Skip to main content
Log in

Optimization and homotopy methods for the Gibbs free energy of simple magmatic mixtures

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider a mathematical model for magmatic mixtures based on the Gibbs free energy. Different reformulations of the problem are presented and some theoretical results about the existence and number of solutions are derived. Finally, two homotopy methods and a global optimization one are introduced and computationally tested. One of the homotopy methods returns a single solution of the problem, while the other is able to return multiple solutions (often all of them). The global optimization method is a branch-and-reduce one with a theoretical guarantee of detecting all the solutions, although some numerical difficulties, resulting in a loss of a few of them, may have to be faced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  2. Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry. The Equilibrium Model. Oxford University Press, Oxford (1993)

    Google Scholar 

  3. Asimow, P.D., Ghiorso, M.S.: Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am. Mineral. 83, 1127–1131 (1998)

    Google Scholar 

  4. Belotti, P.: Couenne: a user’s manual. Technical report, Technical report, Lehigh University (2009)

  5. Best, M.G., Christiansen, E.H.: Igneous Petrology. Wiley/Blackwell, New York (2001)

    Google Scholar 

  6. Boudreau, A.E.: PELE–a version of the MELTS software program for the PC platform. Comput. Geosci. 25(2), 201–203 (1999)

    Article  Google Scholar 

  7. Brouwer, L.E.J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)

    Article  MATH  Google Scholar 

  8. Dantzig, G., Johnson, S., White, W.: A linear programming approach to the chemical equilibrium problem. Manag. Sci. 5(1), 38–43 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dobran, F., Ramos, J.I.: Global volcanic simulation: physical modeling, numerics, and computer implementation. In: Dobran, F. (ed.) Vesuvius—Education, Security and Prosperity. Developments in Volcanology, vol. 8, pp. 311–372. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  10. Fabrichnaya, O., Saxena, S.K., Richet, P., Westrum, E.F.: Thermodynamic Data, Models and Phase. Springer, Berlin (2004)

    Google Scholar 

  11. Fletcher, R.L.: Practical methods of optimization, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  12. Floudas, C.A., Akrotiriankis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput.-Aided Chem. Eng. 18, 23–51 (2004)

    Article  Google Scholar 

  13. Mark, Ghiorso, S., Hirschmann, M.M., Reiners, P.W., Kress, V.C. III: The pMELTS: an revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochem. Geophys. Geosyst. 3(5) (2002)

  14. Ghiorso, M.S.: Algorithms for the estimation of phase stability in heterogeneous thermodynamic systems. Geochim. Cosmochim. Acta 58(24), 5489–5502 (1994)

    Article  Google Scholar 

  15. Ghiorso, M.S., Sack, R.O.: Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212 (1995)

    Article  Google Scholar 

  16. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT version 7: software for large-scale nonlinear programming (2007)

  17. Jalali, F., Seader, J.D.: Homotopy continuation method in multi-phase multi-reaction equilibrium systems. Comput. Chem. Eng. 23(9), 1319–1331 (1999)

    Article  Google Scholar 

  18. Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Bychinskii, V.A.: The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling. Am. J. Sci. 302(4), 281 (2002)

    Article  Google Scholar 

  19. Marzocchi, W., Sandri, L., Selva, J.: BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull. Volcanol. 70, 623–632 (2008)

    Article  Google Scholar 

  20. Mawhin, J.: Leray-Schauder continuation theorems in the absence of a priori bounds. Topol. Methods Nonlinear Anal., J. J. Schauder Center 9, 179–200 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Moretti, R., Papale, P.: On the oxidation state and volatile behavior in multicomponent gas-melt equilibria. Chem. Geol. 213(1–3), 265–280 (2004). 7th Silicate Melt Workshop

    Article  Google Scholar 

  22. Papale, P., Moretti, R., Barbato, D.: The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chem. Geol. 229(1–3), 78–95 (2006)

    Article  Google Scholar 

  23. Rote, G.: The convergence rate of the sandwich algorithm for approximating convex functions. Computing 48, 337–361 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sahinidis, N.V.: In: BARON Branch And Reduce Optimization Navigator. University of Illinois at Urbana-Champaign Department of Chemical Engineering, 600 South Mathews Avenue, Urbana, Illinois 61801, USA, 0.4 edn., June (2000)

  25. Sigurdsson, H.: Encyclopedia of Volcanoes. Academic Press, San Diego (1999)

    Google Scholar 

  26. Smith, P.M., Asimow, P.D.: Adiabat _1ph: A new public front-end to the melts, pmelts, and phmelts models. Geochem. Geophys. Geosyst. 6(1) (2005)

  27. Smith, W.R., Missen, R.W.: Chemical reaction equilibrium analysis: theory and algorithms. Krieger, Melbourne (1991)

    Google Scholar 

  28. Sparks, R.S.J.: Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210(1–2), 1–15 (2003)

    Article  Google Scholar 

  29. Srinivas, M., Rangaiah, G.P.: A study of differential evolution and tabu search for benchmark, phase equilibrium and phase stability problems. Comput. Chem. Eng. 31(7), 760–772 (2007)

    Article  Google Scholar 

  30. Sun, A.C., Seider, W.D.: Homotopy-continuation method for stability analysis in the global minimization of the Gibbs free energy. Fluid Phase Equilib. 103(2), 213–249 (1995)

    Article  Google Scholar 

  31. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Textor, C., Graf, H., Longo, A., Neri, A., Ongaro, T.E., Papale, P., Timmreck, C., Ernst, G.G.J.: Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales. Ann. Geophys. 48(4–5) (2009)

  34. Van Zeggeren, F., Storey, S.H.: The Computation of Chemical Equilibria. Cambridge the University press, Cambridge (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cassioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassioli, A., Consolini, L., Locatelli, M. et al. Optimization and homotopy methods for the Gibbs free energy of simple magmatic mixtures. Comput Optim Appl 55, 427–457 (2013). https://doi.org/10.1007/s10589-013-9532-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9532-0

Keywords

Navigation