(1+

√
2)αβ 2γ0(r)2r

1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}

and it is continuous and strictly increasing.
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Proof. Sincex∗ is a local minimizer ofΦ0 andx∗ ∈D, with D defined as in (42),x∗ is a fixed point
of G̃ (see (43)), therefore

G(x∗)−proxH(x∗)
J G(x∗) = G(x∗)−x∗ = F ′(x∗)

†F(x∗). (44)

Fix r ∈ R, with 0< r ≤ R̄ such thatBr(x∗) ⊆ U and takex∈ Br(x∗). Adopting the notations of
Proposition 2, as noted in Remark 2, from the center Lipschitz hypothesis we get

‖F ′(x)−F ′(x∗)‖‖F ′(x∗)
†‖ ≤ γ0(‖x−x∗‖)‖x−x∗‖β .

Recalling that Remark 2 ensures that the functionρ 7→ ργ0(ρ) is continuous, strictly increasing
and takes value 0 in 0, we have thatR̄> 0 and

‖F ′(x)−F ′(x∗)‖‖F ′(x∗)
†‖< βγ0(r)r ≤ 1,

and thus applying Lemma 1,F ′(x) is injective, with closed range, and

‖F ′(x)†‖ ≤ β
1−βγ0(ρx)ρx

, where ρx = ‖x−x∗‖. (45)

Applying inequality (33) withH1 = H(x), H2 = H(x∗), z1 = G(x) andz2 = G(x∗), and taking into
account (44) we get

‖G̃(x)−x∗‖= ‖proxH(x)
J (G(x))−proxH(x∗)

J (G(x∗))‖

≤
(

‖H(x)‖‖H(x)−1‖
)1/2‖G(x)−G(x∗)‖

+‖H(x)−1‖
∥

∥(H(x)−H(x∗))
(

G(x∗)−proxH(x∗)
J G(x∗)

)∥

∥

=
(

‖H(x)‖‖H(x)−1‖
)1/2‖G(x)−G(x∗)‖

+‖H(x)−1‖‖(H(x)−H(x∗))F
′(x∗)

†F(x∗)‖. (46)

Moreover

‖H(x)‖= ‖F ′(x)∗F ′(x)‖= ‖F ′(x)‖2

‖H(x)−1‖= ‖[F ′(x)∗F ′(x)]−1‖= ‖F ′(x)†‖2.

Recalling the properties of the Moore-Penrose generalizedinverse in (26) and Lemma 1 we get

(H(x)−H(x∗))F
′(x∗)

† = (F ′(x)∗F ′(x)−F ′(x∗)
∗F ′(x∗))F

′(x∗)
†

= F ′(x)∗F ′(x)F ′(x∗)
†−F ′(x∗)

∗F ′(x∗)F
′(x∗)

†

= F ′(x)∗F ′(x)F ′(x∗)
†−F ′(x)∗PR(F ′(x∗))

+F ′(x)∗PR(F′(x∗))−F ′(x∗)
∗PR(F ′(x∗))

= F ′(x)∗(F ′(x)−F ′(x∗))F
′(x∗)

†

+(F ′(x)−F ′(x∗))
∗PR(F ′(x∗)),
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therefore,

‖(H(x)−H(x∗))F
′(x∗)

†‖ ≤
(

‖F ′(x)‖‖F ′(x∗)
†‖+1

)

‖F ′(x)−F ′(x∗)‖. (47)

Hence, substituting in (46) the bound derived in (47) we obtain

‖G̃(x)−x∗‖ ≤ ‖F ′(x)‖‖F ′(x)†‖‖G(x)−G(x∗)‖ (48)

+‖F ′(x)†‖2(‖F ′(x)‖‖F ′(x∗)
†‖+1

)

‖F ′(x)−F ′(x∗)‖‖F(x∗)‖.

