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Abstract In this paper we propose a crash-start technique for interior point
methods applicable to multi-stage stochastic programming problems. The main
idea is to generate an initial point for the interior point solver by decomposing
the barrier problem associated with the deterministic equivalent at the sec-
ond stage and using a concatenation of the solutions of the subproblems as
a warm-starting point for the complete instance. We analyse this scheme and
produce theoretical conditions under which the warm-start iterate is success-
ful. We describe the implementation within the OOPS solver and the results
of the numerical tests we performed.

Keywords Stochastic Programming, Interior Point Methods, Warm-starting

1 Introduction

Stochastic Programming Problems [5,17] are frequently solved by formulating
the deterministic equivalent and applying a standard solver to the resulting
problem. However for problems formulated over large scenario sets, and in par-
ticular for multistage problems, the deterministic equivalent quickly reaches
enormous sizes. Due to the special structure of these problems, they can still
be efficiently solved by either approaches based on Benders Decomposition
[3,19,24] or by structure exploiting Interior Point Methods (IPM) [6,13,23].
Common to these approaches is that they obtain the deterministic equiva-
lent by discretising the (in general) continuous distribution of the underlying
uncertain parameters. An appealing idea is therefore to work initially with
a coarser discretisation of the probability distribution (leading to a smaller
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problem) and using its solution to crash-start the full problem. Despite seem-
ing an obvious approach, this seems to be a novel idea; probably the reason
for this is that both Benders Decomposition and IPM have difficulties in ex-
ploiting an advanced crash-start point efficiently. In a previous work [7], the
authors have introduced a crash-start approach for stochastic programming
based on solving a reduced problem which contains only a trivial fraction of
the scenarios. That work provided measurable evidence that a crash-starting
scheme based on solving reduced trees within IPMs is workable and leads to
measurable efficiency gains.

The approach described in [7] is efficient albeit crude. One of its draw-
backs is that the initial point, built from a reduced scenario tree, may be far
away from primal-dual feasibility in some of the subproblems. This is particu-
larly the case for trees that are wide and deep, as the representative scenario
may not be able to convey all the information of the sub-tree from which it
is chosen. On the other hand, a primal or dual feasible point can be easily
constructed by performing a single iteration of a decomposition scheme such
as Benders Decomposition or Langragian Relaxation. This has already been
used to construct a crash-start point for network flow problems in [11].

In this paper we combine the two ideas: In a first step the problem is solved
on a reduced scenario tree to obtain estimates for the first stage decision.
These are then used in a second step to solve recourse problems for each
scenario, effectively performing half an iteration of Benders Decomposition.
From the resulting solutions we construct a crash-start point for the IPM
on the full problem. As constructed the resulting crash-start point is always
primal feasible. We show that under suitable conditions on the proximity of
the reduced scenario tree to the full tree, the resulting crash-start point is
successful as IPM warm-start in the sense of [26,11], that is a full step in the
initial iteration can be taken, absorbing any remaining infeasibility. Numerical
results show that significant performance gains can be obtained through this
scheme.

At this point we should clarify our terminology: This paper is concerned
with the issue of crash-starting an interior point method, that is, finding a
good starting point that is preferable to Mehrotra’s standard starting point
heuristic by making use of the structure of the problem. We will analyse this
method using results from warm-starting IPM in the sense of [26,11], that is
speeding up the solution of the target problem by using an iterate obtained
from the solution process of a nearby problem. In that sense we are applying
IPM warm-starting technology to the problem of finding a good crash-start
point for stochastic programming problems.

The paper is structured as follows. In Section 2 we first review relevant
background for Stochastic Programming and warm-starting of Interior Point
Methods. In Section 3 we introduce the proposed algorithm, which we analyse
in Section 4. In Section 5, we present the numerical results obtained with our
implementation. Finally, in Section 6 we draw our conclusions and highlight
directions of future research.
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2 Stochastic Programming and Interior Point Methods

Stochastic programming [5,17] models uncertainty through the analysis of pos-
sible future scenarios. In stochastic programming, the uncertain environment
is described through a stochastic process which is obtained from historical
data or conjectured according to some prescribed properties. The continuous
process is usually further approximated by a discrete distribution in order to
obtain a computationally amenable description. This is done by generating a
finite, but usually very large, number of scenarios that represent an approx-
imate description of the possible outcomes. The discrete stochastic process
can be represented as an event tree: each node of the tree denotes a point in
time when a realisation of the random process becomes known and a recourse
decision is taken.

A linear two-stage stochastic programming problem can be formalised as

minx c⊤x + IEξ[Q(x, ξ)]
s.t. W0x = h0

x ≥ 0

where Q(x, ξ) = miny c(ξ)⊤y(ξ)
s.t. Tx + W (ξ)y(ξ) = h(ξ)

y(ξ) ≥ 0,
(1)

where the random variable ξ captures the uncertainty. The optimal solution of
problem (1) describes a continuous stochastic process which cannot be solved
for directly: as mentioned above, it has to be discretised and rewritten in a
form which is viable for computation. For our purposes, we rely on the de-
terministic equivalent formulation. To formulate the deterministic equivalent
we adopt the following notation: Let a scenario (πi, ξi) be given by the data
(ci, Wi, hi) = (c(ξi), W (ξi), h(ξi)). A stochastic programming problem is de-
fined by a scenario set (or a tree) T = {(πi, ξi)i}, so that P (T ) denotes the
problem

min c⊤x +
∑

i∈T πic
⊤

i yi, s.t. W0x = h0

Tx + Wiyi = hi, i ∈ T
x, yi ≥ 0.

(P (T ))

We can introduce a multi-stage decision structure by considering several
stages of recourse decisions (x, y1, . . . , yT ) and a tree of scenarios. For the
purposes of this paper we will assume that the stages 2, . . . , T are represented
as one, that is yi in (P (T )) denotes the vector yi = (y1

i , . . . , yT
i ) and the

recourse matrices Wi are structured matrices representing the final T − 1
stages of the problem.

Several solution methods for stochastic linear programs have been pre-
sented in the literature [3,19,24]. These often rely on a variant of Benders’
decomposition, such as the L-shaped method. They do not require the explicit
generation of the deterministic equivalent problem. An entirely different ap-
proach, based on interior point methods, exploits the fact that the augmented
system matrix arising from applying an IPM to the deterministic equivalent of
a large-scale multi-stage stochastic program displays a nested block structure
that can be efficiently exploited in the linear algebra.
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In this paper we adopt a decomposition-like scheme to build a crash-start
iterate that we then use to solve the deterministic equivalent through an inte-
rior point method.

2.1 Interior Point Methods

Consider the linear programming problem in standard form

min c⊤x s.t. Ax = b, x ≥ 0, (2)

where A ∈ Rm×n is full rank, x, c ∈ Rn and b ∈ Rm. For the purposes of this
paper, problem (2) corresponds to the deterministic equivalent generated from
a given event tree T , and we will refer to it as the complete problem. Interior
point methods work with the barrier problem

min c⊤x − µ
∑

lnxi s.t. Ax = b, (3)

instead of (2). Problem (3) is a family of strictly convex problems, parame-
terised by µ > 0, whose unique solution approaches the solution to the original
problem as µ → 0. The trajectory of solutions to (3) for different values of µ
is the central path. Interior point methods apply a damped Newton method to
the optimality conditions of (3), yielding the direction-finding problem





A 0 0
0 A⊤ I
Z 0 X









∆x
∆y
∆z



 =





b − Ax
c − A⊤y − z
−XZe + µe



 =





ξb

ξc

ξµ



 , (4)

which needs to be solved with a specified µ for a search direction (∆x, ∆y, ∆z)
at every iteration.

Path-following methods [25] globalise the Newton iteration by keeping the
iterates in a neighbourhood of the central path, thus follow it in approaching
the optimal solution. A possible choice for the neighbourhood is

N2(θ) = {(x, y, z) : Ax = b, A⊤y−z = c, (x, z) > 0, ‖XZe−µe‖2 ≤ θµ, nµ = x⊤z}

for some θ > 0. For an interior point method to be successful, it is essential
that centrality is maintained throughout the iterations, until the optimal par-
titioning is identified. Approaching a non-optimal vertex too soon can hurt
the performance very badly, as the algorithm will strive to recenter the iterate
before being able to progress towards optimality. For this reason, the choice
of the first iterate is a key issue in an implementation of an interior point
method.

