Skip to main content
Log in

Space tensor conic programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Space tensors appear in physics and mechanics. Mathematically, they are tensors in the three-dimensional Euclidean space. In the research area of diffusion magnetic resonance imaging, convex optimization problems are formed where higher order positive semi-definite space tensors are involved. In this short paper, we investigate these problems from the viewpoint of conic linear programming (CLP). We characterize the dual cone of the positive semi-definite space tensor cone, and study the CLP formulation and the duality of positive semi-definite space tensor conic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alizadeh, F.: Optimization over the positive semi-definite cone: interior–point methods and combinatorial applications. In: Pardalos, P.M. (ed.) Advances in Optimization and Parallel Computing, pp. 1–25. North Holland, Amsterdam (1992)

    Google Scholar 

  2. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor filed estimation from DW-MRI. NeuroImage 45, 5153–5162 (2009)

    Article  Google Scholar 

  4. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Karssemeijer, M., Lelieveldt, B. (eds.) Information Processing and Medical Imaging, pp. 308–319. Springer, Berlin (2007)

    Chapter  Google Scholar 

  5. Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed. 15, 456–467 (2002)

    Article  Google Scholar 

  6. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biofizika 66, 259–267 (1994)

    Google Scholar 

  7. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, pp. 1–8. Springer, Berlin (2008)

    Chapter  Google Scholar 

  8. Cartwright, D., Sturmfels, B.: The number of eigenvalues of a tensor. Linear Algebra Appl. 438, 942–952 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chefd’Hotel, C., Tschumperle, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20, 147–162 (2004)

    Article  MathSciNet  Google Scholar 

  10. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

  11. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and analytical q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  12. Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, pp. 858–865. Springer, Berlin (2008)

    Chapter  Google Scholar 

  13. Hu, S.L., Huang, Z.H., Ni, H.Y., Qi, L.: Positive definiteness of diffusion kurtosis imaging. Inverse Probl. Imaging 6, 57–75 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu, S.L., Huang, Z.H., Qi, L.: Finding extreme Z-eigenvalues of tensors via sequential SDPs method. Numer. Linear Algebra Appl. (2013, to appear)

  15. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lim, L.-H.: Four problems for the experts gathered here. Presentation at the International Workshop on Computational Polynomial Optimization and Multilinear Algebra, Hong Kong, December 2008

  17. Li, G., Qi, L., Yu, G.: Semismoothness of the maximum eigenvalue function of a symmetric tensor and its application. Linear Algebra Appl. 438, 813–833 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lobo, M.S., Vandenberghe, L., Boyd, S.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Motzkin, T.S.: The arithmetic-geometric inequality. In: Inequalities. Proc. Sympos., Wright-Patterson Air Force Base, Ohio, 1965, pp. 205–224. Academic Press, New York (1967)

    Google Scholar 

  20. Nemirovski, A.: Advances in convex optimization: conic programming. In: Sanz-Sol, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians 2006, vol. 1, pp. 413–444. EMS-European Mathematical Society Publishing House, Helsinki (2007)

    Chapter  Google Scholar 

  21. Nesterov, Yu., Nemirovski, A.: Interior Point Polynomial Time Methods in Convex Programming. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  22. Nesterov, Yu., Todd, M.J., Ye, Y.: Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems. Math. Program. 84, 227–267 (1999)

    MATH  MathSciNet  Google Scholar 

  23. Ni, G., Qi, L., Wang, F., Wang, Y.: The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329, 1218–1229 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Program. 106, 587–606 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ozarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)

    Article  Google Scholar 

  26. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MATH  Google Scholar 

  27. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Qi, L., Xu, Y., Yuan, Y., Zhang, X.: A cone constrained convex program: structure and algorithms. J. Oper. Res. Soc. China 1, 37–53 (2013)

    Article  MATH  Google Scholar 

  29. Qi, L., Ye, Y.: Space tensor programming. Department of Applied Mathematics, The Hong Kong Polytechnic University, June 2009. http://www.polyu.edu.hk/ama/staff/new/qilq/QY.pdf

  30. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103–113 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Contemporary Mathematics, vol. 253, pp. 251–272. American Mathematical Society, Providence (2000)

    Google Scholar 

  33. Rockafellar, R.T.: Convex Analysis. Princeton Publisher, Princeton (1970)

    MATH  Google Scholar 

  34. Shapiro, A.: On duality theory of conic linear problems. In: Goberna, M.A., Lopez, M.A. (eds.) Semi-Infinite Programming, pp. 135–165. Kluwer Academic, Dordrecht (2001)

    Chapter  Google Scholar 

  35. Shor, N.Z.: Nondifferential Optimization and Polynomial Problems. Kluwer Academic, Boston (1998)

    Book  Google Scholar 

  36. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

  37. Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Med. Imaging 23, 930–939 (2004)

    Article  Google Scholar 

  38. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ye, Y.: Linear Conic Programming, Monograph. Department of Management Science and Engineering, Stanford University, December 2004; see http://www.stanford.edu/class/msande314/sdpmain.pdf

  40. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  41. Yudin, D.B., Nemerovskii, A.: Informational complexity and efficient methods for the solution of convex extremal problems. Matekon 13, 25–45 (1977)

    Google Scholar 

Download references

Acknowledgements

We thank two referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Qi.

Additional information

Dedicated to our good friend Masao Fukushima on the occasion of his 65th birthday.

This work was partly supported by the Research Grant Council of Hong Kong (Grant No. PolyU 501909, 502510, 502111 and 501212).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, L., Ye, Y. Space tensor conic programming. Comput Optim Appl 59, 307–319 (2014). https://doi.org/10.1007/s10589-013-9577-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9577-0

Keywords

Navigation