On the other hand, thanks to the properties of the Moore-Penrose pseudoinverse reported in (26)
and the injectivity ofF ′(x)

G(x)−G(x∗) = x−x∗−F ′(x)†F(x)+F ′(x∗)
†F(x∗)

= F ′(x)†[F ′(x)(x−x∗)−F(x)+F(x∗)]

+ (F ′(x∗)
†−F ′(x)†)F(x∗)

and thus, using Lemma 1

‖G(x)−G(x∗)‖ ≤ ‖F ′(x)†‖‖F(x∗)−F(x)−F ′(x)(x∗−x)‖

+‖F ′(x∗)
†−F ′(x)†‖‖F(x∗)‖

≤ ‖F ′(x)†‖‖F(x∗)−F(x)−F ′(x)(x∗−x)‖

+
√

2‖F ′(x)†‖‖F ′(x∗)
†‖‖F ′(x)−F ′(x∗)‖‖F(x∗)‖

= ‖F ′(x)†‖
{

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖

+
√

2‖F ′(x∗)
†‖‖F(x∗)‖‖F ′(x)−F ′(x∗)‖

}

(49)

Substituting (49) in (48)

‖G̃(x)−x∗‖ ≤ ‖F ′(x)†‖2
{

‖F ′(x)‖
(

‖F(x∗)−F(x)−F ′(x)(x∗−x)‖

+(1+
√

2)‖F ′(x∗)
†‖‖F(x∗)‖‖F ′(x)−F ′(x∗)‖

)

(50)

+‖F ′(x)−F ′(x∗)‖‖F(x∗)‖
]

}

Taking into account Remark 2, we can rewrite inequality (50)as

‖G̃(x)−x∗‖

≤ ‖F ′(x)†‖2
{

‖F ′(x)‖
[

γc(ρx)ρ2
x +(1+

√
2)‖F ′(x∗)

†‖‖F(x∗)‖γ0(ρx)ρx

]

+‖F(x∗)‖γ0(ρx)ρx

}

To find a bound for the quantity‖F ′(x)‖, recall thatκ is the conditioning number ofF ′(x∗),
i.e. κ := ‖F ′(x∗)†‖‖F ′(x∗)‖, and by the triangular inequality and Remark (2) we get‖F ′(x)‖ ≤
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‖F ′(x)−F ′(x∗)‖+‖F ′(x∗)‖ ≤ γ0(ρx)ρx+κ/β . Thus, recalling (45), we finally obtain

‖G̃(x)−x∗‖

≤ β 2

(1−βγ0(ρx)ρx)
2

{

(γ0(ρx)ρx+κ/β )
[

γc(ρx)ρ2
x +(1+

√
2)βαγ0(ρx)ρx

]

+αγ0(ρx)ρx

}

,

or, equivalently

‖G̃(x)−x∗‖ ≤
β

1−βγ0(ρx)ρx

{

βγ0(ρx)γc(ρx)ρ2
x +κγc(ρx)ρx

1−βγ0(ρx)ρx

+
(1+

√
2)αβ 2γ0(ρx)

2ρx

1−βγ0(ρx)ρx
+

[(1+
√

2)κ +1]αβγ0(ρx)

1−βγ0(ρx)ρx

}

ρx

= q(‖x−x∗‖)‖x−x∗‖,

where we set

q(r) =
β

1−βγ0(r)r

{

βγ0(r)γc(r)r2+κγc(r)r
(1−βγ0(r)r)

+
(1+

√
2)αβ 2γ0(r)2r

1−βγ0(r)r

+
[(1+

√
2)κ +1]αβγ0(r)

1−βγ0(r)r

}

Finally, it is easy to prove thatq is continuous and strictly increasing relying on Remark 2.

Proof of Theorem 1
Let G andG̃ be defined as in (41) and definēR andq as in Proposition 8. Now fixr < r̄ such

thatBr(x∗)⊆U . Then, thanks to hypothesis 3), it is possible to apply Proposition 7 and to get the
first part of the thesis. Finally, relying on the structure ofthe functionq shown in Proposition 8,
and denotingρx0 = ‖x−x0‖, the expression of the constantsC1,C2 easily follows.

7 Applications

Algorithm (37) is a two-steps algorithm, consisting of the classical Gauss-Newton step followed
by a “J-projection” in a variable metric. In this section the general framework shall be specialized
to solve constrained nonlinear systems of equations in the least squares sense. We remark that due
to hypotheses of Theorem 1 we are dealing with regular problems in the sense of Bakushinskĭı
and Kokurin [5]. In the finite dimensional case this implies the number of equations to be greater
than the number of unknowns. This subject has been studied in[6, 24, 22, 43] (see also references
therein). Denoting byC a closed and convex subset ofX, we consider the problem

min
x∈C

‖F(x)‖2, (51)
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which can be cast in our framework by settingJ(x) = ιC(x), whereιC denotes the indicator function
of the setC, i.e. ιC(x) = 0 for x∈C andιC(x) =+∞ otherwise. The proximity operator ofιC with
respect toH(xn) = F ′(xn)

