
An Infeasible-Point Subgradient Method
Using Adaptive Approximate Projections?

Dirk A. Lorenz1, Marc E. Pfetsch2, and Andreas M. Tillmann2

1 Institute for Analysis and Algebra, TU Braunschweig, Germany
2 Research Group Optimization, TU Darmstadt, Germany

Abstract. We propose a new subgradient method for the minimization
of nonsmooth convex functions over a convex set. To speed up compu-
tations we use adaptive approximate projections only requiring to move
within a certain distance of the exact projections (which decreases in the
course of the algorithm). In particular, the iterates in our method can be
infeasible throughout the whole procedure. Nevertheless, we provide con-
ditions which ensure convergence to an optimal feasible point under suit-
able assumptions. One convergence result deals with step size sequences
that are fixed a priori. Two other results handle dynamic Polyak-type
step sizes depending on a lower or upper estimate of the optimal ob-
jective function value, respectively. Additionally, we briefly sketch two
applications: Optimization with convex chance constraints, and finding
the minimum `1-norm solution to an underdetermined linear system, an
important problem in Compressed Sensing.

November 13, 2018

1 Introduction

The projected subgradient method [49] is a classical algorithm for the minimiza-
tion of a nonsmooth convex function f over a convex closed constraint set X,
i.e., for the problem

min f(x) s. t. x ∈ X. (1)

One iteration consists of taking a step of size αk along the negative direction of
an arbitrary subgradient hk of the objective function f at the current point xk

and then computing the next iterate by projection (PX) onto the feasible set X:

xk+1 = PX(xk − αk hk).

Over the past decades, numerous extensions and specializations of this scheme
have been developed and proven to converge to a minimum (or minimizer). Well-
known disadvantages of the subgradient method are its slow local convergence

? This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) within
the project “Sparse Exact and Approximate Recovery” under grants LO 1436/3-1
and PF 709/1-1. Moreover, D. Lorenz acknowledges support from the DFG project
“Sparsity and Compressed Sensing in Inverse Problems” under grant LO 1436/2-1.

ar
X

iv
:1

10
4.

53
51

v4
 [

m
at

h.
O

C
]

 8
 M

ar
 2

01
3

and the necessity to extensively tune algorithmic parameters in order to obtain
practical convergence. On the positive side, subgradient methods involve fast
iterations and are easy to implement. In fact, they have been widely used in
applications and (still) form one of the most popular algorithms for nonsmooth
convex minimization.

The main effort in each iteration of the projected subgradient algorithm usu-
ally lies in the computation of the projection PX . Since the projection is the
solution of a (smooth) convex program itself, the required time depends on the
structure of X and corresponding specialized algorithms. Examples admitting
a fast projection include the case where X is the nonnegative orthant or the
`1-norm-ball {x | ‖x‖1 ≤ τ }, onto which any x ∈ IRn can be projected in
O(n) time, see [50]. The projection is more involved if X is, for instance, an
affine space or a (convex) polyhedron. In these latter cases, it makes sense to
replace the exact projection PX by an approximation PεX . That is, we do not
approximate the projection operator uniformly, but, for a given x, we approxi-
mate the projected point adaptively up to a desired accuracy. This is formalized
by computing points PεX(x) with the property that ‖PεX(x)− PX(x)‖ ≤ ε for
every ε ≥ 0. This concept of an absolute accuracy of the projected point is sim-
ilar in spirit to the adaptive evaluation of operators as, e.g., used in adaptive
wavelet methods (cf. the APPLY-routine in [13]). Algorithmically, the idea is
that during the early phases of the algorithm we do not need a highly accurate
projection, and PεX(x) can be faster to compute if ε is larger. In the later phases,
one then adaptively tightens the requirement on the accuracy.

One particularly attractive situation in which the approach works is the case
where X is an affine space, i.e., defined by a linear equation system. Then one
can use a truncated iterative method, e.g., a conjugate gradient (CG) approach,
to obtain an adaptive approximate projection. We have observed that often only
a few steps (2 or 3) of the CG-procedure are needed to obtain a practically
convergent method.

In this paper, we focus on the investigation of convergence properties of a
general variant of the projected subgradient method which relies on such adap-
tive approximate projections. We study conditions on the step sizes and on the
accuracy requirements εk (in each iteration k) in order to achieve convergence of
the sequence of iterates to an optimal point, or at least convergence of the func-
tion values to the optimum. We investigate two variants of the algorithm. In the
first one, the sequence (αk) of step sizes forms a divergent but square-summable
series (

∑
αk = ∞,

∑
α2
k < ∞) and is given a priori. The second variant uses

dynamic step sizes which depend on the difference of the current function value
to a constant target value that estimates the optimal value.

A crucial difference of the resulting algorithms to the standard method is
the fact that iterates can be infeasible, i.e., are not necessarily contained in X.
We thus call the algorithm of this paper infeasible-point subgradient algorithm
(ISA). As a consequence, the objective function values of the iterates might
be smaller than the optimum, which requires a non-standard analysis; see the
proofs in Section 3 for details. Moreover, we always assume that X is strictly

2

contained in the interior of the domain dom f of f . Note that this excludes
the case X = dom f , where our algorithm cannot be applied. Furthermore, we
assume that every iterate lies in dom f , since otherwise no first-order information
is available. This is automatically fulfilled if dom f is the whole space, or it can
be ensured by requiring that the accuracies εk are small enough; cf. also Part 4
of Remark 3.

This paper is organized as follows. We first discuss related approaches in the
literature. Then we fix some notation and recall a few basics. In the main part
of this paper (Sections 2 and 3), we state our infeasible-point subgradient algo-
rithm (ISA) and provide proofs of convergence. In the subsequent sections we
briefly discuss some variants of ISA, an example for the adaptive approximate
projection operator from the context of convex chance constraints, and an appli-
cation of ISA to the problem of finding finding the minimum `1-norm solution
of an underdetermined linear equation system, a problem that lately received a
lot of attention in the context of compressed sensing (see, e.g., [17, 10, 15]). We
finish with some concluding remarks and give pointers to possible extensions as
well as topics of future research.

1.1 Related work

The objective function values of the iterates in subgradient algorithms typically
do not decrease monotonically. With the right choice of step sizes, the (projected)
subgradient method nevertheless guarantees convergence of the objective func-
tion values to the minimum, see, e.g., [49, 44, 5, 46]. A typical result of this sort
holds for step size sequences (αk) which are nonsummable (

∑∞
k=0 αk = ∞),

but square-summable (
∑∞
k=0 α

2
k < ∞). Thus, αk → 0 as k → ∞. Often, the

corresponding sequence of points can also be guaranteed to converge to an opti-
mal solution x∗, although this is not necessarily the case; see [3] for a discussion.

Another widely used step size rule uses an estimate ϕ of the optimal value f∗,
a subgradient hk of the objective function f at the current iterate xk, and re-
laxation parameters λk > 0:

αk = λk
f(xk)− ϕ
‖hk‖22

. (2)

The parameters λk are constant or required to obey certain conditions needed
for convergence proofs. The dynamic rule (2) is a straightforward generalization
of the so-called Polyak-type step size rule, which uses ϕ = f∗, to the more
practical case when f∗ is unknown. The convergence results given in [2] extend
the work of Polyak [44, 45] to ϕ ≥ f∗ and ϕ < f∗ by imposing certain conditions
on the sequence (λk). We will generalize these results further, using an adaptive
approximate projection operator instead of the (exact) Euclidean projection.

Many extensions of the basic subgradient scheme exist, such as variable target
value methods (see, e.g., [14, 28, 36, 40, 48, 19, 5]), using approximate subgradi-
ents [6, 1, 34, 16], or incremental projection schemes [23, 40, 31], to name just a
few.

