Skip to main content
Log in

Inexact projected gradient method for vector optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this work, we propose an inexact projected gradient-like method for solving smooth constrained vector optimization problems. In the unconstrained case, we retrieve the steepest descent method introduced by Graña Drummond and Svaiter. In the constrained setting, the method we present extends the exact one proposed by Graña Drummond and Iusem, since it admits relative errors on the search directions. At each iteration, a decrease of the objective value is obtained by means of an Armijo-like rule. The convergence results of this new method extend those obtained by Fukuda and Graña Drummond for the exact version. For partial orders induced by both pointed and nonpointed cones, under some reasonable hypotheses, global convergence to weakly efficient points of all sequences generated by the inexact projected gradient method is established for convex (respect to the ordering cone) objective functions. In the convergence analysis we also establish a connection between the so-called weighting method and the one we propose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, C.D., Florenzano, M., Martins da Rocha, V.F., Tourky, R.: Equilibrium analysis in financial markets with countably many securities. J. Math. Econ. 40(6), 683–699 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliprantis, C.D., Florenzano, M., Tourky, R.: General equilibrium analysis in ordered topological vector spaces. J. Math. Econ. 40(3–4), 247–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagchi, U.: Simultaneous minimization of mean and variation of flow time and waiting time in single machine systems. Oper. Res. 37, 118–125 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  5. Burachik, R., Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: Full convergence of the steepest descent method with inexact line searches. Optimization 32, 137–146 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carrizosa, E., Frenk, J.B.G.: Dominating sets for convex functions with some applications. J. Optim. Theory Appl. 96, 281–295 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eschenauer, H., Koski, J., Osyczka, A.: Multicriteria Design Optimization. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  8. Fliege, J.: OLAF—A general modeling system to evaluate and optimize the location of an air polluting facility. OR Spektrum 23, 117–136 (2001)

    Article  MATH  Google Scholar 

  9. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51(3), 479–494 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, Y., Diwekar, U.: An efficient sampling approach to multiobjective optimization. Math. Methods Oper. Res. 132, 109–134 (2004)

    MATH  Google Scholar 

  12. Fukuda, E.H., Graña Drummond, L.M.: On the convergence of the projected gradient method for vector optimization. Optimization 60(8–9), 1009–1021 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems. Comput. Optim. Appl. 28(1), 5–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Graña Drummond, L.M., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method in vector optimization. Math. Program. 111(1–2) (2008)

  16. Graña Drummond, L.M., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for vector optimization. Optimization (2012). doi:10.1080/02331934.2012.693082

    Google Scholar 

  17. Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jahn, J.: Mathematical Vector Optimization in Partially Ordered Linear Spaces. Verlag Peter D. Lang, Frankfurt (1986)

    MATH  Google Scholar 

  19. Jahn, J.: Vector Optimization—Theory, Applications and Extensions. Springer, Erlangen (2003)

    Google Scholar 

  20. Jüschke, A., Jahn, J., Kirsch, A.: A bicriterial optimization problem of antenna design. Comput. Optim. Appl. 7(3), 261–276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leschine, T., Wallenius, H., Verdini, W.: Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions. Eur. J. Oper. Res. 56, 278–289 (1992)

    Article  Google Scholar 

  22. Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55(1), 85–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luc, D.T.: Theory of Vector Optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  24. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic, Norwell (1999)

    MATH  Google Scholar 

  25. Palermo, G., Silvano, C., Valsecchi, S., Zaccaria, V.: A System-Level Methodology for Fast Multi-Objective Design Space Exploration. ACM, New York (2003)

    Google Scholar 

  26. Prabuddha, D., Ghosh, J., Wells, C.: On the minimization of completion time variance with a bicriteria extension. Oper. Res. 40, 1148–1155 (1992)

    Article  MATH  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)

    MATH  Google Scholar 

  29. Tavana, M.: A subjective assessment of alternative mission architectures for the human exploration of Mars at NASA using multicriteria decision making. Comput. Oper. Res. 31, 1147–1164 (2004)

    Article  MATH  Google Scholar 

  30. White, D.J.: Epsilon-dominating solutions in mean-variance portfolio analysis. Eur. J. Oper. Res. 105, 457–466 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for their helpful comments. This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (grant 2010/20572-0), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (grant Cientistas do Nosso Estado 2008) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Universal grant 480101/2008-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen H. Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, E.H., Graña Drummond, L.M. Inexact projected gradient method for vector optimization. Comput Optim Appl 54, 473–493 (2013). https://doi.org/10.1007/s10589-012-9501-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9501-z

Keywords

Navigation