In practice, the starting point is generally computed by Mehrotra’s start-
ing point heuristic [18], which is considered to be computationally effective.
In this heuristic, the starting point is found by solving two least squares prob-
lems which attempt to satisfy primal and dual constraints; this point is then
shifted away from the boundary towards the positive orthant, in order to sat-
isfy (x, z) > 0. Alternatively when a closely related problem has been solved



5

previously, information gained from the solution process of this problem can
be used to construct an initial point for the new instance (a process known
as warmstarting). Unlike the situation for active set methods (such as the
simplex method), when warmstarting IPMs it is not a good idea to use the
solution of the previous problem directly as initial iterate. For IPMs this is
observed to lead to “jamming” [16,12], that is the search direction points out-
side the feasible region leading to very small steps. Theoretical insights [26,
11] suggest that the best warmstart point is near the central path for a not-
too-small value of µ. Further a modification step is necessary that absorbs
any primal-dual infeasibility that may be present in the warmstart point. Let
d = (A, b, c) be the data describing the first problem in sequence, and likewise
d̄ = (Ā, b̄, c̄) = d + (∆A, ∆b, ∆c) for the second problem that is to be warm-
started. Let N2 and N̄2 be corresponding neighbourhoods of the central paths
of the two problems. Further we define a norm ‖d‖ := max(‖A‖2, ‖b‖2, ‖c‖2)
on the space of problem instances. With B be the set of ill-posed (infeasible
or unbounded) problem instances, and ρ(d) = inf{‖∆d‖ : d + ∆d ∈ B} the
distance to ill-posedness we can define the Renegar condition number

C(d) := ‖d‖/ρ(d)

which has been suggested as a useful indicator of the difficulty of a problem
instance when solved by IPM. Then a typical warmstarting result is

Proposition 1 ([26, Prop. 4.2]) Let (x, y, s) ∈ N2(θ0) be given with µ =
xT s/n and suppose that (∆x, ∆y, ∆s) is obtained by a Weighted-Least-Square
modification step. Further let θ > θ0, and ξ ∈ (0, θ − θ0). Assuming that

δbc ≤ θ − θ0 − ξ

(2n + 1)C(d)
and µ ≥ ‖d‖

ξ
4C(d)2δbc,

where δbc = (‖∆c‖2+2C(d)‖∆b‖2)/‖d‖, then (x+∆x, y+∆y, s+∆s) ∈ N̄2(θ).

The above result assumes that ∆A = 0, although similar results can be ob-
tained in the general case. A common strategy in practice is to take a point on
(or near) the central path for the original problem and use this (after a modifi-
cation step) as the warmstart point in the new problem. Different modification
steps have been suggested in [26,11]. The theoretical analysis in Section 4 is
based on using the Weighted Least Squares (WLS) modification step of [26],
although similar results could be obtained for other choices.

3 Decomposition scheme

In the crash-start approach of [7], we build a reduced tree T R, from the event
tree T associated with the problem, by picking a small number of available
scenarios. An approximate solution to the deterministic equivalent correspond-
ing to T R is computed and extended to construct a crash-start iterate for the
complete problem. The advantage of the scheme, apart from its simplicity, is
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that the reduced problem is much smaller than the complete formulation, and
hence much easier to solve. Still, it provides sufficient information to generate
an advanced starting point for the complete problem.

Despite its rather crude nature the scheme of [7] can be surprisingly ef-
ficient, even when using a very low number of scenarios in the reduced tree.
The reason for this seems to be that for many stochastic programming prob-
lems the set of active constraints is very similar for most scenarios. Figure 1
visualises this for some standard two-stage test problems. In these plots each
horizontal line corresponds to a scenario: for each variable within a scenario,
a pale dot was printed if the variable was active at its lower bound at the
optimal solution, a black dot otherwise. Thus, looking vertically, we can spot
the difference in the active set between scenarios. It is striking to see the great

Fig. 1: Active set for problem stocfor2, pltexpA2-16 and fmx2-16.

similarity among all of them for the problems considered. Many of the sce-
narios lead to the same active set, and where there are differences these are
limited to a small fraction of variables. While the crash-start strategy of [7] is
thus typically able to find a good starting point for the majority of scenarios,
a bad guess for even a small number of scenarios can severely hamper the
performance of the scheme. If a crash-start point is close to a constraint that
is not active at the solution, the IPM will need many iterations to move away
from such a misidentified active constraint, an effect that has been described
as “jamming” or “blocking” [16,12]. In order to avoid this we will investigate
a more sophisticated crash-start procedure.

The idea is based on the observation that if we were given the optimal first
stage decision x for problem (P (T )), we could obtain the second stage compo-
nents yi by solving a separate sub-problem for each scenario. The underlying
idea recalls that of Benders’ decomposition.
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3.1 A Decomposition-Based Crash-start Scheme

Given a two-stage stochastic programming problem P (T ) with the associated
scenario set T , we start by considering the corresponding barrier problem:

min c⊤x +
∑

i∈T πic
⊤

i yi − µ
∑

j lnxj − µ
∑

i

∑

j ln yi,j

s.t. Tx + Wiyi = hi, i ∈ T (Pµ(T ))

and its KKT conditions

s +
∑

i

T⊤λi = c (5a)

zi + W⊤
i λi = πici (5b)

Tx + Wiyi = hi (5c)

XSe = µe (5d)

YiZie = µe (5e)

For a given value x̂ of the first stage decisions, the barrier problem Pµ(T )
decomposes into the scenario subproblems

Qi,µ(x̂) = min{πic
⊤

i yi − µ
∑

j

ln yi,j : Wiyi = hi − Tix̂, yi ≥ 0}, (Pi,µ(x̂))

with optimality conditions

W⊤
i λi + zi = πici (6a)

Wiyi = hi − T x̂ (6b)

YiZie = µe (6c)

which together cover the conditions (5b),(5c) and (5e). Conditions (5a) and
(5d) on the other hand reflect on the centrality and optimality of the chosen
x̂.

Thus, if we are given a reasonable central and optimal x̂, ŝ that are good
approximations to the x, s-components of the solution to Pµ(T ), we can use
this to solve subproblems Qi,µ(x̂). Combining x̂, ŝ with the thus obtained
(y∗

i , z∗i , λ∗
i ) for all subproblems yields a primal feasible (5a) and central (5d,e)

approximation (x̄, s̄, ȳ, z̄, λ̄) = (x̂, ŝ, y∗, z∗, λ∗) to the solution of Pµ(T ). Dual
feasibility will depend on the quality of the chosen (x̂, ŝ). In the suggested
scheme we will obtain estimates (x̂, ŝ) by solving Pµ(T R) for a reduced tree
T R. We will show that if T R approximates T sufficiently well, the constructed
crash-start point (x̄, s̄, ȳ, z̄, λ̄) will be in an appropriate N2-neighbourhood for
problem Pµ(T ) and thus a sufficiently good warm-start point by Proposition 1.
The resulting decomposition based crash-start algorithm is summarised as Al-
gorithm 1.

Compared to the approach of [7], this scheme provides directly the part of
the crash-start vector for every node in the tree, and so it does not require a
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Algorithm 1 Decomposition-based warm-start algorithm
Require: The complete event tree T .
1: Generate a reduced event tree T R ⊂ T ; Fix a target µ̄ > 0.
2: Solve the barrier problem on the reduced tree Pµ̄(T R) and obtain first stage decisions

and duals (x̂, ŝ) from it.
3: for i ∈ {second stage nodes of T } do

4: Solve scenario sub-problem Qi,µ̄(x̄) to obtain recourse decisions and duals (y∗

i , z∗i , λ∗

i ).
5: end for

6: Combine these to a crash start iterate (x̄, s̄, ȳ, z̄, λ̄) for the complete problem P (T ).
7: Perform a modification step in the full problem and solve to optimality.

process of “expanding the solution” by copying parts of solution from extra-
neous nodes. As such, we expect it to provide an iterate that is closer to the
central path of the complete problem: by construction the crash-start point
is central and primal feasible, while dual feasibility depends on the quality of
the estimate of the first-stage decisions. We will back up these claims in the
following section.