3

Inexact projections have been used previously, probably most prominently for
convex feasibility problems in the framework of successive projection methods.
Indeed, the optimization problem (1) can, at least theoretically, be cast as the
convex feasibility problem to determine x∗ ∈ X ∩ {f(x) ≤ f∗}. Using so-called
subgradient projections [4] onto the second set leads to a subgradient step

xk+1 := xk − f(xk)− f∗

‖hk‖2
hk,

which corresponds to using a Polyak-type step size without relaxation parameter,
employing the exact optimal value. As illustrated in [4], this approach leads to a
very flexible framework for convex feasibility problems as well as (non-smooth)
convex optimization problems.

Moreover, [52] considers additive vanishing non-summable error terms (for
both the projection and the subgradient step) and establishes the existence of a
(decaying) bound on the error terms such that the algorithm will reach a small
neighborhood of the optimal set. However, these bounds are not given explicitly.
In contrast, our results (Theorems 1 and 3) contain explicit conditions for the
error terms that guarantee convergence to the optimum. Another example for the
use of inexact projections is the level set subgradient algorithm in [30], although
there, all iterates are strictly feasible.

We emphasize that there are at least three conceptually different approaches
to approximate projections in the present context. The first concept—prominent,
e.g., in the field on convex feasibility problems—uses the idea of approximating
the direction towards the feasible set, i.e., the iterates approximately move to-
wards the constraint set. In the second, related, concept one projects exactly
onto supersets of the constraint which are easier to handle, e.g., half-spaces.
With both ideas one can use powerful notions like Fejér-monotonicity or the
concept of firmly non-expansive mappings, see, e.g., [4] and the more recent [35];
see also the “feasibility operator” framework proposed in [23]. To employ either
approach one exploits analytical knowledge about the feasible set, e.g., that it
can be written as a level set of a known and easy-to-handle convex function.
In the third approach, one aims at approximating the projected point without
further restricting the direction. This concept applies, for instance, in situations
in which a computational error is made in the projection step (e.g., as in [52]) or
when it is impossible or undesirable to handle the constraints analytically, but
a numerical algorithm is available which calculates the projection point up to a
given accuracy. The adaptive approximate projections considered in this paper
fall under this third category.

Note that, besides the different philosophies and fields of application, none
of the approaches directly dominates the other: On the one hand, one may
move directly towards the feasible set while missing the projection point, and
on the other hand, one may also move closer to the projected point along a
direction which is not towards the feasible set; see Figure 1 for an illustration.
However, one can sometimes, for a given rule which approximates the projection
direction, find appropriate half-spaces which contain the feasible set and realize

4

X

x

PX(x)

Fig. 1. Schematic illustration of the three concepts of “approximate projections”: The
approximation of the projection direction (or “moving towards the feasible set”) moves
from x along a direction within the shaded cone. The exact projection onto a half-space
containing X moves along the dashed line. The approximation of the projected point
moves from x into a neighborhood of PX(x), the shaded circle.

this approximate projection exactly. In Section 5 we give a concrete example
in which the Fejér-type feasibility operator of [23] is not applicable, but the
exact projection point can be approximated reasonably well in the sense of our
adaptive approximate projection (see above or (7) below).

In the present paper we only consider the third approach to approximate
projections and do not use any assumption like non-expansiveness or Fejér-
monotonicity for the iteration mapping in our convergence analyses.

1.2 Notation

In this paper, we consider the convex optimization problem (1) in which we
assume that f : IRn → IR ∪ {∞} is a convex function (not necessarily differen-
tiable), dom f = {x ∈ IRn | f(x) < ∞}, and X ⊂ int(dom f) ⊆ IRn is a closed
convex set (note that this implies that f is continuous on X). The set

∂f(x) := {h ∈ IRn | f(y) ≥ f(x) + h>(y − x) ∀ y ∈ IRn } (3)

is the subdifferential of f at a point x ∈ IRn; its members are the corresponding
subgradients. Throughout this paper, we will assume (1) to have a nonempty set
of optima

X∗ := argmin{f(x) | x ∈ X}. (4)

An optimal point will be denoted by x∗ and its objective function value f(x∗)
by f∗. For a sequence (xk) = (x0, x1, x2, . . .) of points, the corresponding se-
quence of objective function values will be abbreviated by (fk) = (f(xk)).

By ‖·‖p we denote the usual `p-norm, i.e., for x ∈ IRn,

‖x‖p :=

(∑n

i=1|xi|p
) 1

p , if 1 ≤ p <∞,
max

i=1,...,n
|xi|, if p =∞. (5)

5

If no confusion can arise, we shall simply write ‖·‖ instead of ‖·‖2 for the Eu-
clidean (`2-)norm. The Euclidean distance of a point x to a set Y is

dY (x) := inf
y∈Y
‖x− y‖2. (6)

For Y closed and convex, (6) has a unique minimizer, namely the orthogonal
(Euclidean) projection of x onto Y , denoted by PY (x).

All further notation will be introduced where it is needed.

2 The Infeasible-Point Subgradient Algorithm (ISA)

In the projected subgradient algorithm, we replace the exact projection PX by
an adaptive approximate projection. We require that we can adapt the accuracy
of the approximation of the projected point absolutely, i.e., that for any given
accuracy parameter ε ≥ 0, the adaptive approximate projection PεX : IRn → IRn

satisfies
‖PεX(x)− PX(x)‖ ≤ ε for all x ∈ IRn. (7)

In particular, for ε = 0, we have P0
X = PX . Note that PεX(x) does not necessarily

produce a point that is closer to PX(x) (or even to X) than x itself. In fact,
this is only guaranteed for ε < dX(x).

One example arises in the context of convex chance constraints and is dis-
cussed in Section 5.1. For the special case in which X is an affine space, we give
a detailed discussion of an adaptive approximate projection satisfying the above
requirement in Section 5.2.

By replacing the exact by an adaptive projection in the projected subgradient
method, we obtain the Infeasible-point Subgradient Algorithm (ISA), which we
will discuss in two variants in the following.

The stopping criteria of the algorithms will be ignored for the convergence
analyses. In practical implementations, one would stop, e.g., if no significant
progress in the objective (or feasibility) has occurred within a certain number of
iterations.

2.1 ISA with a predetermined step size sequence

If the step sizes (αk) and projection accuracies (εk) are predetermined (i.e.,
given a priori), we obtain Algorithm 1. Note that hk = 0 might occur, but does
not necessarily imply that xk is optimal, because xk may be infeasible. In such
a case, the adaptive projection will change xk to a different point as soon as εk
becomes small enough.

We will now state our main convergence result for this variant of the ISA,
using fairly standard step size conditions. The proof is provided in Section 3.

Theorem 1 (Convergence for predetermined step size sequences).
Let the projection accuracy sequence (εk) be such that

εk ≥ 0,

∞∑
k=0

εk <∞, (8)

6

Algorithm 1 Predetermined Step Size ISA

Input: a starting point x0, sequences (αk), (εk)
Output: an (approximate) solution to (1)
1: initialize k := 0
2: repeat
3: choose a subgradient hk ∈ ∂f(xk) of f at xk

4: compute the next iterate xk+1 := Pεk
X

(
xk − αkh

k
)

5: increment k := k + 1
6: until a stopping criterion is satisfied

let the positive step size sequence (αk) be such that

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞, (9)

and let the following relation hold:

αk ≥
∞∑
j=k

εj ∀ k = 0, 1, 2, . . . (10)

Suppose ‖hk‖ ≤ H < ∞ for all k. Then the sequence of the ISA iterates (xk)
converges to an optimal point.

Remark 1. Relations (8), (9), and (10) can be ensured, e.g., by the sequences
εk = 1/k2 and αk = 1/(k − 1) for k > 1; in particular,

∞∑
j=k

εk ≤
∫ ∞
k−1

1

x2
dx =

1

k − 1
= αk.

