Skip to main content
Log in

Third order convergent time discretization for parabolic optimal control problems with control constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider a priori error analysis for a discretization of a linear quadratic parabolic optimal control problem with box constraints on the time-dependent control variable. For such problems one can show that a time-discrete solution with second order convergence can be obtained by a first order discontinuous Galerkin time discretization for the state variable and either the variational discretization approach or a post-processing strategy for the control variable. Here, by combining the two approaches for the control variable, we demonstrate that almost third order convergence with respect to the size of the time steps can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington (1972)

    MATH  Google Scholar 

  2. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191(11–12), 1097–1112 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Akrivis, G., Makridakis, C., Nochetto, R.: Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118, 429–456 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Becker, R., Vexler, B.: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Series in Mathematics, vol. 19. AMS, Providence (2010)

    MATH  Google Scholar 

  7. Fidkowski, K.J.: Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection-dominated flows. Int. J. Numer. Methods Eng. 88(12), 1297–1322 (2011)

    MATH  MathSciNet  Google Scholar 

  8. Gascoigne: The finite element toolkit. URL http://www.gascoigne.uni-hd.de

  9. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monogr. Stud. Math., vol. 24. Pitman, London (1985)

    MATH  Google Scholar 

  10. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Kunisch, K., Rösch, A.: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13(2), 321–334 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Lasiecka, I., Malanowski, K.: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7(1), 21–36 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Makridakis, C., Nochetto, R.H.: A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104, 489–514 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8, 69–95 (1982)

    MATH  MathSciNet  Google Scholar 

  15. Matthies, G., Schieweck, F.: Higher order variational time discretizations for nonlinear systems of ordinary differential equations. Preprint (2011)

  16. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. Math. Surv. Monogr., vol. 162. AMS, Providence (2010)

    MATH  Google Scholar 

  17. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: Problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Meidner, D., Vexler, B.: A priori error analysis of the Petrov–Galerkin Crank–Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)

    MATH  MathSciNet  Google Scholar 

  20. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Michels, H.H.: Abscissas and weight coefficients for Lobatto quadrature. Math. Comput. 17, 237–244 (1963)

    MATH  MathSciNet  Google Scholar 

  22. RoDoBo: A C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne. URL http://www.rodobo.uni-hd.de

  23. Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwend. 23(2), 353–376 (2004)

    MATH  Google Scholar 

  24. Rösch, A., Simon, R.: Superconvergence properties for optimal control problems discretized by piecewise linear and discontinuous functions. Numer. Funct. Anal. Optim. 28(3–4), 425–443 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Rösch, A., Vexler, B.: Optimal control of the Stokes equations: a priori error analysis for finite element discretization with postprocessing. SIAM J. Numer. Anal. 44(5), 1903–1920 (2006)

    MATH  MathSciNet  Google Scholar 

  26. Schiela, A.: A simplified approach to semismooth Newton methods in function space. SIAM J. Optim. 19(3), 1417–1432 (2008)

    MATH  MathSciNet  Google Scholar 

  27. Schötzau, D., Wihler, T.: A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115, 475–509 (2010)

    MATH  MathSciNet  Google Scholar 

  28. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn. Springer Ser. Comput. Math. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges financial support from the Munich Centre of Advanced Computing and the International Graduate School of Science and Engineering at the Technische Universität München. Furthermore, we would like to thank Konstantin Pieper for his help with the implementation of variational control discretization, Dominik Meidner for his helpful comments, and the anonymous referee for improving the estimate given in Lemma 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Springer.

Appendix: Proof of Theorem 2

Appendix: Proof of Theorem 2

The proof is similar to Theorem 5 in [6, Chap. 7.1] where higher order stability estimates for a continuous parabolic problem are shown. Just as there, a Galerkin approximation with respect to the spatial variable is used. Let \(\{v_{n}\}_{n\in\mathbb{N}}\) be an orthonormal basis of H consisting of eigenfunctions of −Δ defined on V. Then we define the spaces V N and \(X_{kN}^{r}\) by

Replacing the test and trial spaces in Eq. (20) by \(X_{kN}^{r}\) leads to a sequence of Galerkin approximations y kN of the semidiscrete solution y k . In a first step we have to show that for those approximations the stated stability estimates hold.

Lemma 9

For the Galerkin approximations y kN as defined above we have the stability estimate

$${ \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I}}+ \Biggl( \sum_{m=1}^M{ \Vert \partial_t \Delta y_{kN} \Vert _{I_m}}^2 \Biggr)^{\frac{1}{2}} \leq C { \Vert \Delta w \Vert _{I}} $$

with a constant C independent of N.

