Skip to main content
Log in

Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we consider a model elliptic optimal control problem with finitely many state constraints in two and three dimensions. Such problems are challenging due to low regularity of the adjoint variable. For the discretization of the problem we consider continuous linear elements on quasi-uniform and graded meshes separately. Our main result establishes optimal a priori error estimates for the state, adjoint, and the Lagrange multiplier on the two types of meshes. In particular, in three dimensions the optimal second order convergence rate for all three variables is possible only on properly refined meshes. Numerical examples at the end of the paper support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alkhutov, Y.A., Kondrat’ev, V.A.: Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain. Differ. Equ. 28, 650–662 (1992)

    MathSciNet  Google Scholar 

  2. Alt, H.W.: Lineare Funktionalanalysis: Eine Anwendungsorientierte Einführung, 6th edn. Springer Lehrbuch. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  3. Apel, T., Sändig, A.M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19, 63–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apel, T., Benedix, O., Sierch, D., Vexler, B.: A priori mesh grading for an elliptic problem with Dirac right-hand side. SIAM J. Numer. Anal. 49(3), 992–1005 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, Berlin (2007)

    Google Scholar 

  6. Casas, E.: Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002) (electronic). A tribute to J.L. Lions

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E.: Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM Control Optim. Calc. Var. 14(3), 575–589 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Mateos, M.: Second order optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40(5), 1431–1454 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  9. Casas, E., Mateos, M.: Numerical approximation of elliptic control problems with finitely many pointwise constraints. Comput. Optim. Appl. 51(3), 1319–1343 (2012). doi:10.1007/s10589-011-9394-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics Appl. Math., vol. 40. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  11. D’Angelo, C.: Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012). doi:10.1137/100813853

    Article  MathSciNet  MATH  Google Scholar 

  12. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Demlow, A., Guzmán, J., Schatz, A.H.: Local energy estimates for the finite element method on sharply varying grids. Math. Comput. 80(273), 1–9 (2011). doi:10.1090/S0025-5718-2010-02353-1

    MATH  Google Scholar 

  14. Eriksson, K.: Improved accuracy by adapted mesh-refinements in the finite element method. Math. Comput. 44(170), 321–343 (1985). doi:10.2307/2007955

    Article  MathSciNet  MATH  Google Scholar 

  15. Fritzsch, R.: Optimale Finite-Elemente-Approximationen für Funktionen mit Singularitäten. Ph.D. thesis, TU Dresden, Dresden, Germany (1990)

  16. Fromm, S.J.: Potential space estimates for Green potentials in convex domains. Proc. Am. Math. Soc. 119, 225–233 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  18. Grüter, M., Widman, K.O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)

    Article  MATH  Google Scholar 

  19. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2008)

    Google Scholar 

  20. Leykekhman, D.: Investigation of commutative properties of discontinuous Galerkin methods in pde constrained optimal control problems. J. Sci. Comput. 53(3), 483–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  22. May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems (2010, submitted)

  23. Merino, P., Tröltzsch, F., Vexler, B.: Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. Modél. Math. Anal. Numér. 44(1), 167–188 (2010). doi:10.1051/m2an/2009045

    Article  MATH  Google Scholar 

  24. Merino, P., Neitzel, I., Tröltzsch, F.: On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90(6), 1047–1074 (2011). doi:10.1080/00036811.2010.489187

    Article  MathSciNet  MATH  Google Scholar 

  25. Oganesyan, L.A., Rukhovets, L.A.: Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary. USSR Comput. Math. Math. Phys. 8, 129–152 (1968)

    Article  Google Scholar 

  26. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38, 437–445 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. RoDoBo: A C++ library for optimization with stationary and nonstationary PDEs with interface to gascoigne [29]. http://www.rodobo.uni-hd.de

  28. Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods, part II. Math. Comput. 64(211), 907–928 (1995)

    MathSciNet  MATH  Google Scholar 

  29. The finite element toolkit gascoigne: http://www.gascoigne.uni-hd.de

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vexler.

Additional information

P. Leykekhman was supported by NSF grant DMS-1115288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leykekhman, D., Meidner, D. & Vexler, B. Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput Optim Appl 55, 769–802 (2013). https://doi.org/10.1007/s10589-013-9537-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9537-8

Keywords

Navigation