2.2 ISA with dynamic step sizes

In order to apply the dynamic step size rule (2), we need several modifications of
the basic method, yielding Algorithm 2. This algorithm works with an estimate ϕ
of the optimal objective function value f∗ and essentially tries to reach a feasible
point xk with f(xk) ≤ ϕ. (Note that if ϕ = f∗, we would have obtained an
optimal point in this case.)

Remark 2. A few comments on Algorithm 2 are in order:

1. Since 0 < γ < 1, γ` → 0 (strictly monotonically) for `→∞. Thus, Steps 3–7
constitute a projection accuracy refinement phase, i.e., an inner loop in which
the current k is temporarily fixed, and xk is recomputed with a stricter
accuracy setting for the adaptive projection. This phase either leads to a
point showing ϕ ≥ f∗ (by termination or convergence in the inner loop over
`) or eventually resets xk to a point with fk > ϕ and hk 6= 0 so that the
regular (outer) iteration is resumed (with k no longer fixed).

7

Algorithm 2 Dynamic Step Size ISA

Input: estimate ϕ of f∗, starting point x0, sequences (λk), (εk), parameter γ ∈ (0, 1)
Output: an (approximate) solution to (1)
1: initialize k := 0, ` = −1, x−1 := x0, h−1 := 0, α−1 := 0, ε−1 := ε0
2: repeat
3: choose a subgradient hk ∈ ∂f(xk) of f at xk

4: if fk ≤ ϕ or hk = 0 then
5: if xk ∈ X then
6: stop (at feasible point xk showing ϕ ≥ f∗; optimal if hk = 0)
7: increment ` := `+ 1, reset xk := Pε

X(xk−1 − αk−1h
k−1) for ε = γ`εk−1

8: go to Step 3
9: compute step size αk := λk(fk − ϕ)/‖hk‖2

10: compute the next iterate xk+1 := Pεk
X (xk − αkh

k)
11: reset ` := 0 and increment k := k + 1
12: until a stopping criterion is satisfied

2. Note that, if x0 is such that f0 ≤ ϕ or hk = 0, the algorithm begins with
such a refinement phase, projecting x0 more and more accurately until nei-
ther case holds any longer (if possible); the initializations with counter −1
are needed for this eventuality. Moreover, we could clearly postpone the (re-
peated) determination of a subgradient (Step 3) in a refinement phase until
fk > ϕ is achieved, i.e., hk = 0 would be the only reason for another accuracy
refinement. This may be important in practice, where finding a subgradient
sometimes is expensive itself, and the case hk = 0 presumably occurs very
rarely anyway. For the sake of brevity we did not treat this explicitly in
Algorithm 2.

3. There are various ways in which the accuracy refinement phase could be re-
alized. Instead of (γ`) with constant γ ∈ (0, 1), any (strictly) monotonically
decreasing sequence (γ`) could be used. Since we will need εk → 0 to achieve
feasibility (in the limit) anyway, which implies that for all k there always
exists some L > 0 such that εk+L < εk, we could also use min{εk−1, εk−1+`}
as the recalibrated accuracy. Moreover, we do not need to fix k, i.e., re-
peatedly replace xk by finer approximate projections, but could produce a
finite series of identical iterates (each reset to the last one before the in-
ner loop started) until the refinement phase is over. Similarly, we could use
αk = max{0, λk(fk − ϕ)/‖hk‖2} (and 0 if hk = 0); letting εk → 0 then
naturally implements the refinement, while in iterations with αk = 0, the
produced point may move up to εk away from the optimal set. Assuming
(εk) is summable, this does not impede convergence. For all these variants,
analogues to the following convergence results hold true as well; however,
the proofs require some extensions to account for the technical differences to
the variant we chose to present, which admitted the overall shortest proofs.
In practice, we would generally expect these variants to behave similarly.
Furthermore, note that in principle, the “problematic” cases could also be
treated by reverting to exact projections; however, in our present context

8

this should be avoided since computing the exact projection is considered
too expensive.

We obtain the following convergence results, depending on whether ϕ over- or
underestimates f∗. The proofs are deferred to the next section.

Theorem 2 (Convergence for dynamic step sizes with overestimation).
Let the optimal point set X∗ be bounded, ϕ ≥ f∗, 0 < λk ≤ β < 2 for all k, and∑∞
k=0 λk =∞. Let (νk) be a nonnegative sequence with

∑∞
k=0 νk <∞, and let

εk :=−
(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)

+

√(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)2

+
λk(2− λk)(fk − ϕ)2

‖hk‖2
. (11)

If the subgradients hk satisfy 0 < H ≤ ‖hk‖ ≤ H < ∞ and (εk) satisfies
0 ≤ εk ≤ min{εk, νk} for all k, then the following holds.

(i) For any given δ > 0 there exists some index K such that f(xK) ≤ ϕ+ δ.
(ii) If additionally f(xk) > ϕ for all k and if λk → 0, then fk → ϕ for k →∞.

Remark 3.

1. The sequence (νk) is a technicality needed in the proof to ensure εk → 0.
Note from (11) that εk > 0 as long as ISA keeps iterating (in the main
loop over k), since fk > ϕ is then guaranteed by the adaptive accuracy
refinements and 0 < λk < 2 holds by assumption.

2. More precisely, part (i) of Theorem 2 essentially means that after a finite
number of iterations, we reach a point xk with f∗−c ≤ f(xk) ≤ ϕ+δ for any
c > 0. If ϕ < f(xk) ≤ ϕ+ δ, this point may still be infeasible, but the closer
f(xk) gets to ϕ, the smaller εk becomes, i.e., the algorithm automatically
increases the projection accuracy. On the other hand, termination in Step 6
implies that f(xk) ≥ f∗ (since xk is then feasible), and if some inner loop
is infinite, then the refined projection points converge to a feasible point.
Hence, for every c > 0, there is some integer 0 ≤ L <∞ such that after the
L-th accuracy refinement and replacement of xk, f(xk) ≥ f∗ − c.

3. Part (ii) shows what happens when all function values f(xk) stay above the
overestimate ϕ of f∗—which particularly holds true after possible refine-
ments, if all the accuracy refinement phases are finite (and no termination
occurs)—and we impose λk → 0 for k →∞: We eventually obtain f(xk) ar-
bitrarily close to ϕ, with vanishing feasibility violation as k →∞. Then, as
well as in case of termination in Step 6 or convergence in a refinement phase
(`→∞), it may be desirable to restart the algorithm using a smaller ϕ; see
Section 4.2.

4. The conditions ‖hk‖ ≥ H > 0, for all k, in Theorem 2 imply that all sub-
gradients used by the algorithm are nonzero. These conditions are often au-
tomatically guaranteed, for example, if X is compact and no unconstrained

9

optimum of f lies in X. In this case, ‖h‖ ≥ H > 0 for all h ∈ ∂f(x) and
x ∈ X. Moreover, the same holds for a small enough open neighborhood
of X. Also, the norms of the subgradients are bounded from above. Thus,
if we start close enough to X and restrict εk to be small enough, the con-
ditions of Theorem 2 are fulfilled. Another example in which the conditions
are satisfied appears in Section 5.2.

Theorem 3 (Convergence for dynamic step sizes with underestima-
tion). Let the set of optimal points X∗ be bounded, ϕ < f∗, 0 < λk ≤ β < 2 for
all k, and

∑∞
k=0 λk =∞. Let (νk) be a nonnegative sequence with

∑∞
k=0 νk <∞,

let

Lk :=
λk(2− β)(fk − ϕ)

‖hk‖2
(
f∗ − fk +

β

2− β
(f∗ − ϕ)

)
, (12)

and let

ε̃k := −
(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)
+

√(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)2

− Lk. (13)

If the subgradients hk satisfy 0 < H ≤ ‖hk‖ ≤ H < ∞ and (εk) satisfies
0 ≤ εk ≤ min{|ε̃k|, νk} for all k, then the following holds.