Proof

To get the estimate for the first term we test with φ3 y kN , which exists since y kN is a linear combination of eigenvectors of Δ, resulting in

$$\begin{aligned} &-\sum_{m=1}^M { \bigl( \Delta^3 y_{kN},\partial_t y_{kN} \bigr)_{I_m}} - { \bigl( \Delta^3 y_{kN},\Delta y_{kN} \bigr)_{I}} \\ &\quad{}- \sum_{m=1}^{M-1} { \bigl( \Delta^3 y_{kN,m}^-,[y_{kN}]_m \bigr)} - { \bigl( \Delta^3 y_{kN,M}^-,y_{kN,M}^- \bigr)} = { \bigl( \Delta^3 y_{kN},w \bigr)_{I}}. \end{aligned}$$

We apply Green’s formula to each term and get

$$\begin{aligned} &\sum_{m=1}^M { ( \nabla\Delta y_{kN},\partial_t \nabla\Delta y_{kN} )_{I_m}} - { \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I}}^2 \\ &\quad{}+ \sum_{m=1}^{M-1} { \bigl( \nabla\Delta y_{kN,m}^-,[\nabla\Delta y_{kN}]_m \bigr)} + { \bigl \Vert \nabla\Delta y_{kN,M}^- \bigr \Vert }^2 = { \bigl( \Delta^2 y_{kN},\Delta w \bigr)_{I}}. \end{aligned}$$

With the two identities

$$\begin{aligned} { ( \nabla\Delta y_{kN},\partial_t \nabla\Delta y_{kN} )_{I_m}} &= \frac{1}{2} { \bigl \Vert \nabla\Delta y_{kN,m}^- \bigr \Vert }^2-\frac{1}{2} { \bigl \Vert \nabla \Delta y_{kN,m-1}^+ \bigr \Vert }^2 \end{aligned}$$

and

$$\begin{aligned} { \bigl( \nabla\Delta y_{kN,m}^-,[\nabla\Delta y_{kN}]_m \bigr)} &= \frac{1}{2} { \bigl \Vert \nabla\Delta y_{kN,m}^+ \bigr \Vert }^2 - \frac{1}{2} { \bigl \Vert \nabla \Delta y_{kN,m}^- \bigr \Vert }^2 - \frac{1}{2} { \bigl \Vert [\nabla\Delta y_{kN}]_m \bigr \Vert }^2 \end{aligned}$$

we obtain

$$-{ \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I}}^2 - \sum_{m=1}^{M-1} \frac{1}{2} { \bigl \Vert [\nabla \Delta y_{kN}]_m \bigr \Vert }^2 -\frac{1}{2} { \bigl \Vert \nabla\Delta y_{kN,M}^- \bigr \Vert }^2 = { \bigl( \Delta^2 y_{kN},\Delta w \bigr)_{I}}, $$

which immediately gives the estimate for the first term

$${ \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I}} \leq{ \Vert \Delta w \Vert _{I}}. $$

In order to obtain the second estimate, we test with the interval-wise defined function φ where \(\varphi |_{I_{m}} = (t-t_{m}) \partial_{t} \Delta^{2} y_{kN}\) for a fixed index m and φ=0 otherwise. Using the dual formulation (17) of the bilinear form, we note that the jump terms vanish and we get

$$\begin{aligned} &-{ \bigl( (t-t_m) \partial_t \Delta^2 y_{kN},\partial_t y_{kN} \bigr)_{I_m}} - { \bigl( (t-t_m) \partial_t \Delta^2 y_{kN},\Delta y_{kN} \bigr)_{I_m}} \\ &\quad= { \bigl( (t-t_m)\partial_t \Delta^2 y_{kN},w \bigr)_{I_m}}. \end{aligned}$$

We apply Green’s formula with respect to the spatial variable on each of the three terms and obtain after reordering

$$\begin{aligned} &\int_{I_m} (t_m-t) { \Vert { \partial_t}\Delta y_{kN} \Vert }^2 \,\mathrm{d}t= \int_{I_m}(t_m-t) { \bigl( { \partial_t}\Delta y_{kN},-\Delta w - \Delta^2 y_{kN} \bigr)}\,\mathrm{d}t \\ &\quad\leq \biggl( \int_{I_m}(t_m-t) { \Vert { \partial_t}\Delta y_{kN} \Vert }^2 \,\mathrm{d}t \biggr)^{\frac{1}{2}} \biggl( \int_{I_m}(t_m-t) { \bigl \Vert -\Delta w - \Delta^2 y_{kN} \bigr \Vert }^2\,\mathrm{d}t \biggr)^{\frac{1}{2}}. \end{aligned}$$