4 Theoretical analysis

The aim of this section is to state conditions under which the decomposition-
based crash-start procedure is successful. That is we are able to construct a
point that is sufficiently primal–dual feasible and central to satisfy the condi-
tions of Proposition 1. We will assume that the problem is a two-stage problem.

We assume that we have full recourse, so that every scenario sub-problem
is feasible and bounded for all x. Indeed for the technical results we need to
assume more: following the terminology of Section 2.1 we use di(x̂) = (Wi, hi−
T x̂, ci) to denote the problem data of the i-th scenario sub-problem and define
the distance to ill-posedness for problem Pi(x) as

ρ(di(x)) := inf{‖∆d‖ : di + ∆d ∈ B},

with B being the set of “ill-posed” data instances, and we require that

ρ := inf
x

min
i∈T

ρ(di(x)) > 0.

Further we assume that the problem data itself is bounded, i.e. ‖di‖ ≤ ‖d‖,
which gives us the existence of a bound C(d) on the Renegar condition number
C(d) = ‖d‖/ρ(d):

C(di) ≤ C(d), ∀i ∈ T .

In what follows we deal with three types of problems: The full problem P (T ),
the reduced problem P (T R) and the scenario subproblems Pi(x̂). We use the
convention that objects associated with the full problem, the reduced problem
and the scenario subproblems have superscripts T ,R and Pi respectively (as
in N T

2 ,NR
2 ,NPi

2 ). We will also use the notation such as xµ(T ) to refer to the
x-component of the solution to problem Pµ(T ).
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In our decomposition-based crash-start method, starting from the prob-
lem of interest P (T ), we identify a reduced tree T R, and find a µ̄-central
point (xR, yR, λR, sR, zR) ∈ NR

2 (θ0). We take the x, s-components of this point
as our estimate of the optimal first-stage decisions to solve the subproblems
Pi(x), ∀i ∈ T , obtaining µ̄-central points

(y∗
i , λ∗

i , z
∗
i ) ∈ NPi

2 (θ0), ∀i ∈ T .

Then (xR, sR) and (y∗
i , λ∗

i , z
∗
i )i∈T are combined to obtain the crash-start point

w̄ = (x̄, s̄, ȳ, z̄, λ̄). We aim to show that the warmstart from this point in prob-
lem P (T ) is successful, in that the modification step ∆w = (∆x, ∆s, ∆y, ∆z, ∆λ)
from w̄ satisfies

w̄ + ∆w ∈ N T
2 (θ).

In particular we will show that the warm-start is successful if the reduced tree
T R is close enough to T in an appropriate measure.

As the measure of closeness of the trees we use the Wasserstein distance
[10,21]. In an abstract probability space setting with event space Ω and corre-
sponding Borel σ-field B, the Wasserstein distance of two probability measures
ν, ν̃ on (Ω,B) is given by

µ̂1(ν, ν̃) = inf

{

∫

Ω×Ω

‖ω − ω̃‖η(d(ω, ω̃)) : η ∈ P(Ω × Ω), η(B × Ω) = ν(B),

η(Ω × B) = ν̃(B), ∀B ∈ B

}

.

In our case, where ν and ν̃ are discrete measures implied by the full and
reduced scenario trees as

ν =
∑

(πi,ξi)∈T

πiδξi
, ν̃ =

∑

(π̃i,ξ̃i)∈T R

π̃iδξ̃i
,

where δξi
is the Dirac-measure placed on scenario ξi, the corresponding formula

for the Wasserstein distance reduces to the transportation distance

W1(T , T R) := µ̂1(ν, ν̃)

= min
η≥0







∑

(πi,ξi)∈T

∑

(π̃j ,ξ̃j)∈T R

‖ξi − ξ̃j‖ηij :
∑

i

ηij = π̃j ,
∑

j

ηij = πi







.

Our analysis first deals with an idealised algorithm in which we choose a target
µ value of µ̄ and then obtain the exact µ-center for reduced problem P (T R)
and scenario subproblems Pi(x). Later we give results for the more realistic
algorithm in which we are content with finding points in a neighbourhood of
the central path. In what follows we assume that the random parameter ξ only
affects the right-hand side h of the problem, and that this influence is bounded
by the Lipschitz constant H :

‖h(ξ) − h(ξ̃)‖ ≤ H‖ξ − ξ̃‖, ∀ξ, ξ̃.
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Moreover, we make use of the following relation from Dikin [8]

χ(W ) := sup
Σ∈D+

‖ΣW⊤(WΣW⊤)−1‖∞ < ∞, (7)

where D+ is the set of all diagonal matrices with strictly positive diagonal
elements and W is an arbitrary matrix.

4.1 Results for exact subproblem solutions

We first investigate the dependence of the value functions of the family of
barrier problems (for different values of ν)

Q̂ν(x; ξ) = min c⊤y − ν
∑

j ln yj

s.t. Wy = h(ξ) − Tx
(8)

on the random parameter ξ. We start with the following Lemma which estab-
lishes a Lipschitz result for the function Qν(x; ξ).

Lemma 1 The functions Q̂ν(x; ξ) are Lipschitz in the second argument, that
is

|Q̂ν(x; ξ) − Q̂ν(x; ξ̄)| ≤ LQ‖ξ − ξ̄‖2

with Lipschitz constant LQ := 3C(d)(C(d)‖d‖ + νn)χ(W )H.

Proof Optimality conditions for (8) are

z + W⊤λ = c, Wy + Tx = h(ξ), Y Ze = νe. (9)

Under our assumptions, this system is non-singular, so the implicit function
theorem assures the existence of y, λ and s as differentiable functions of ξ.
Differentiating with respect to ξ gives

W
dy

dξ
=

dh

dξ
(10a)

dz

dξ
+ W⊤

dλ

dξ
= 0 (10b)

Y
dz

dξ
+ Z

dy

dξ
= 0. (10c)

After rearranging the final equation for dz
dξ

and substituting into the second
equation we obtain

−Y −1Z
dy

dξ
+ W⊤

dλ

dξ
= 0,

and hence
dy

dξ
= Y Z−1W⊤

dλ

dξ
. (11)
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Multiplying from the left with W and substituting into (10a) yields

dλ

dξ
= (WY Z−1W⊤)−1 dh

dξ
,

which together with (11) gives

dy

dξ
= Y Z−1W⊤(WY Z−1W⊤)−1 dh

dξ
.

Now, recalling (7), we get the bound
∥

∥

∥

∥

dy

dξ

∥

∥

∥

∥

∞

≤ χ(W )

∥

∥

∥

∥

dh

dξ

∥

∥

∥

∥

∞

.

On the other hand, from the definition of Qν in (8) we have

dQν

dξ
= c⊤

dy

dξ
− νY −1 dy

dξ
= (c − z)⊤

dy

dξ
.

From [20, Theorem 3.1] we have the bound

‖z‖∞ ≤ 2C(d)(C(d)‖d‖ + νn),

which together with ‖c‖∞ ≤ ‖d‖ and ‖dh
dξ
‖∞ ≤ H yields

∥

∥

∥

∥

dQν

dξ

∥

∥

∥

∥

∞

≤ [‖d‖ + 2C(d)(C(d)‖d‖ + νn)] χ(W )H,

and the assertion of the Lemma follows since C(d) ≥ 1.

In what follows we define

ηT (x) := c⊤x − µ
∑

j

lnxj + ρT (x) (12)

where
ρT (x) =

∑

(πi,ξi)∈T

πiQ µ

πi

(x; ξi).

We are interested in how the optimal first-stage solution xµ(T ) to the problem

min
x

ηT (x) (Pµ(T ))

depends on the underlying scenario set T . We need to assume that the set of
possible optimal first-stage decisions x for different trees is bounded, that is

‖xµ(T )‖∞ ≤ B, for all considered T .

Also we assume that the probabilities of all considered scenarios in the full and
reduced tree are bounded below by π̄. As long as we only consider trees that
are derived from the original tree by deletion of scenarios and aggregation,
both assumptions hold trivially, since there is only a finite number of possible
trees to consider.
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Lemma 2 With the notation introduced above we have

‖xµ(T ) − xµ(T R)‖∞ ≤ 2√
µ

B
√

LQ(µ/π̄)
√

W1(T , T R)

and

‖sµ(T ) − sµ(T R)‖∞ ≤ 2
√

µ3 B
3
√

LQ(µ/π̄)
√

W1(T , T R).