(i) For any given δ > 0, there exists some K such that fK ≤ f∗+ β
2−β (f∗−ϕ)+δ.

(ii) If additionally λk → 0, then the sequence of objective function values (fk) of
the ISA iterates (xk) converges to the optimal value f∗.

Remark 4.

1. If f(xk) ≤ ϕ < f∗, Steps 3–7 ensure that after a finite number of projection
refinements xk satisfies ϕ < f(xk). Thus, the algorithm will never terminate
with Step 6 and every refinement phase is finite.

2. Moreover, infeasible points xk with ϕ < f(xk) < f∗ are possible. Hence, the
inequality in Theorem 3 (i) may be satisfied too soon to provide conclusive
information regarding solution quality. Interestingly, part (ii) shows that
by letting the parameters (λk) tend to zero, one can nevertheless establish
convergence to the optimal value f∗ (and dX(xk) ≤ dX∗(xk) → 0, i.e.,
asymptotic feasibility).

3. Theoretically, small values of β yield smaller errors, while in practice this
restricts the method to very small steps (since λk ≤ β), resulting in slow
convergence. This illustrates a typical kind of trade-off between solution
accuracy and speed.

4. The use of |ε̃k| in Theorem 3 avoids conflicting bounds on εk in case Lk > 0.
Because 0 ≤ εk ≤ νk holds notwithstanding, 0 ≤ εk → 0 is maintained.

5. The same statements on lower and upper bounds on ‖hk‖ as in Remark 3
apply in the context of Theorem 3.

10

3 Convergence of ISA

From now on, let (xk) denote the sequence of points with corresponding objective
function values (fk) and subgradients (hk), hk ∈ ∂f(xk), as generated by ISA in
the respective variant under consideration.

Let us consider some basic inequalities which will be essential in establishing
our main results. The exact Euclidean projection is nonexpansive, therefore

‖PX(y)− x‖ ≤ ‖y − x‖ ∀x ∈ X. (14)

Hence, for the adaptive approximate projection PεX we have, by (7) and (14),
for all x ∈ X

‖PεX(y)− x‖ = ‖PεX(y)− PX(y) + PX(y)− x‖
≤ ‖PεX(y)− PX(y)‖+ ‖PX(y)− x‖ ≤ ε+ ‖y − x‖. (15)

At some iteration k, let xk+1 be produced by ISA using some step size αk and
write yk := xk − αkhk. We thus obtain for every x ∈ X:

‖xk+1 − x‖2 = ‖PεkX (yk)− x‖2

≤
(
‖yk − x‖+ εk

)2
= ‖yk − x‖2 + 2 ‖yk − x‖ εk + ε2k

= ‖xk − x‖2 − 2αk(hk)>(xk − x) + α2
k ‖hk‖2 + 2 ‖yk − x‖ εk + ε2k

≤ ‖xk − x‖2 − 2αk(fk − f(x)) + α2
k ‖hk‖2 + 2‖xk − x‖εk + 2αk εk‖hk‖+ ε2k

= ‖xk − x‖2 − 2αk(fk − f(x)) +
(
αk ‖hk‖+ εk

)2
+ 2 ‖xk − x‖ εk, (16)

where the second inequality follows from the subgradient definition (3) and the
triangle inequality. Note that the above inequalities (14)–(16) hold in particular
for every optimal point x∗ ∈ X∗.

3.1 ISA with predetermined step size sequence

The proof of the convergence of the ISA iterates xk is somewhat more involved
than for the classical subgradient method as, e.g., in [49]. This is due to the
additional error terms by adaptive approximate projection and the fact that
fk ≥ f∗ is not guaranteed since the iterates may be infeasible.

Proof of Theorem 1. We rewrite the estimate (16) with x = x∗ ∈ X∗ as

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk (fk − f∗) +
(
αk‖hk‖+ εk

)2
+ 2 ‖xk − x∗‖ εk︸ ︷︷ ︸

=:βk

(17)
and obtain (by applying (17) for k = 0, . . . ,m)

‖xm+1 − x∗‖2 ≤ ‖x0 − x∗‖2 − 2

m∑
k=0

(fk − f∗)αk +

m∑
k=0

βk.

11

Our first goal is to show that
∑
k βk is a convergent series. Using ‖hk‖ ≤ H and

denoting A :=
∑∞
k=0 α

2
k, we get

m∑
k=0

βk ≤ AH2 +

m∑
k=0

ε2k + 2H

m∑
k=0

αkεk + 2

m∑
k=0

‖xk − x∗‖εk.

Now denote D := ‖x0 − x∗‖ and consider the last term (without the factor 2):

m∑
k=0

‖xk − x∗‖εk = Dε0 +

m∑
k=1

∥∥Pεk−1

X

(
xk−1 − αk−1hk−1

)
− x∗

∥∥ εk
≤ Dε0 +

m∑
k=1

∥∥Pεk−1

X

(
xk−1 − αk−1hk−1

)
− PX

(
xk−1 − αk−1hk−1

) ∥∥ εk
+

m∑
k=1

∥∥PX (xk−1 − αk−1hk−1)− x∗∥∥ εk
≤ Dε0 +

m∑
k=1

εk−1εk +

m∑
k=1

∥∥xk−1 − αk−1hk−1 − x∗∥∥ εk
≤ Dε0 +

m−1∑
k=0

εkεk+1 +

m−1∑
k=0

‖xk − x∗‖ εk+1 +

m−1∑
k=0

‖hk‖αk εk+1

≤ D (ε0 + ε1) +

m−1∑
k=0

εkεk+1 +

m−1∑
k=1

‖xk − x∗‖ εk+1 +H

m−1∑
k=0

αk εk+1. (18)

Repeating this procedure to eliminate all terms ‖xk − x∗‖ for k > 0, we obtain

(18) ≤ . . . ≤ D

m∑
k=0

εk +

m∑
j=1

(m−j∑
k=0

εkεk+j +H

m−j∑
k=0

αkεk+j

)

= D

m∑
k=0

εk +

m∑
j=1

m−j∑
k=0

(εk +Hαk) εk+j . (19)

Using the above chain of inequalities, (8) and (10), and the abbreviation E :=∑∞
k=0 εk, we finally get:

‖xm+1 − x∗‖2 + 2

m∑
k=0

(fk − f∗)αk ≤ D2 +

m∑
k=0

βk

≤ D2 +AH2 +

m∑
k=0

ε2k + 2H

m∑
k=0

αkεk + 2D

m∑
k=0

εk + 2

m∑
j=1

m−j∑
k=0

(εk +Hαk) εk+j

≤ D2 +AH2 + 2D

m∑
k=0

εk + 2

m∑
j=0

m−j∑
k=0

εkεk+j + 2H

m∑
j=0

m−j∑
k=0

αkεk+j

12

= D2 +AH2 + 2D

m∑
k=0

εk + 2

m∑
j=0

(
εj

m∑
k=j

εk

)
+ 2H

m∑
j=0

(
αj

m∑
k=j

εk

)
≤ D2 +AH2 + 2D

m∑
k=0

εk + 2

m∑
j=0

E εj + 2H

m∑
j=0

αj αj

≤ D2 +AH2 + 2 (D + E)

m∑
k=0

εk + 2H

m∑
k=0

α2
k

≤ (D + E)2 + E2 + (2 +H)AH =: R < ∞. (20)

Since the iterates xk may be infeasible, possibly fk < f∗, and hence the
second term on the left hand side of (20) might be negative. Therefore, we
distinguish two cases:

i) If fk ≥ f∗ for all but finitely many k, we can assume without loss of generality
that fk ≥ f∗ for all k (by considering only the “later” iterates). Now, because
fk ≥ f∗ for all k,

m∑
k=0

(fk − f∗)αk ≥
m∑
k=0

(
min

j=0,...,m
fj︸ ︷︷ ︸

=:f∗
m

−f∗
)
αk = (f∗m − f∗)

m∑
k=0

αk.