Together with the inverse estimate (4.5) from [17], which reads in our case

$${ \Vert y_{kN} \Vert _{I_m}}^2 \leq C k_m^{-1} \int_{I_m} (t_m-t) { \Vert y_{kN} \Vert }^2 \,\mathrm{d}t $$

with C independent of N, we obtain the estimate

$$\begin{aligned} { \Vert \partial_t \Delta y_{kN} \Vert _{I_m}}^2 &\leq C k_m^{-1} \int _{I_m} (t_m-t) { \Vert \partial_t \Delta y_{kN} \Vert }^2 \,\mathrm{d}t \\ &\leq C k_m^{-1} \int_{I_m}(t_m-t) { \bigl \Vert -\Delta w - \Delta^2 y_{kN} \bigr \Vert }^2\,\mathrm{d}t \\ &\leq C { \bigl \Vert -\Delta w - \Delta^2 y_{kN} \bigr \Vert _{I_m}}^2 \leq C \bigl( { \Vert \Delta w \Vert _{I_m}}^2 + { \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I_m}}^2 \bigr). \end{aligned}$$

Summing over all time intervals yields

$$\sum_{m=1}^M { \Vert { \partial_t}\Delta y_{kN} \Vert _{I_m}}^2 \leq C \bigl( { \Vert \Delta w \Vert _{I}}^2 + { \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I}}^2 \bigr) $$

which shows the second estimate. □

Proof of Theorem 2

From Lemma 9 we have

$${ \bigl \Vert \Delta^2 y_{kN} \bigr \Vert _{I}}+ \Biggl( \sum_{m=1}^M{ \Vert \partial_t \Delta y_{kN} \Vert _{I_m}}^2 \Biggr)^{\frac{1}{2}} \leq C { \Vert \Delta w \Vert _{I}} $$

with C independent of N. Therefore the sequence \(\{y_{kN} \}_{n\in\mathbb{N}}\) is bounded with respect to the norm ∥⋅∥ Y given by

$${ \Vert y_k \Vert _{Y}}^2 = { \Vert y_k \Vert _{I}}^2 + { \bigl \Vert \Delta^2 y_k \bigr \Vert _{I}}^2 + \sum_{m=1}^M { \Vert { \partial_t}\Delta y_k \Vert _{I_m}}^2 $$

and there exists a sub-sequence \((y_{kN_{j}} )_{j\in \mathbb{N}}\) that converges weakly with respect to the Y norm to a limit \(\tilde{y}_{k}\) which satisfies the estimate

$${ \bigl \Vert \Delta^2 \tilde{y}_k \bigr \Vert _{I}}+{ \Vert {\partial _t}\Delta\tilde{y}_k \Vert _{I}} \leq C { \Vert \Delta w \Vert _{I}}. $$

To complete the proof, we need to show that \(\tilde{y}_{k}\) is in fact the solution y k of the semidiscrete problem (20). Therefore we note that the stability estimate in Corollary 1 also works for the Galerkin approximations y kN with the constant C independent of N. We fix \(\bar{N}\), then for any \(\varphi\in X_{k\bar{N}}^{r}\) and for any \(N_{j} \geq\bar{N}\) the identity

$$ -\sum_{m=1}^M { ( \varphi,\partial_t y_{kN_j} )_{I_m}} - { ( \varphi ,\Delta y_{kN_j} )_{I}} -\sum _{m=1}^{M} { \bigl( \varphi^-,[y_{kN_j}]_m \bigr)} = { ( \varphi,w )_{I}} $$
(70)

holds true. Since \(\sum_{m=1}^{M}{ \Vert \partial_{t} y_{kN_{j}} \Vert _{I}}^{2}\), \({ \Vert \Delta y_{kN_{j}} \Vert _{I}}\) and \(\sum_{m=1}^{M} { \Vert [y_{kN_{j}}]_{m} \Vert }^{2}\) are bounded by the stability estimate we can extract a subsequence such that (70) holds for the weak limit which has to be \(\tilde{y}_{k}\) again. Passing to the limit \(\bar{N} \to\infty\) shows that in fact \(\tilde{y}_{k}=y_{k}\). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Springer, A., Vexler, B. Third order convergent time discretization for parabolic optimal control problems with control constraints. Comput Optim Appl 57, 205–240 (2014). https://doi.org/10.1007/s10589-013-9580-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9580-5

Keywords

Navigation