Proof We make use of Remark 2.2 to [21, Proposition 2.1] (see also [22, The-
orem 2.10]), which states that given |h(z) − h(z̃)| ≤ Lh‖z − z̃‖, we have

∣

∣

∣

∣

∫

h(z)ν(dz) −
∫

h(z)ν̃(dz)

∣

∣

∣

∣

≤ LhW1(ν, ν̃).

We apply this result to the function Qµ(x; ξ), with ν, ν̃, as before, being the
probability measures implied by the full and reduced trees. In this case

∣

∣

∣

∣

∣

∑

i∈T

πiQ µ

πi

(x, ξi) −
∑

i∈T R

π̃iQ µ

π̃i

(x, ξ̃i)

∣

∣

∣

∣

∣

≤ LQ(µ/π̄)W1(T , T R)

therefore
|ρT (x) − ρT R(x)| ≤ LQW1(T , T R),

and hence also
|ηT (x) − ηT R(x)| ≤ LQW1(T , T R). (13)

By xµ(T R) being a minimiser of ηT R(x), it holds that

ηT R(xµ(T R)) ≤ ηT R(xµ(T )). (14)

Bound (13) implies

ηT R(xµ(T )) ≤ ηT (xµ(T )) + LQW1(T , T R),

and hence together with (14)

ηT R(xµ(T R)) ≤ ηT (xµ(T )) + LQW1(T , T R). (15)

The functions ρT (x), ρT R(x) are convex and differentiable, and the term −µ
∑

j lnxj

is convex and twice continuously differentiable with Hessian

∇2
x[−µ

∑

j

lnxj ] = µX−2

and its lowest eigenvalue satisfies

σ1(µX−2) ≥ µ/(max
j

xj)
2 ≥ µ/B

2
.

Hence we get the bound

ηT (xµ(T R)) ≥ ηT (xµ(T )) + ∇xηT (xµ(T ))⊤(xµ(T R) − xµ(T ))

+
µ

2B
2 ‖xµ(T R) − xµ(T )‖2

∞.
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Since ηT (x) is convex and differentiable with minimiser xµ(T ), then ∇xηT (xµ(T )) =
0, so that

ηT (xµ(T R)) ≥ ηT (xµ(T )) +
µ

2B
2 ‖xµ(T R) − xµ(T )‖2

∞ (16)

Therefore, by combining (13) and (16) we get

ηT R(xµ(T R)) ≥ ηT (xµ(T R)) − LQW1(T , T R)

≥ ηT (xµ(T )) +
µ

2B
2 ‖xµ(T R) − xµ(T )‖2

∞ − LQW1(T , T R).

On the other hand, the minimum value ηT R(xµ(T R)) of Pµ(T R) needs to
satisfy (15) so that we have

ηT (xµ(T )) + LQW1(T , T R)

≥ ηT (xµ(T )) +
µ

2B
2 ‖xµ(T R) − xµ(T )‖2

∞ − LQW1(T , T R).

After rearrangement we are left with

µ

2B
2 ‖xµ(T R) − xµ(T )‖2

∞ ≤ 2LQW1(T , T R),

or equivalently

‖xµ(T ) − xµ(T R)‖∞ ≤ 2√
µ

B
√

LQ

√

W1(T , T R).

For the bound on ‖sµ(T ) − sµ(T R)‖∞ we note that

Xµ(T )Sµ(T ) = µI, Xµ(T R)Sµ(T R) = µI,

so that

sµ(T ) =
1

µ
Sµ(T )Sµ(T R)xµ(T R), sµ(T R) =

1

µ
Sµ(T )Sµ(T R)xµ(T ),

and hence

‖sµ(T ) − sµ(T R)‖∞ = ‖ 1

µ
Sµ(T )Sµ(T R)(xµ(T R) − xµ(T ))‖∞

≤ B
2

µ
‖xµ(T ) − xµ(T R))‖∞,

yielding the required bound.

Lemma 3 Let estimates of the first-stage decisions x̄ = xR, s̄ = sR be given
and let (yi, λi, zi) be the (exact) µ-center for the i-th scenario subproblem
Pi(x̄). Further, let (xµ, yµ, λu, sµ, zµ) be the exact µ-center of the full prob-
lem P (T ). Then

‖λi − λµ,i‖∞ ≤ Cλ‖x̄ − xµ‖∞
where

Cλ = Cλ(µ) = 4χ(W )‖T ‖∞C(d)
2
[C(d)‖d‖ + µn]2/µ.



14

Proof The optimality conditions for problem Pi(x̄) are given by (9). Differen-
tiating with respect to x gives:

dzi

dx
+ W⊤

dλi

dx
= 0, W

dyi

dx
= −T, Yi

dzi

dxi

+ Zi

dyi

dx
= 0.

As in the proof to Lemma 1, these equations can be solved for dλi

dx
to obtain

dλi

dx
= (WYiZ

−1
i W⊤)−1T

= (WW⊤)−1WY −1
i ZiYiZ

−1
i W⊤(WYiZ

−1
i W⊤)−1T.

As before we have

‖Z−1
i W⊤(WYiZ

−1
i W⊤)−1‖∞ ≤ χ(W ), ‖W⊤(WW⊤)−1‖∞ ≤ χ(W ),

and, due to (yi, λi, zi) being the exact µ-center,

‖ZiY
−1
i ‖∞ = ‖Z2

i /µ‖∞ = ‖Zi‖2
∞/µ.

We use again the bound from [20, Theorem 3.1]

‖zi‖∞ ≤ 2C(di)[C(di)‖di‖ + µn]

giving

∥

∥

∥

∥

dλi

dx

∥

∥

∥

∥

∞

≤ 4χ(W )2‖T ‖∞C(di)
2[C(di)‖di‖ + µn]2/µ

≤ 4χ(W )2‖T ‖∞C(d)
2
[C(d)‖d‖ + µn]2/µ

yielding the assertion of the Lemma.

Theorem 1 Let w̄ = (x̄, ȳ, λ̄, s̄, z̄) be the warm-start point for problem P (T )
obtained by following the above algorithm starting from the reduced tree T R,
using a target µ-value of µ̄. If

W1(T , T R) ≤ θ2

C(d)
2
C2(µ)2

min

{

‖d‖2

4(2n + 1)2
,

µ2

64C(d)
2

}

where C2(µ) = 2B
√

LQ(‖T ‖∞|T |Cλ(µ) + B
2
/µ)/

√
µ, then the warmstart

is successful, that is the Yıldırım -Wright [26] Weighted Least Squares step
(∆x, ∆y, ∆λ, ∆s, ∆z) from (x̄, ȳ, λ̄, s̄, z̄) is feasible and leads to

(x̄ + ∆x, ȳ + ∆y, λ̄ + ∆λ, s̄ + ∆s, z̄ + ∆z) ∈ N T
2 (θ).
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Proof Due to the construction of the crash-start point w̄ we have

T x̄ + Wȳi = hi, X̄S̄e = µe, ȲiZ̄ie = µe,

that is, the point is primal feasible and central in the complete problem P (T ).
Let

c̄ =
∑

i

T ⊤λ̄i + s̄

and consider the problem instance P (d̄) obtained from the full problem P (T )
by replacing the first-stage cost c with c̄. By construction, w̄ is also dual
feasible for P (d̄), hence it is the exact µ-center, or w̄ ∈ N̄2(0), where N̄2 is the
N2-neighbourhood for problem P (d̄). We will treat this point as a warm-start
attempt for the (perturbed) problem P (T ) starting from a central point for
problem P (d̄). The change in problem data is

∆d = (∆A, ∆b, ∆c) = (0, 0, ∆c),

with

∆c = c − c̄ =
∑

i

T ⊤λµ,i + sµ −
∑

i

T ⊤λ̄i − s̄

=
∑

i

T ⊤(λµ,i − λ̄i) + (sµ − s̄).

Using the bounds from Lemma 2 and Lemma 3 we have

‖∆c‖∞ ≤ ‖T ‖∞|T |max
i

‖λµ,i − λ̄i‖∞ + ‖sµ − s̄‖∞
≤ ‖T ‖∞|T |Cλ(µ)‖xµ − x̄‖∞ + ‖sµ − s̄‖∞

≤
(

‖T ‖∞|T |Cλ(µ) +
B

2

µ

)

2√
µ

B
√

LQ

√

W1(T , T R)

= C2(µ)
√

W1(T , T R)

with

C2(µ) =

(

‖T ‖∞|T |Cλ(µ) +
B

2

µ

)

2√
µ

B
√

LQ.