∗F ′(xn), turns out to be the projection ontoC w.r.t. the metric defined by
H(xn), and therefore algorithm (37) reads as follows

xn+1 = PH(xn)
C (xn−F ′(xn)

†F(xn)). (52)

Since in general a closed form of the projection operator is not available, a further algorithm
is needed for solving the projection task, which adds an inner iteration to the main procedure.
We choose theforward-backward algorithm[11]. Though there are many other methods for that
purpose, we do not carry out any comparison among them, because this is beyond the scope of the
present paper. By definition of proximity operator, givenH = A∗A, A injective with closed range,
we have

PH
C (z) = proxH

ιC(z)

= argmin
{

ιC(v)+
1
2
‖v−z‖2

H

}

= argmin
{

ιC(v)+
1
2
‖Av−Az‖2

}

.

If PC denotes the projection onto the convex setC, now with respect to the original metric of the
spaceX, the sequence defined by

v0 ∈ X

vk+1 = PC(vk−σH(vk−z)),

with σ ≤ 2/‖A‖2, is strongly convergent to the pointPH
C (z) [39]. Eventually, the full algorithm is























x0 ∈C

zn = xn−F ′(xn)
†F(xn)

[

v0,n ∈C, σn ≤ 1/2‖F ′(xn)‖2

vk+1,n = PC(vk,n−σnF
′(xn)

∗F ′(xn)(vk,n−zn))

xn+1 = lim
k

vk,n.

(53)

It is worth noting that the inner iteration is not required whenzn belongs toC. Indeed, in that case,
the projection leaveszn untouched and the full step of the algorithm (52) reduces to the classical
Gauss-Newton step. Such situation asymptotically occurs whenx∗ is internal toC.

Algorithm (53) requires explicit evaluation of the projection PC, which can be done for simple
sets, like spheres, boxes, etc. Particularly relevant fromthe point of view of the applications — see
[6] and references therein — is the case of box constraints inR

n. We point out that whenPC can
be computed explicitly the algorithm generates a sequence of feasible points, no matter when the
inner iteration is stopped. This feature can be useful in forcing the sequence of iterates to remain
in regions where the function is well-behaved, avoiding theGauss-Newton step to lead to sites
where the derivative is ill-conditioned.
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8 Numerical experiments

This section summarizes the results of the numerical experiments we carried out in order to verify
the effectiveness of algorithm (53) for solving real-life constrained nonlinear least-squares prob-
lems. In particular, we consider the case of box constraints, namely

min
x∈Rn

‖F(x)−y‖2, a≤ x≤ b,

wherea andb are inR
n
, a≤ b andC= ∏n

i=1[ai ,bi ], F : Ω ⊇C → R
m.

The aim of the tests is to illustrate the behavior of our algorithm on some representative exam-
ples and show that it can be successfully applied to real problems. The algorithm is implemented
in MatLab, and the convergence tests

‖xn+1−xn‖< ε , ‖vk+1,n−vk,n‖< ε

are used with precisionε = 10−12.
We remark that the implementation of the algorithm (53) computes the projection only ap-

proximately, meaning that the internal iteration is stopped either because the required precision
has been attained or because an a priori fixed maximum number of iterations has been reached.
For this reason, the projection step depends on the algorithm selected to that aim and the forward-
backward algorithm is just one choice among several possibilities. Furthermore, the number of
evaluations ofF andF ′ depends only on the number of outer iterations. Therefore weprovide just
the number of outer iterations needed to reach the target precision as a measure of our method’s
performance. Yet, the number of inner iterations does affect the number of outer iterations. In
fact, in our experiments we observed that, even though the algorithm is quite robust with respect
to errors in the computation of the projection, the number ofouter iterations can increase if the
required inner precision is not attained (inner iterationsreach the maximum allowed).

The experiments are performed on some standard small residual test problems. One group of
them is taken from [15] and a second group comes from the extensive library NLE [41], which is
accessible through the web site:www.polymath-software.com/library. We considered only
problems for which the solution (or a good estimate of it) is known in advance and for which
the Gauss-Newton method is known to be effective — since our proposal in fact extends the
classical one. The problems we select in the first group areRosenbrock, Osborne1, Osborne2
[32] andKowalik [23]. They are actually unconstrained problems, to which weadded some box
constraints set up in order to make the provided solution fall on the boundary of the box (faces,
edges, vertices, etc.). Besides, on Rosenbrock’s example we tried out our method also in case the
global minimizer is kept outside the fixed box.