Together with (20) this yields

0 ≤ 2 (f∗m − f∗)
m∑
k=0

αk ≤ R ⇐⇒ 0 ≤ f∗m − f∗ ≤
R

2
∑m
k=0 αk

.

Thus, because
∑m
k=0 αk diverges, we have f∗m → f∗ for m → ∞ (and, in

particular, lim infk→∞ fk = f∗).
To show that f∗ is in fact the only possible accumulation point (and hence

the limit) of (fk), assume that (fk) has another accumulation point strictly
larger than f∗, say f∗ + η for some η > 0. Then, both cases fk < f∗ + 1

3η
and fk > f∗ + 2

3η must occur infinitely often. We can therefore define two
index subsequences (m`) and (n`) by setting n(−1) := −1 and, for ` ≥ 0,

m` := min{ k | k > n`−1, fk > f∗ + 2
3η },

n` := min{ k | k > m`, fk < f∗ + 1
3η }.

Figure 2 illustrates this choice of indices. Now observe that for any `,

1
3η < fm`

− fn`
≤ H · ‖xn` − xm`‖ ≤ H

(
‖xn`−1 − xm`‖+Hαn`−1 + εn`−1

)
≤ · · · ≤ H2

n`−1∑
j=m`

αj +H

n`−1∑
j=m`

εj , (21)

13

Iteration k

f
(x

k
)

f∗

f∗ + 1
3η

f∗ + 2
3η

f∗ + η

m0 n0 m1n1m2 n2

Fig. 2. The sequences (m`) and (n`).

where the second inequality is obtained similar to (18). For a given m, let
`m := max{ ` | n` − 1 ≤ m } be the number of blocks of indices between two
consecutive indices m` and n` − 1 until m. We obtain:

1
3

`m∑
`=0

η ≤ H2
`m∑
`=0

n`−1∑
j=m`

αj +H

`m∑
`=0

n`−1∑
j=m`

εj ≤ H2
`m∑
`=0

n`−1∑
j=m`

αj +HE. (22)

For m → ∞, the left hand side tends to infinity, and since HE < ∞, this
implies that

`m∑
`=0

n`−1∑
j=m`

αj →∞.

Then, since αk > 0 and fk ≥ f∗ for all k, (20) yields

∞ > R ≥ ‖xm+1 − x∗‖2 + 2

m∑
k=0

(fk − f∗)αk ≥ 2

m∑
k=0

(fk − f∗)αk

≥ 2

`m∑
`=0

n`−1∑
j=m`

(fj − f∗)︸ ︷︷ ︸
>

1
3η

αj >
2
3η

`m∑
`=0

n`−1∑
j=m`

αj .

But for m→∞, this yields a contradiction since the sum on the right hand
side diverges. Hence, there does not exist an accumulation point strictly
larger than f∗, so we can conclude fk → f∗ as k → ∞, i.e., the whole
sequence (fk) converges to f∗.

We now consider convergence of the sequence (xk). From (20) we conclude
that both terms on the left hand side are bounded independently of m. In
particular this means (xk) is a bounded sequence. Hence, by the Bolzano-
Weierstraß Theorem, it has a convergent subsequence (xki) with xki → x

14

(as i→∞) for some x. To show that the full sequence (xk) converges to x,
take any K and any ki < K and observe from (17) that

‖xK − x‖2 ≤ ‖xki − x‖2 +

K−1∑
j=ki

βj .

Since
∑
k βk is a convergent series (as seen from the second last line of (20)),

the right hand side becomes arbitrarily small for ki and K large enough.
This implies xk → x, and since εk → 0, fk → f∗, and X∗ is closed, x ∈ X∗
must hold.

ii) Now consider the case where fk < f∗ occurs infinitely often. We write (f−k)
for the subsequence of (fk) with fk < f∗ and (f+k) for the subsequence
with fk ≥ f∗. Clearly f−k → f∗. Indeed, the corresponding iterates are
asymptotically feasible (since the projection accuracy εk tends to zero), and
hence f∗ is the only possible accumulation point of (f−k).

Denoting M−m = {k ≤ m | fk < f∗} and M+
m = {k ≤ m | fk ≥ f∗}, we

conclude from (20) that

‖xm+1 − x∗‖2 + 2
∑
k∈M+

m

(fk − f∗)αk ≤ R+ 2
∑
k∈M−

m

(f∗ − fk)αk. (23)

Note that each summand is non-negative. To see that the right hand side is
bounded independently of m, let yk−1 = xk−1−αk−1hk−1, and observe that
here (k ∈M−m), due to fk < f∗ ≤ f(PX(yk−1)), we have

f∗ − fk ≤ f
(
PX(yk−1)

)
− f

(
Pεk−1

X (yk−1)
)

≤ (hk−1)>
(
PX(yk−1)− Pεk−1

X (yk−1)
)

≤ ‖hk−1‖ ·
∥∥PX(yk−1)− Pεk−1

X (yk−1)
∥∥ ≤ Hεk−1,

using the subgradient and Cauchy-Schwarz inequalities as well as property (7)
of PεX and the boundedness of the subgradient norms. From (23), using (9)
and (10), we thus obtain

‖xm+1 − x∗‖2 + 2
∑
k∈M+

m

(fk − f∗)αk ≤ R+ 2H
∑
k∈M−

m

αk εk−1

≤ R+ 2H
∑
k∈M−

m

αkαk−1 ≤ R+ 2H

∞∑
k=0

αkαk−1 ≤ R+ 4AH <∞. (24)

Similar to case i), we conclude that both the sequence (xk) and the series∑
k∈M+

m
(fk − f∗)αk are bounded.

It remains to show that f+k → f∗. Assume to the contrary that (f+k) has
an accumulation point f∗+η for η > 0. Similar to before, we construct index
subsequences (m`) and (p`) as follows: Set p(−1) := −1 and define, for ` ≥ 0,

m` := min{ k ∈M+
∞ | k > p`−1, fk > f∗ + 2

3η },
p` := min{ k ∈M−∞ | k > m` }.

15

Then m`, . . . , p` − 1 ∈M+
∞ for all `, and we have

2
3η < fm`

− fp` ≤ H2

p`−1∑
j=m`

αj +H

p`−1∑
j=m`

εj .

Therefore, with `m := max{ ` | p` − 1 ≤ m } for a given m,

2
3

`m∑
`=0

η ≤ H2
`m∑
`=0

p`−1∑
j=m`

αj +H

`m∑
`=0

p`−1∑
j=m`

εj ≤ H2
`m∑
`=0

p`−1∑
j=m`

αj +H E.

Now the left hand side becomes arbitrarily large as m → ∞, so that also∑`m
`=0

∑p`−1
j=m`

αj →∞, since HE <∞. Note that because αk > 0 and

`m∑
`=0

p`−1∑
j=m`

αj ≤
∑
k∈M+

m

αk,

this latter series must diverge as well. As a consequence, f∗ is itself an (other)
accumulation point of (f+k): From (24) we have

∞ > R+ 4AH ≥ 2
∑
k∈M+

m

(fk − f∗)αk

≥
∑
k∈M+

m

(min{ fj | j ∈M+
m, j ≤ m }︸ ︷︷ ︸

=:f̂∗
m

−f∗)αk = (f̂∗m − f∗)
∑
k∈M+

m

αk,

and thus

0 ≤ f̂∗m − f∗ ≤
R+ 4AH∑
k∈M+

m
αk
→ 0 as m→∞,

since
∑
k∈M+

m
αk diverges. But then, knowing (f̂∗k) converges to f∗, we can

use (m`) and another index subsequence (n`), given by

n` := min{ k ∈M+
∞ | k > m`, fk < f∗ + 1

3η },

to proceed analogously to case i) to arrive at a contradiction and conclude
that no η > 0 exists such that f∗ + η is an accumulation point of (f+k).