According to [26, Proposition 4.2] sufficient conditions for a successful warm-
start are (using θ0 = 0, ξ = θ/2):

‖∆c‖∞ ≤ θ

2(2n + 1)C(d)
‖d‖, and µ ≥ 8

C(d)2

θ
‖∆c‖∞,

which can be combined to produce

‖∆c‖∞ ≤ θ

C(d)
min

{ ‖d‖
2(2n + 1)

,
µ

8C(d)

}

.
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Together with the above bound on ‖∆c‖∞, we obtain the condition

C2(µ)
√

W1(T , T R) ≤ θ

C(d)
min

{ ‖d‖
2(2n + 1)

,
µ

8C(d)

}

,

and, after rearranging, the condition given in the Theorem.

The question remains how the condition of the Theorem can be satisfied in
practice. Clearly the bound on W1(T , T R) is largest when the two expressions
in the min are equal, that is if

‖d‖
2(2n + 1)

=
µ

8C(d)
or µ =

4‖d‖C(d)

2n + 1
.

For an (optimally) chosen µ-value, Theorem 1 gives conditions on the closeness
of the trees T and T R. It is not practically possible to determine this value
exactly, so the µ value would in practice be chosen by an appropriate heuristic.

Closer to the practical application is probably to choose the two trees first
and then the corresponding µ value to be used in the solution of the reduced
problem P (T R) and the subproblems Pi(x̄). In this view of things, Theorem 1
gives a minimum closeness of the approximating tree T R that needs to be
achieved and also gives conditions on the selection of the corresponding µ
value. In practice we expect the conditions to be much too tight and will
proceed with the warm-start attempt regardless.

4.2 Results for approximate subproblem solutions

The requirement to obtain an exact µ-center for the reduced problem P (T R)
or the decomposed subproblems Pi(x̄) is too demanding. Rather we will be
satisfied with obtaining primal–dual feasible and reasonably central points,
i.e.

(x̃R
µ , ỹR

µ , λ̃R
µ , s̃R

µ , z̃R
µ ) ∈ NR

2 (θ̃) (17)

(ỹi, λ̃i, z̃i) ∈ N (i)
2 (θ̃) (18)

for some θ̃ ∈ (0, 1). We can then establish bounds on the resulting error
in the relevant components of these points compared to the exact µ-centers
(Lemma 5, Appendix). Following this strand it is possible to derive a counter-
part of Theorem 1 in

Theorem 2 Let w̃ be the crash-start point for problem P (T ) obtained by fol-
lowing the above algorithm starting from the reduced tree T R, using a target
µ-value of µ̄ and approximate solutions satisfying (17) and (18). If we choose
W1(T , T R) and θ̃ small enough – specifically so that they satisfy condition (26)
– then the warm-start is successful, that is the Yıldırım -Wright [26] Weighted
Least Squares step ∆w from w̃ is feasible and leads to w̃ + ∆w ∈ N T

2 (θ).

The detailed analysis of this situation together with the proof of Theorem 2
can be found in the appendix.
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Problem scenarios rows columns nonzeros
AIRL1 25 152 306 706
AIRL2 25 152 306 706
AIRL3 676 4,058 8,118 18,934
cargo-4node32 32 2,382 6,396 15,656
cargo-4node64 64 4,750 12,732 31,016
cargo-4node128 128 9,486 25,404 61,736
cargo-4node256 256 18,958 50,748 123,176
cargo-4node512 512 37,902 101,436 246,056
cargo-4node1024 1024 75,790 202,812 491,816
cargo-4node2048 2048 151,566 405,564 983,336
cargo-4node4096 4096 303,118 811,068 1,966,376
cargo-4node8192 8196 606,222 1,622,076 3,932,456
cargo-4node16384 16384 1,212,430 3,244,092 7,864,616
asset1 100 505 1,313 2,621
asset2 37500 187,505 487,513 975,021
env.1200 1200 57,648 102,085 220,972
env.1875 1875 90,048 159,460 345,172
env.3780 3780 181,488 321,385 695,692
env.5292 5292 254,064 449,905 973,900
env.lrge 8232 395,184 699,805 1,514,860
stocfor2 64 6,543 9,237 29,985
sslp 10 50 100 100 6,001 52,011 101,911
sslp 10 50 500 500 30,001 260,011 509,511
sslp 10 50 1000 1000 60,001 520,011 1,019,011
dcap233 500 500 7,506 16,518 31,518
dcap243 500 500 9,006 21,018 39,018
storm27 27 14,441 37,485 94,274
storm125 125 66,185 172,431 433,256
storm1000 1000 528,185 1,377,306 3,459,881

Table 1: Characteristics of 2-stage problems

5 Implementation and numerical results

In this section we present the numerical results of the implementation of
the proposed decomposition crash-start scheme within the interior point code
OOPS.

The setup is the following. Given a 2-stage stochastic programming prob-
lem with a given scenario set T , we first generate a reduced tree T R with a
specified number of scenarios by eliminating scenarios using the scenario re-
duction technique of [15]. The reduced problem is solved until the first iterate
for which µ(k) < µ̄. If this point is not primal-dual feasible, additional pure
centering iterations with a target of µ = µ̄ are performed until we obtain a
primal-dual feasible point. The x-components of this point are used to set-up
scenario subproblems Pi,µ(x) which again are solved to obtain a primal-dual
feasible point corresponding to µ ≈ µ̄ following the procedure above.

We concentrate our tests on the two-stage problems summarised in Ta-
ble 1. The first block of problems are from the collection of Ariyawansa and
Felt [2], ’sslp’ and ’dcap’ are from the SIPLIB collection of Ahmed [1] and
storm is from the POSTS collection [4]. We compare the number of itera-
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tions until converged from the crash-start point and total running time (for
both crash-start generation and solution phase) for the suggested algorithm
against the reduced tree crash-start of [7] and a cold-start using Mehrotra’s
starting point[18]. Results are summarised in Table 2. All computations were
performed on a Linux PC with a 3.0GHz Intel Core 2 processor and 3GB of
RAM. Final convergence tolerance was to reduce the relative primal-dual gap
below 10−7.

Problem |T | cold dec red
iter time iter time |T R| µ̄ iter time |T R| µ̄

AIRL1 25 12 0.05 3 0.05 12 1.0 14 0.07 5 10
AIRL2 25 10 0.07 4 0.05 12 1.0 8 0.04 2 10
AIRL3 676 11 1.45 7 1.66 60 1.0 31 4.23 100 10
4node32 32 21 1.6 7 0.9 6 0.1 7 0.6 2 0.01
4node64 64 25 4.4 9 2.1 10 0.1 7 1.14 2 0.1
4node128 128 24 8.0 7 3.1 10 0.01 7 2.17 2 0.1
4node256 256 22 14.8 7 6.2 10 0.01 7 4.3 2 0.1
4node512 512 30 41.5 9 9.7 64 0.01 7 4.8 2 0.01
4node1024 1024 30 80.7 9 17.9 64 0.01 8 10.2 2 0.01
4node2048 2048 33 189 10 41.3 128 0.01 8 22.6 2 0.01
4node4096 4096 43 491 12 90.1 128 0.01 10 54.9 2 0.1
4node8192 8192 37 856 12 202 512 0.01 10 106 2 0.01
4node16384 16384 42 2083 12 402 256 0.01 10 222 2 0.01
asset1 100 11 0.18 5 0.23 10 0.01 4 0.10 20 0.01
asset2 37500 15 174 7 717 50 0.001 6 85.6 2 0.01
env.1200 1200 31 37.8 6 14.7 10 0.001 6 8.1 10 0.1
env.1875 1875 31 61.4 7 24.2 10 0.001 22 45.1 100 0.001
env.3780 3780 34 133 9 59.3 50 0.001 100 - - -
env.5292 5292 33 191 7 78.2 100 0.001 25 148 50 0.1
env.lrge 8232 38 368 8 141 100 0.001 43 404 100 0.1
stocfor2 64 21 3.9 9 1.6 2 10 8 0.9 1 10
sslp10 50 100 100 26 8.0 15 6.8 10 0.001 27 9.2 2 0.1
sslp10 50 500 500 49 80.0 21 44.1 50 0.001 49 84.7 20 0.1
sslp10 50 1000 1000 55 183 21 87.4 50 0.001 59 204 50 10
dcap233 500 500 22 3.9 7 1.8 50 0.01 13 2.3 10 10
dcap243 500 500 23 4.7 7 1.4 50 0.01 13 2.7 10 10
storm27 27 81 37.3 6 9.3 5 10 29 14.1 1 10
storm125 125 98 310 8 39.0 10 1.0 35 65.8 1 10
storm1000 1000 108 1868 21 420 20 10 22 378 50 10

Table 2: Results for 2-stage problems.