The remaining problems,Twoeq6 andTeneq1b, come as truly constrained and are labeled as
“higher difficulty level” in the NLE library. Unlike the firstgroup, here the constrained minimizers
of Twoeq6 andTeneq1b lie in the interior of the feasible set. Observe in addition that the given
constraints define a convex set that is not closed. More specifically, in Teneq1b example, the
feasible region is the positive orthant ofR10, excluding four coordinate hyperplanes where the
first derivative is undefined. We overcome this difficulty by shrinking slightly the feasible region
of a small amountδ

Cδ =
{

(x1, . . . ,x10) : xi ≥ δ for i = 1, . . . ,4, xi ≥ 0 for i ≥ 5
}

,
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and solving the problem in the closed and convex setCδ with δ = 0.0001. The same trick has
been used also for solving problemTwoeq6 too.

The experimental protocol is different for the two test groups: in the former group, 20 points
belonging to the box are randomly chosen as initial guesses and the average number of required
iterations is provided; whereas in the latter one the algorithm is fed with two critical initializations
reported in the NLE’s problem description. The results are collected in Table 1.

In all tests the algorithm reached the solution up to the required precision, and we did not detect
any significant variation in the number of iterations depending on the starting points. Along the
path we checked the condition number ofF ′, observing that it always keeps bounded from above,
the problem thus remaining well-conditioned. In case ofOsborne2, we saw that the classical
Gauss-Newton method does not converge for some initializations, due to ill-conditioning of the
derivativeF ′. We were able to correct this behavior by setting the constraints properly around the
known minimizer.

9 Conclusions

This paper shows that the local theory on the convergence of the Gauss-Newton method can be
extended to deal with the more general case of least squares problems with a convex penalty.
The main theoretical result demonstrates that, under weak Lipschitz conditions on the derivative,
convergence rates analogous to those existing for the standard case can be derived. An explicit
formula for the radius of the convergence ball is also provided. A valuable application we propose
concerns nonlinear equations with constraints. Our algorithm has been found effective and robust
in solving such problems as shown in several numerical tests. Both the cases of solutions on the
boundary of the feasible set as well as solutions in its interior as been treated successfully.

AcknowledgementsWe are grateful to Alessandro Verri for his constant supportand advice. We
further thank Curzio Basso for carefully reading our paper.
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Table 1: Results of numerical experiments on the test problems specified in the first column for
the box constraints given bya andb with starting pointx0. The pointx∗ is the detected minimizer,
which we show with five digits precision for conciseness.
Function n m a b x0 x∗ avg. n. iter.

Rosenbrock 2 2

[

−3
−2

] [

3
0.8

]

20 random

[

0.89475
0.80000

]

7

Kowalik 4 11









0.1928
0.1916
0.1234
0.1362

















1
1
1
1









20 random









0.19281
0.19165
0.12340
0.13620









7

Osborne1 5 31













0.3754
1
−2

0.01287
0

























1
2
0
1
1













20 random













0.37546
1.93569
−1.46461
0.01287
0.02212













21

Osborne2 11 65







































1.31
0.4314
0.6336

0.5
0.5
0.6
1
4
2

4.5689
5













































































1.4
0.8
1
1
1
3
5
7

2.5
5
6







































20 random







































1.31000
0.43157
0.63367
0.59941
0.75423
0.90423
1.36573
4.82393
2.39867
4.56890
5.67535







































17

Twoeq6 2 2

[

0.0001
0.0001

] [

0.9999
+∞

] [

0.9
0.5

][

0.6
0.1

] [

0.75739
0.02130

]

20

Teneq1b 10 10

































0.0001
0.0001
0.0001
0.0001

0
0
0
0
0
0

































































+∞
+∞
+∞
+∞
+∞
+∞
+∞
+∞
+∞
+∞

































































1
1
20
1
0
0
0
0
0
1

































































2
5
40
1
0
0
0
0
0
5

































































2.99763
3.96642
79.99969
0.00236
0.00060
0.00136
0.06457
3.53081
26.43154
0.00449
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