On the other hand, since (xk) is bounded and f is continuous on a neigh-
borhood of X (recall that for all k, xk is contained in an εk-neighborhood
of X), (f+k) is bounded. Thus, it must have at least one accumulation point.
Since fk ≥ f∗ for all k ∈M+

∞, the only possibility left is f∗ itself. Hence, f∗

is the unique accumulation point (i.e., the limit) of the sequence (f+k). As
this is also true for (f−m), the whole sequence (fk) converges to f∗.

Finally, convergence of the bounded sequence (xk) to some x ∈ X∗ can
now be obtained just like in case i), completing the proof. ut

16

3.2 ISA with dynamic Polyak-type step sizes

Let us now turn to dynamic step sizes. In the rest of this section, αk will always
denote step sizes of the form (2).

Since in subgradient methods the objective function values need not decrease
monotonically, the key quantity in convergence proofs usually is the distance to
the optimal set X∗. For ISA with dynamic step sizes (Algorithm 2), we have the
following result concerning these distances:

Lemma 1. Let x∗ ∈ X∗. For the sequence of ISA iterates (xk), computed with
step sizes αk = λk(fk − ϕ)/‖hk‖2, it holds that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + ε2k + 2

(
λk(fk − ϕ)

‖hk‖
+ ‖xk − x∗‖

)
εk

+
λk(fk − ϕ)

‖hk‖2
(
λk(fk − ϕ)− 2(fk − f∗)

)
. (25)

In particular, also

dX∗(xk+1)2 ≤ dX∗(xk)2 − 2αk(fk − f∗) + (αk‖hk‖+ εk)2 + 2 dX∗(xk) εk. (26)

Proof. Plug (2) into (16) for x = x∗ and rearrange terms to obtain (25). If the
optimization problem (1) has a unique optimum x∗, then obviously ‖xk−x∗‖ =
dX∗(xk) for all k, so (26) is identical to (25). Otherwise, note that since X∗ is
the intersection of the closed set X with the level set {x | f(x) = f∗} of the
convex function f , X∗ is closed (cf., for example, [26, Prop. 1.2.2, 1.2.6]) and
the projection onto X∗ is well-defined. Then, considering x∗ = PX∗(xk), (16)
becomes∥∥xk+1−PX∗(xk)

∥∥2 ≤ dX∗(xk)2− 2αk(fk− f∗) + (αk‖hk‖+ εk)2 + 2 dX∗(xk) εk.

Furthermore, because obviously f(PX∗(x)) = f(PX∗(y)) = f∗ for all x, y ∈ IRn,
and by definition of the Euclidean projection,

dX∗(xk+1)2 =
∥∥xk+1 − PX∗(xk+1)

∥∥2 ≤ ∥∥xk+1 − PX∗(xk)
∥∥2.

Combining the last two inequalities yields (26).
Moreover, note that these results continue to hold true if xk+1 is replaced in

a projection refinement phase (starting in the next iteration k + 1), since then
only accuracy parameters smaller than εk are used. ut

Typical convergence results are often derived by showing that the sequence
(‖xk − x∗‖) is monotonically decreasing (for arbitrary x∗ ∈ X∗) under certain as-
sumptions on the step sizes, subgradients, etc. This is also done in [2], where (25)
with εk = 0 for all k is the central inequality, cf. [2, Prop. 2]. In our case, i.e.,
working with adaptive approximate projections as specified by (7), we can follow
this principle to derive conditions on the projection accuracies (εk) which still
allow for a (monotonic) decrease of the distances from the optimal set: If the

17

last summand in (25) is negative, the resulting gap between the distances from
X∗ of subsequent iterates can be exploited to relax the projection accuracy, i.e.,
to choose εk > 0 without destroying monotonicity.

Naturally, to achieve feasibility (at least in the limit), we will need to have (εk)
diminishing (εk → 0 as k → ∞). It will become clear that this, combined with
summability (

∑∞
k=0 εk < ∞) and with monotonicity conditions as described

above, is already enough to extend the analysis to cover iterations with fk < f∗,
which may occur since we project inaccurately.

For different choices of the estimate ϕ of f∗, we will now derive the proofs of
Theorems 2 and 3 via a series of intermediate results. Corresponding results for
exact projections (εk = 0) can be found in [2]. In fact, our analysis for adaptive
approximate projections improves on some of these earlier results (e.g., [2, Prop.
10] states convergence of some subsequence of the function values to the optimum
for the case ϕ < f∗, whereas Theorem 3 in this paper gives convergence of the
whole sequence (fk), for approximate and also for exact projections).

For the remainder of this section we can assume that ISA does not terminate
in Step 6 and that all inner projection accuracy refinement loops are finite.
Otherwise, there is some refinement phase starting at iteration k such that, as
`→∞, xk is repeatedly reset to

y`k := Pγ
`εk−1

X (xk−1 − αk−1hk−1)→ P0
X(xk−1 − αk−1hk−1) ∈ X,

with f(y`k)→ ϕ ≤ ϕ; cf. Remarks 3 and 4.

Using overestimates of the optimal value. In this part we will focus on
the case ϕ ≥ f∗. As might be expected, this relation allows for eliminating the
unknown f∗ from (26).

Lemma 2. Let ϕ ≥ f∗ and λk ≥ 0. If fk ≥ ϕ for some k ∈ IN, then

dX∗(xk+1)2 ≤ dX∗(xk)2 + ε2k + 2

(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)
εk

+
λk(λk − 2)(fk − ϕ)2

‖hk‖2
. (27)

Proof. This follows immediately from Lemma 1, using fk ≥ ϕ ≥ f∗ and λk ≥ 0.
ut

Note that ISA guarantees fk > ϕ by sufficiently accurate projection (oth-
erwise the method stops or the inner refinement loop over `, with fixed k, is
infinite, indicating ϕ was too large, see Steps 3-7 of Algorithm 2), and that the
last summand in (27) is always negative for 0 < λk < 2. Hence, adaptive ap-
proximate projections (εk > 0) can always be employed without destroying the
monotonic decrease of (dX∗(xk)), as long as the εk are chosen small enough.

The following result provides a theoretical bound on how large the projection
accuracies εk may become.

18

Lemma 3. Let 0 < λk < 2 for all k. For ϕ ≥ f∗, the sequence (dX∗(xk)) is
monotonically decreasing and converges to some ζ ≥ 0, if 0 ≤ εk ≤ εk for all k,
where εk is defined in (11) of Theorem 2.

Proof. Considering (27), it suffices to show that for εk ≤ εk, we have

ε2k + 2

(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)
εk +

λk(λk − 2)(fk − ϕ)2

‖hk‖2
≤ 0. (28)

The bound εk from (11) is precisely the (unique) positive root of the quadratic
function in εk given by the left hand side of (28). Thus, we have a monotonically
decreasing (i.e., nonincreasing) sequence (dX∗(xk)), and since its members are
bounded below by zero, it converges to some nonnegative value, say ζ. ut

As a consequence, if X∗ is bounded, we obtain boundedness of the iterate
sequence (xk):

Corollary 1. Let X∗ be bounded. If the sequence (dX∗(xk)) is monotonically
decreasing, then the sequence (xk) is bounded.

Proof. By monotonicity of (dX∗(xk)), making use of the triangle inequality,

‖xk‖ =
∥∥xk − PX∗(xk) + PX∗(xk)

∥∥
≤ dX∗(xk) +

∥∥PX∗(xk)
∥∥ ≤ dX∗(x0) + sup

x∈X∗
‖x‖ < ∞,

since X∗ is bounded by assumption. ut

We now have all the tools at hand for proving Theorem 2.