As can be seen the decomposition-based crash start offers significant sav-
ings both in terms of iterations and time when compared to the coldstart.
Savings average about 60% in terms of iterations and 30% in terms of time
and are more pronounced for larger problems, in many cases achieving a halv-
ing of total solution time. It also offers savings compared to the reduced tree
crash-start. This advantage is especially pronounced for problems where the
latter algorithm struggles.
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The results in Table 2 correspond to the best µ̄ value found for either
approach (using trial values of µ̄ = 10k, k = −4, . . . , 1). Indications are that
the best µ̄ value is fairly constant within a problem class. However, this is
slightly unsatisfactory.

To evaluate the sensitivity of the proposed crash-start algorithm with re-
spect to the target barrier parameter µ̄ and the reduced tree size |T R| and
to give a comparison with the reduced tree crash-start of [7] we have set up
the following experiment: for 24 of the 29 problems reported in Tables 1 and
2 (choosing 5 problems of the cargo series to limit the influence of one par-
ticular problem class) we have chosen 5 values for µ̄, namely µ̄ = 10k for
k = −3, .., 1 and 4 different reduced tree sizes (between 2 and |T |/4). For
these 24×20 = 480 variations we have again compared the performance of the
decomposition based crash-start to that of the reduced tree crash-start and a
cold start. We compare both IPM iterations in the full problem and total so-
lution time. Instances that took more than 100 iterations for the warmstarted
problem are deemed unsuccessful and are regarded as infinite iterations and
solution time. We wish to note that we generally expect the decomposition
based crash-start to be successful as long as the conditions indicated in The-
orem 1 are met at least approximately: that is a small target µ̄ should not be
combined with a too roughly approximating T R. As long as the warmstart is
successful however, we would generally expect that a small target µ̄ leads to
fewer full problem iterations.

Complete results of these trials are available from [14]. Here we give a sum-
mary. Figure 2 presents results of the trials in form of performance profiles[9].
Curves labelled ’dec’, ’red’ and ’cold’ correspond to the decomposition based
crash-start, the reduced tree crash-start and the cold start respectively.
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Fig. 2: Performance profile: number of IPM iterations (left) and total solution time (right).
The performance profile plots the percentage of all instances for which the performance of
a given method is within a factor (corresponding to the reading of the horizontal axis) of
the best method.
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We can see that the decomposition based crash-start requires the (joint)
least number of iterations in just under 60% of cases, with the reduced tree
crash-start being optimal in just over 30% of cases. As expected these savings
do not quite manifest themselves with respect to total solution time, but again
the decomposition based crash-start is the fastest method in just under 40%
of instances, outperforming both the cold start and the reduced tree crash-
start. Further more than 80% of instances can be solved within twice the time
needed by the best approach (again outperforming the other two alternatives
in this metric). This shows that the decomposition based crash-start is not only
preferable to both other methods in most situations but is also significantly less
sensitive to the correct choice of µ̄ and T R than the reduced tree crash-start.

A more detailed analysis of the results reveals the following: Of the 480
instances, in 155 (that is just under 1/3) the problem cannot be solved with the
reduced tree crash-start within the allowable number of iterations. Of those
325 cases where it can be solved, in just over half of the cases (187, 58%) the
reduced tree crash-start needs fewer iterations, and in 180 cases (55%) also less
time than the cold-start. On the other hand if we take the best combination
of tree size and target-µ̄, then in 75% of problems the reduced tree crash-start
needs less iterations (and in 71% also less time) than the cold start. In other
words, while the reduced tree crash-start is able to produce significant time-
savings it does suffer from a certain sensitivity with regards to the optimal
choice of tree size and target-µ̄. It should be noted however that good choices
are relatively stable for each problem class, so with experience good guesses
can be made.

For the decomposition based crash-start on the other hand, 455 of the
480 trials (95%) are successful, of these 373 (82%) yield an improvement in
terms of number of iterations and still 285 (63%) an improvement in terms of
time when compared to the cold start. The best combination of µ̄ and T R for
each problem is in all cases better than the cold-start in terms of iterations
(although worse in terms of solution time for AIRL3, asset1, asset2) and leads
to an average improvement of 70.1% of iterations and a saving of 33.2% in
terms of total solution time. The unsuccessful trials occur for the smallest
reduced tree size (|T R| = 2) in the env.5292, env.lrge and sslp 10 50 100

problems and for half of the cases (corresponding to combinations of small µ̄
and small |T R|) in the storm125 and storm1000 problems.

Figure 3 shows the relative performance of both the decomposition based
crash-start (blue solid line) and the reduced tree crash-start (green dashed
line) with respect to the cold start for all 480 trials. Trials in each case are
sorted in decreasing order of crash-start effectiveness, with the instances of
failure removed, and plotted on a logarithmic scale on the y-axis. As can
be seen, in most cases the decomposition based crash-start results in better
performance compared to cold start (corresponding to the points below 1),
although in some cases the performance is drastically worse. Most of the bad
cases (where the decomposition based crash-start is successful but takes more
than 2× the number of iterations than the cold start) are from a single problem
(AIRL3) where a large tree size combined with small µ results in uniformly bad
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performance (although a small tree size with large µ̄ results in a successful
warmstart).

Figure 4, which is typical of how the crash-start effectiveness depends on
µ̄ and T R gives some further insight: In terms of IPM iterations (left plot)
there is a pronounced “sweet valley” for a combinations of small µ̄ and large
T R through to large µ̄ and small T R for which the crash-start works very
well. Outside this valley small reduced tree sizes lead to more iterations in the
full problem, even if the crash-start itself is successful. On the other side a
too small µ̄ combined with a small reduced tree (i.e. a far converged but not
accurate approximation) results in a failed warmstart and hence a drastically
increased iteration number. For the total solution time the situation is much
the same except for a slightly larger relative penalty for large reduced tree
sizes. The observed problems of the method with a combination of small µ̄
and small |T R| is to be expected from the theoretical analysis of Section 4.
It is encouraging however that outside this identified troublesome region the
method seems robust with regard to the parameter choices. Note that a sim-
ilar “sweet valley” can be observed for the reduced tree crash-start, at least
for the problems on which this approach works well. Generally, however, the
performance of the reduced tree crash-start is much more erratic (see Figure 3
and the full results [14]).
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Fig. 3: Performance ratios (left: iterations, right: time) of reduced tree and decomposition
tree crash-starts relative to cold-started IPM across all 480 problem instances. Warm-starts
provide an improvement over cold start for ratios below 1, and a deterioration for ratios
above 1 (note the logarithmic scale on the y-axis). The reduced tree curve is much shorter
because of the higher number of failures.

For the cargo-series of problems we have also compared how the effective-
ness of the crash-start for various µ̄/T R combinations changes as the problem
size increases. Results are presented in Figure 5. As can be seen both in terms
of numbers of iterations (left hand plot) and total solution time (right hand
plot) there is almost no discernible difference, apart from the fact that sensi-
tivity to values in µ̄ and T R become less pronounced for larger problems.



22

1

1.5

2

2.5

3

3.5

4 1 1.5 2 2.5 3 3.5 4 4.5 5

-80

-60

-40

-20

0

20

T
R

mu

2

32

64

128 10 1 0.1 0.01 0.001

1

1.5

2

2.5

3

3.5

4

1
1.5

2
2.5

3
3.5

4
4.5

5

-60

-50

-40

-30

-20

-10

0

10

20

T
R

mu

2

32

0.01
0.1

64

128
0.001

10
1

Fig. 4: Difference in iterations (left) and time (right) caused by decomposition based crash-
start for problem cargo-4node512 against different µ̄ and T R-values.
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Fig. 5: Percentage of saved iterations (left) and time (right) for all combinations of µ̄ and
T R against problem number for the cargo problems. Each line corresponds to one µ̄/T R

combination, while the logarithmic horizontal axis corresponds to the size (in number of
scenarios) of the problem in the series.

Finally we have evaluated the algorithm on some multistage problems from
the literature (Table 3). For multistage problems the proposed decomposition
based crash-start will decompose the problem at the second stage and then
solve each sub-tree originating from a second stage node separately. This ap-
proach is in effect treating a multistage problem as a two stage problem with
a large core matrix. The reduced scenario tree T R is obtained by choosing a
single scenario originating from every second stage node. We choose the one
resulting in the minimal Wasserstein distance from the remaining nodes in
this sub-tree. We compare the number of iterations in the full problem and
the total solution time for the same crash start approaches as before namely
the decomposition based crash-start presented in this paper, the reduced tree
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Problem stages scenarios rows columns nonzeros
fxm3-6 3 36 6,200 12,628 57,722
fxm3-16 3 256 41,340 85,575 392,252
fxm4-6 4 216 22,400 47,185 265,442
stocfor3 7 512 16,675 23,541 76,473
pltexpA3-16 3 256 28,350 74,172 150,801
pltexpA4-6 4 216 26,894 70,364 143,059
pltexpA5-6 5 1,296 161,678 422,876 859,747
swing8-4 8 65,536 262,142 349,522 786,422
watson10-128 8 128 26,237 49,664 129,159
watson10-512 10 512 67,069 129,024 351,751
watson10-1024 10 1024 134,127 258,032 703,473

Table 3: Characteristics of multistage test problems.

crash-start and a cold start. As before we have run tests with different se-
lection of values for µ̄ and |T R| where we have performed at least 20 tests
for each problem. Full results can be obtained from [14], a summary is given
in Table 4. For each problem we report the performance for the best choice
of parameters and the median performance. We also give the percentage of
successful warmstart attempts.

The decomposition based crash starts leads to a significant reduction in the
number of iterations compared to the cold start, both when looking at the best
and the median performance. While not quite as apparent in terms of total
solution time, we are still able to beat the cold start on almost all problems
(stocfor3 being the only exception). When compared with the reduced tree
crash-start the advantages are not quite as clear as for the two stage prob-
lems. While the median number of iterations still tends to be less, the scenario
subproblems (which are here partial trees rooted at a first stage node) do now
contribute to the overall solution time, leading generally to a worse perfor-
mance than for the reduced tree crash-start. Nevertheless it can be seen that
the decomposition based crash-start is more robust, with significantly fewer
failures.

6 Conclusions and future research

In this paper we proposed a technique to generate a crash-start point for
interior point methods applied to two-stage and multistage stochastic pro-
gramming problems. The method solves a problem defined on a reduced tree
in order to get the first-stage decisions, then a sequence of completely inde-
pendent scenario subproblems.

We presented a thorough theoretical analysis of our procedure and derived
sufficient conditions for a successful crash-start. The results show how the
maximum allowable distance between full and reduced trees depends on the
Renegar condition number of the problem instance and the target value µ̄
adopted in the solution of the reduced problem.
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Problem cold red dec
succ best median succ best median

it tm it tm it tm it tm it tm
fxm3-6 26 2.5 100 4 0.7 8 1.1 100 4 1.8 5 2.4
fxm3-16 30 18.9 100 6 4.4 8 5.4 100 5 13.4 9 15.2
fxm4-6 25 9.7 100 6 2.8 10 4.3 100 5 8.3 7 9.5
stocfor3 33 2.5 92 4 0.6 11 1.1 100 14 2.5 19 3.2
pltexpA3-16 35 5.7 58 17 2.9 25 4.2 63 11 4.6 13 4.8
pltexpA4-6 42 15.2 50 13 5.4 26 9.4 58 8 7.6 10 8.9
pltexpA5-6 77 234 38 37 117 49 159 44 39 189 56 209
swing8-4 27 44.5 100 7 16.7 41 98.0 100 5 34.2 8 39.5
watson10-128 54 15.3 57 19 9.1 22 10.5 100 5 12.1 26 14.1
watson10-512 79 61.0 54 23 27.7 25 38.7 89 4 47.3 38 55.9
watson10-1024 91 143 45 22 65.0 26 82.0 96 6 102 44 123

Table 4: Number of iterations and solution time in seconds for best and median perfor-
mance of different crash start algorithms. Column succ gives the percentage of successful
warmstarts.

Our numerical results show that, provided the reduced tree is a good ap-
proximation to the full tree, this approach leads to an advanced iterate from
which an interior point method can be warm-started successfully, which often
translates in significant time savings.

For problems with a large number of second stage nodes and for multi-
stage problems, solving all scenario subproblems can be a significant cost. In
our implementation the scenario subproblems are solved independently, using
Mehrotra’s starting point. Clearly since the scenario subproblems are usually
closely related, they could be warmstarted as well, leading to further efficiency
gains. For multistage problems, the presented approach could also be applied
in a nested manner whereby the sub-trees rooted at the second stage nodes
are not solved exactly but rather the presented method is applied to these
subproblems recursively to obtain a crash-start point. We leave this for future
research.
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Appendix

We now give the postponed analysis of the situation of Section 4.2 where the crash start point
is not constructed from exact µ-centers, but approximate subproblem solutions satisfying
conditions (17) and (18) are used.

The following Lemma 5 gives bounds on the resulting error in the relevant components
of these points compared to the exact µ-centers. Before we proceed, we need a general result
stating how far the components of a point in the N2-neighbourhood can deviate from the
exact µ-center.

Lemma 4 Let (xµ, yµ, sµ) be the exact µ-center for the linear programming problem

min
x

c⊤x, s.t. Ax = b, x ≥ 0,

and let (x̃µ, ỹµ, s̃µ) ∈ N2(θ) with average complementarity product x̃⊤

µ s̃µ/n = µ. Then there
are constants Cx, Cs > 0, only dependent on the problem data and µ, but not on θ, such
that

‖x̃µ − xµ‖∞ ≤ Cx(µ)
θ

1 − θ
, ‖s̃µ − sµ‖∞ ≤ Cs(µ)

θ

1 − θ
, ‖ỹµ − yµ‖∞ ≤ Cx(µ)

θ

1 − θ
.
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Proof Let µ̄ ∈ Rn
+ and (x(µ̄), y(µ̄), s(µ̄)) be the unique solution to

A⊤y(µ̄) + s(µ̄) = c
Ax(µ̄) = b

S(µ̄)X(µ̄)e = µ̄
s(µ̄), x(µ̄) > 0

(19)

then we have (xµ, yµ, sµ) = (x(µe), y(µe), s(µe)) and there is a µ̃ ∈ Rn
+, such that

‖µe − µ̃‖2 ≤ θµ, e⊤µ̃/n = µ (20)

with
(x̃µ, ỹµ, s̃µ) = (x(µ̃), y(µ̃), s(µ̃)).

Differentiating (19) with respect to a component µ̄j of µ̄ gives

A⊤ dy(µ̄)
dµ̄j

+
ds(µ̄)
dµ̄j

= 0

A dx(µ̄)
dµ̄j

= 0

S(µ̄)
dx(µ̄)
dµ̄j

X(µ̄)
ds(µ̄)
dµ̄j

= ej ,

which we can solve for
dx(µ̄)
dµ̄j

,
dy(µ̄)
dµ̄j

,
dy(µ̄)
dµ̄j

to get

dy(µ̄)

dµ̄j

= −(AXS−1A⊤)−1AS−1ej , (21a)

ds(µ̄)

dµ̄j

= A⊤(AXS−1A⊤)−1AS−1ej , (21b)

dx(µ̄)

dµ̄j

= (I − S−1XA⊤(AXS−1A⊤)−1A)S−1ej . (21c)

For any (x, y, s) ∈ N2(θ) we have

(1 − θ)µ ≤ xjsj ≤ (1 + θ)µ

and hence s−1
j ≤ 1

(1−θ)µ
xj which yields

‖S−1‖∞ ≤ 1

(1 − θ)µ
‖X‖∞.

Further, from [20, Theorem 3.1] we have the relations

|xj | ≤ 2C(d)[C(d)‖d‖ + µn], |sj | ≤ 2C(d)[C(d)‖d‖ + µn],

which together with (21c) give the bound

‖dx(µ̄)

dµ̄j

‖∞ ≤ 2

(1 − θ)µ
(1 + χ(A))‖A‖∞)C(d)[C(d)‖d‖ + µn].