Proof of Theorem 2. First, we prove part (i). Let the main assumptions of
Theorem 2 hold and suppose—contrary to the desired result (i)—that fk > ϕ+δ
for all k (possibly after finitely many refinements of the projection accuracy used
to compute xk). By Lemma 2,

λk(2− λk)(fk − ϕ)2

‖hk‖2
≤ dX∗(xk)2 − dX∗(xk+1)2

+ ε2k + 2

(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)
εk.

Since 0 < H ≤ ‖hk‖ ≤ H < ∞, 0 < λk ≤ β < 2, and fk − ϕ > δ for all k by
assumption, we have

λk(2− λk)(fk − ϕ)2

‖hk‖2
≥ λk(2− β)δ2

H
2 .

By Lemma 3, dX∗(xk) ≤ dX∗(x0). Also, by Corollary 1 there exists F <∞ such
that fk ≤ F for all k. Hence, λk(fk − ϕ) ≤ β(F − ϕ), and since 1/‖hk‖ ≤ 1/H,
we obtain

(2− β)δ2

H
2 λk ≤ dX∗(xk)2−dX∗(xk+1)2+ε2k+2

(
β(F − ϕ)

H
+ dX∗(x0)

)
εk. (29)

19

Summation of the inequalities (29) for k = 0, 1, . . . ,m yields

(2− β)δ2

H
2

m∑
k=0

λk ≤ dX∗(x0)2 − dX∗(xm+1)2

+

m∑
k=0

ε2k + 2

(
β(F − ϕ)

H
+ dX∗(x0)

) m∑
k=0

εk.

Now, by assumption, the left hand side tends to infinity as m → ∞, while the
right hand side remains finite (note that nonnegativity and summability of (νk)
imply the summability of (ν2k), properties that carry over to (εk)). Thus, we have
reached a contradiction and therefore proven part (i) of Theorem 2, i.e., that
fK ≤ ϕ+ δ holds in some iteration K.

We now turn to part (ii): Let the main assumptions of Theorem 2 hold, let
λk → 0 and suppose fk > ϕ for all k (again, possibly after refinements). Then,
since we know from part (i) that the function values fall below every ϕ+δ, we can
construct a monotonically decreasing subsequence (fKj

) such that fKj
→ ϕ. (To

see this, note that if fk < ϕ+ δ is reached with fk < ϕ, the ensuing refinement
phase not necessarily ends with xk replaced by a point with ϕ < fk < ϕ + δ,
but that then, however, there always exists a K > k such that ϕ < fK < ϕ+ δ,
since λk → 0, εk → 0, and by continuity of f .)

To show that ϕ is the unique accumulation point of (fk), assume to the
contrary that there is another subsequence of (fk) which converges to ϕ + η,
with some η > 0. We can now employ the same technique as in the proof of
Theorem 1 to reach a contradiction:

The two cases fk < ϕ+ 1
3η and fk > ϕ+ 2

3η must both occur infinitely often,
since ϕ and ϕ+η are accumulation points. Set n(−1) := −1 and define, for ` ≥ 0,

m` := min{ k | k > n`−1, fk > ϕ+ 2
3η },

n` := min{ k | k > m`, fk < ϕ+ 1
3η }.

Then, with ∞ > F ≥ fk for all k (existing since (xk) is bounded and therefore
so is (fk)) and the subgradient norm bounds, we obtain

1
3η < fm`

− fn`
≤ H‖xm` − xn`‖ ≤ H(F − ϕ)

H

n`−1∑
j=m`

λj +H

n`−1∑
j=m`

εj

and from this, denoting `m := max{ ` | n` − 1 ≤ m } for a given m,

1
3

`m∑
`=0

η ≤ H(F − ϕ)

H

`m∑
`=0

n`−1∑
j=m`

λj +H

`m∑
`=0

n`−1∑
j=m`

εj .

Since for m → ∞, the left hand side tends to infinity, the same must hold for
the right hand side. But since

∑`m
`=0

∑n`−1
j=m`

εj ≤
∑m
k=0 εk ≤

∑m
k=0 νk <∞, this

implies
`m∑
`=0

n`−1∑
j=m`

λj →∞ for m→∞. (30)

20

Also, using the same estimates as in part (i) above, (27) yields

2−β
H︸︷︷︸

=:C1<∞

(fk − ϕ)2λk ≤ dX∗(xk)2 − dX∗(xk+1)2 + ε2k + 2
(
β(F−ϕ)

H + dX∗(x0)
)

︸ ︷︷ ︸
=:C2<∞

εk

and thus by summation for k = 0, . . . ,m for a given m,

C1

m∑
k=0

(fk − ϕ)2λk ≤ dX∗(x0)2 − dX∗(xm+1)2 +

m∑
k=0

ε2k + C2

m∑
k=0

εk. (31)

Observe that all summands of the left hand side term are positive, and thus

C1

m∑
k=0

(fk − ϕ)2λk ≥ C1

`m∑
`=0

n`−1∑
j=m`

(fj − ϕ︸ ︷︷ ︸
>

1
3η

)2λj >
C1η

2

9

`m∑
`=0

n`−1∑
j=m`

λj .

Therefore, as m → ∞, the left hand side of (31) tends to infinity (by (30) and
the above inequality) while the right hand side expression remains finite (recall
0 ≤ εk ≤ νk with (νk) summable and thus also square-summable). Thus, we
have reached a contradiction, and it follows that ϕ is the only accumulation
point (i.e., the limit) of the whole sequence (fk).

This proves part (ii) and thus completes the proof of Theorem 2. ut

Remark 5. With more technical effort one can argue along the lines of the proof
of Theorem 1 to obtain the following result on the convergence of the iterates xk

in the case of Theorem 3: If we additionally assume that
∑
λ2k < ∞ and that

λk ≥
∑∞
j=k εk for all k, then xk → x for some x ∈ X with f(x) = ϕ and

dX∗(x) = ζ ≥ 0 (ζ being the same as in Lemma 3).

Using lower bounds on the optimal value. In the following, we focus on
the case ϕ < f∗, i.e., using a constant lower bound in the step size definition (2).
Such a lower bound is often more readily available than (useful) upper bounds;
for instance, it can be computed via the dual problem, or sometimes derived
directly from properties of the objective function such as, e.g., nonnegativity of
the function values.

Following arguments similar to those in the previous part, we can prove con-
vergence of ISA (under certain assumptions), provided that the projection ac-
curacies (εk) obey conditions analogous to those for the case ϕ ≥ f∗. Moreover,
recall that for ϕ < f∗, every refinement phase is finite, so that fk > ϕ is guaran-
teed for all k; in particular, Step 6 is never executed since X∩{x | f(x) < ϕ} = ∅.

Let us start with analogues of Lemmas 2 and 3.

Lemma 4. Let ϕ < f∗ and 0 < λk ≤ β < 2. If fk ≥ ϕ for some k ∈ IN, then

dX∗(xk+1)2 ≤ dX∗(xk)2 + ε2k + 2

(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)
εk + Lk, (32)

where Lk is defined in (12) of Theorem 3.

21

Proof. For ϕ < f∗, 0 < λk ≤ β < 2, and fk ≥ ϕ, it holds that

λk(fk−ϕ)−2(fk−f∗) ≤ β(fk−ϕ)−2(fk−f∗) = β(f∗−ϕ)+(2−β)(f∗−fk).

The claim now follows immediately from Lemma 1. ut

Lemma 5. Let ϕ < f∗, let 0 < λk ≤ β < 2 and fk ≥ f∗ + β
2−β (f∗ − ϕ) for

all k, and let Lk be given by (12). Then (dX∗(xk)) is monotonically decreasing
and converges to some ξ ≥ 0, if 0 ≤ εk ≤ ε̃k for all k, where ε̃k is defined in (13).