For a bound on ‖ds(µ̄)
dµ̄j

‖∞ we can rewrite (21b) as

ds(µ̄)

dµ̄j

= (X−1S)XS−1A⊤(AXS−1A⊤)−1AS−1ej ,

and using sj/xj = s2
j/(xjsj) ≤ 1

µ(1−θ)
|sj |2 we obtain

‖ds(µ̄)
dµ̄j

‖∞ ≤ 1
µ2(1−θ)2

χ(A)‖A‖∞‖X‖∞‖S‖2
∞

≤ 8
µ2(1−θ)2

χ(A)‖A‖∞C(d)3[C(d)‖d‖ + µn]3.
(22)
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Finally, for a bound on ‖dy(µ̄)
dµ̄j

‖∞ we can rewrite (21a) as

dy(µ̄)

dµ̄j

= −(AXS−1A⊤)−1AS−1X(X−1ej),

which yields

‖dy(µ̄)

dµ̄j

‖∞ ≤ χ(A)‖X−1‖ ≤ 2

µ(1 − θ)
χ(A)C(d)[C(d)‖d‖ + µn].

By defining

Cx = Cx(µ) =
2

µ
(1 + χ(A))‖A‖∞C(d)[C(d)‖d‖ + µn]

Cs = Cs(µ) =
8

µ2
χ(A)‖A‖∞C(d)3[C(d)‖d‖ + µn]3

and since 1 ≤ 1/(1 − θ) we have

‖dx(µ̄)

dµ̄j

‖∞ ≤ 1

1 − θ
Cx, ‖ds(µ̄)

dµ̄j

‖∞ ≤ 1

(1 − θ)2
Cs, ‖dy(µ̄)

dµ̄j

‖∞ ≤ 1

1 − θ
Cx.

Together with (20) we get

‖x̃µ − xµ‖∞ ≤ 1

1 − θ
Cx‖µe − µ̃‖∞ ≤ θ

1 − θ
Cx(µ)µ

‖s̃µ − sµ‖∞ ≤ 1

(1 − θ)2
Cs‖µe − µ̃‖∞ ≤ θ

(1 − θ)2
Cs(µ)µ

‖ỹµ − yµ‖∞ ≤ 1

1 − θ
Cx‖µe − µ̃‖∞ ≤ θ

1 − θ
Cx(µ)µ

Lemma 5 For θ ∈ (0, 1), let (x̃R
µ , ỹR

µ , λ̃R
µ , s̃R

µ , z̃R
µ ) ∈ NR

2 (θ). Then there is a C3 > 0
independent of θ such that

‖x̃R
µ −xµ(T R)‖∞ ≤ C3

θ

1 − θ
, ‖λ̃R

µ −λµ(T R)‖∞ ≤ C3
θ

1 − θ
, ‖s̃R

µ −sµ(T R)‖∞ ≤ C3
θ

(1 − θ)2
.

Proof This is an immediate consequence of Lemma 4.

From the previous lemma we get that we can bound the difference in the primal–dual
first-stage decisions (x, s) of the true µ-center of the full problem (xµ(T ), sµ(T )) to the
calculated approximate µ-center for the reduced problem (x̃R

µ , s̃R
µ ) by

‖xµ(T ) − x̃R
µ ‖∞ ≤ 2

√
µ

B
p

LQ

q

W1(T ,T R) + Cx(µ)µ
θ

1 − θ

‖sµ(T ) − s̃R
µ ‖∞ ≤ 2

√
µ3

B
3p

LQ

q

W1(T ,T R) + Cs(µ)µ
θ

(1 − θ)2

In the second step of the algorithm we will not find the exact µ-center for all subproblems
Pi(x̃

R
µ ), but rather find points

(ỹi, λ̃i, s̃i) ∈ N (i)
2 (θ).

Again we need a bound on the implied error in the dual components λi. According to
Lemma 5 there is a C3 > 0 such that

‖λ̃i − λi‖∞ ≤ C3
θ

1 − θ
.

This affects the bound on ‖∆c‖ in the proof of Theorem 1. Finally we are in a position to
prove Theorem 2.
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Proof (Theorem 2) From (17) and (18) we have that

‖X̃S̃e − µ̄e‖2 ≤ θ̃µ̄, ‖ỸiZ̃ie − µ̄e‖2 ≤ θ̃µ̄

and therefore

‖(X̃, Ỹ1, . . . , Ỹn)(S̃, Z̃1, . . . , Z̃n)e − µ̄e‖2
2 = ‖X̃S̃e − µ̄e‖2

2 +
X

i

‖ỸiZ̃ie − µ̄e‖2
2

≤ (|T | + 1)θ̃2µ̄2. (23)

As in the proof to Theorem 1 let

c̃ =
X

i

T⊤λ̃i + s̃

and consider the problem instance P (d̃) obtained from P(T ) by replacing the first-stage
cost c with c̃. Then by construction the crash-start point w̃ is primal–dual feasible for P (d̃)
and due to (23) satisfies

w̃ ∈ N d̃
2 (
p

|T + 1|θ̃).

We will analyse the crash-start as a warm-start attempt for the (perturbed) problem P (T )
starting from a point in the N2-neighbourhood for problem P (d̃). The change in problem
data is

∆d = (∆A, ∆b, ∆c) = (0, 0, ∆c)

with

∆c = c − c̃ =
X

i

T⊤λµ,i + sµ − (
X

i

T⊤λ̃i + s̃) =
X

i

T⊤(λµ,i − λ̃i) + (sµ − s̃).

Using the bounds from Lemma 3 and Lemma 5 we have

‖∆c‖ = ‖
X

i

T⊤(λµ,i − λ̄i + λ̄i − λ̃i) + (sµ − s̄ + s̄ − s̃)‖

≤ ‖T‖|T |(‖λµ,i − λ̄i‖ + ‖λ̄i − λ̃i‖) + ‖sµ − s̄‖ + ‖s̄ − s̃‖

≤ ‖T‖|T |
 

Cλ‖xµ − x̃‖ + C3
θ̃

1 − θ̃

!

+ ‖sµ − s̄‖ + C3
θ̃

1 − θ̃
.

Moreover, using the bounds from Lemma 2 we get

‖∆c‖ ≤ ‖T‖|T |
 

Cλ

2
√

µ

p

LQB̄
q

W1(T ,T R) + C3
θ̃

1 − θ̃

!

+
2

√
µ3

p

LQB̄3
q

W1(T ,T R) + C3
θ̃

1 − θ̃

=

„

‖T‖|T |Cλ(µ) +
B̄2

µ

«

2
√

µ

p

LQB̄
q

W1(T ,T R)

+(‖T‖|T |Cλ(µ) + 1)C3
θ̃

1 − θ̃

≤ C4(µ)
q

W1(T ,T R) + C5
θ̃

1 − θ̃
(24)

where

C4(µ) =

„

‖T‖|T |Cλ(µ) +
B̄2

µ

«

2
√

µ
B̄
p

LQ, C5 = (‖T‖|T |Cλ(µ) + 1)C3.
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Proposition 4.2 of [26] can now be applied with θ0 = θ̃
p

|T | + 1 and ξ = 1
2
(θ − θ̃

p

|T | + 1)
from which we get

θ − θ0 − ξ =
1

2
(θ − θ̃

p

|T | + 1)

and therefore the conditions for a successful warmstart are

‖∆c‖∞ ≤ θ − θ̃
p

|T | + 1

2(2n + 1)C(d)
‖d‖, µ ≥ 8C(d)

2

θ − θ̃
p

|T | + 1
‖∆c‖∞

which can be combined to obtain

‖∆c‖∞ ≤ θ − θ̃
p

|T | + 1

2C(d)
min

(

‖d‖
2n + 1

,
µ

4C(d)

)

. (25)

Combining (24) and (25) we get as the condition for a successful warmstart

C4(µ)
q

W1(T , T R) + C5
θ̃

1 − θ̃
≤ θ − θ̃

p

|T | + 1

2C(d)
min

(

‖d‖
2n + 1

,
µ

4C(d)

)

(26)

which can be satisfied by keeping W1(T , T R) and θ̃ small enough.