Proof. The condition fk ≥ f∗ + β
2−β (f∗ − ϕ) implies Lk ≤ 0 and hence ensures

that adaptive approximate projection can be used while still allowing for a de-
crease in the distances of the subsequent iterates from X∗. The rest of the proof
is completely analogous to that of Lemma 3, considering (32) and (12) to derive
the upper bound ε̃k given by (13) on the projection accuracy. ut

We can now state the proof of our convergence results for the case ϕ < f∗.

Proof of Theorem 3. Let the assumptions of Theorem 3 hold. We start
with proving part (i): Let some δ > 0 be given and suppose—contrary to the
desired result (i)—that fk > f∗ + β

2−β (f∗ − ϕ) + δ for all k (possibly after

refinements). By Lemma 4,

dX∗(xk+1)2 ≤ dX∗(xk)2 + ε2k + 2

(
λk(fk − ϕ)

‖hk‖
+ dX∗(xk)

)
εk + Lk.

Since 0 < H ≤ ‖hk‖ ≤ H, 0 < λk ≤ β < 2, and ϕ < fk, and due to our
assumption on fk, i.e.,

f∗ − fk + β
2−β (f∗ − ϕ) < − δ for all k,

it follows that

Lk < − λk(2− β)(fk − ϕ)δ

H
2 < 0.

By Lemma 5, dX∗(xk) ≤ dX∗(x0), and Corollary 1 again ensures existence of
some F < ∞ such that fk ≤ F for all k. Because also λk(fk − ϕ) ≤ β(F − ϕ)
and 1/‖hk‖ ≤ 1/H, we hence obtain

λk(2− β)(fk − ϕ)δ

H
2 < − Lk ≤ dX∗(xk)2 − dX∗(xk+1)2

+ ε2k + 2

(
β(F − ϕ)

H
+ dX∗(x0)

)
εk. (33)

Summation of these inequalities for k = 0, 1, . . . ,m yields

(2− β)δ

H
2

m∑
k=0

(fk − ϕ)λk < dX∗(x0)2 − dX∗(xm+1)2

+

m∑
k=0

ε2k + 2

(
β(F − ϕ)

H
+ dX∗(x0)

) m∑
k=0

εk. (34)

22

Moreover, our assumption on fk yields

fk − ϕ > f∗ + β
2−β f

∗ − β
2−βϕ+ δ − ϕ = 2

2−β (f∗ − ϕ) + δ.

It follows from (34) that(
2(f∗ − ϕ) + (2− β)δ

)
δ

H
2

m∑
k=0

λk < dX∗(x0)2 − dX∗(xm+1)2

+

m∑
k=0

ε2k + 2

(
β(F − ϕ)

H
+ dX∗(x0)

) m∑
k=0

εk.

Now, by assumption, the left hand side tends to infinity as m→∞, whereas by
Lemma 5 and the choice of 0 ≤ εk ≤ min{|ε̃k|, νk} with a nonnegative summable
(and hence also square-summable) sequence (νk), the right hand side remains
finite. Thus, we have reached a contradiction, and part (i) is proven, i.e., there
does exist some K such that fK ≤ f∗+ β

2−β (f∗−ϕ)+δ (after possible refinements

of the projection accuracy used to recompute xK).
Let us now turn to part (ii): Again, let the main assumptions of Theorem 3

hold and let λk → 0. Recall that for ϕ < f∗, we have fk > ϕ for all k by
construction of ISA (refinement loops). We distinguish three cases:

If fk < f∗ holds for all k ≥ k0 for some k0, then fk → f∗ is obtained
immediately, just like in the proof of Theorem 1, by asymptotic feasibility.

On the other hand, if fk ≥ f∗ for all k larger than some k0, then repeated
application of part (i) yields a subsequence of (fk) which converges to f∗: For
any δ > 0 we can find an index K such that f∗ ≤ fK ≤ f∗ + β

2−β (f∗ − ϕ) + δ.
Obviously, we get arbitrarily close to f∗ if we choose β and δ small enough.
However, we have the restriction λk ≤ β. But since λk → 0, we may “restart” our
argumentation if λk is small enough and replace β with a smaller one. With the
convergent subsequence thus constructed, we can then use the same technique
as in the proof of Theorem 2 (ii) to show that (fk) has no other accumulation
point but f∗, whence fk → f∗ follows.

Finally, when both cases fk < f∗ and fk ≥ f∗ occur infinitely often, we
can proceed similar to the proof of Theorem 1: The subsequence of function
values below f∗ converges to f∗, since εk → 0. For the function values greater
or equal to f∗, we assume that there is an accumulation point f∗+η larger than
f∗, deduce that an appropriate sub-sum of the λk’s diverge and then sum up
equation (33) for the respective indices (belonging to {k | fk ≥ f∗}) to arrive at a
contradiction. Note that the iterate sequence (xk) is bounded, due to Corollary 1
(for iterations k with fk ≥ f∗) and since the iterates with ϕ < fk < f∗ stay
within a bounded neighborhood of the bounded set X∗, since εk tends to zero
and is summable. Therefore, as f is continuous on a neighborhood of X (which
contains all xk from some k on), (fk) is bounded as well and therefore must
have at least one accumulation point. The only possibility left now is f∗, so we
conclude fk → f∗. ut
Remark 6. With fk → f∗ and εk → 0, we obviously have dX∗(xk) → 0 in
the setting of Theorem 3. Furthermore, Remark 5 applies similarly: With more

23

conditions on λk and more technical effort one can obtain convergence of the
sequence (xk) to some x ∈ X∗.

4 Discussion

In this section, we will discuss extensions of ISA. We will also illustrate how to
obtain bounds on the projection accuracies that are independent of the (generally
unknown) distance from the optimal set, and thus computable.

4.1 Extension to ε-subgradients

It is noteworthy that the above convergence analyses also work when replacing
the subgradients by ε-subgradients [6], i.e., replacing ∂f(xk) by

∂ρkf(xk) := {h ∈ IRn | f(x)− f(xk) ≥ h>(x− xk)− ρk ∀x ∈ IRn }. (35)

(To avoid confusion with the projection accuracy parameters εk, we use ρk.) For
instance, we immediately obtain the following result:

Corollary 2. Let ISA (Algorithm 1) choose hk ∈ ∂ρkf(xk) with ρk ≥ 0 for all k.
Under the assumptions of Theorem 1, if (ρk) is chosen summable (

∑∞
k=0 ρk <∞)

and such that

(i) ρk ≤ µαk for some µ > 0, or
(ii) ρk ≤ µ εk for some µ > 0,

then the sequence of ISA iterates (xk) converges to an optimal point.

Proof. The proof is analogous to that of Theorem 1; we will therefore only sketch
the necessary modifications: Choosing hk ∈ ∂ρkf(xk) (instead of hk ∈ ∂f(xk))
adds the term +2αkρk to the right hand side of (16). If ρk ≤ µαk for some
constant µ > 0, the square-summability of (αk) suffices: By upper bounding
2αkρk, the constant term +2µA is added to the definition of R in (20). Similarly,
ρk ≤ µ εk does not impair convergence under the assumptions of Theorem 1,
because then the additional summand in (20) is

2
m∑
k=0

αkρk ≤ 2µ
m∑
k=0

αkεk ≤ 2µ
m∑
k=0

(
αk

∞∑
`=k

εk

)
≤ 2µ

m∑
k=0

α2
k ≤ 2µA.

The rest of the proof is almost identical, using R modified as explained above and
some other minor changes where ρk-terms need to be considered, e.g., the term
+ρm`

is introduced in (21), yielding an additional sum in (22), which remains
finite when passing to the limit because (ρk) is summable. ut

Similar extensions are possible when using dynamic step sizes of the form (2).
The upper bounds (11) and (13) for the projection accuracies (εk) will depend
on (ρk) as well, which of course must be taken into account when extending the
proofs accordingly. Then, summability of (ρk) (implying ρk → 0) is enough to
guarantee convergence. In particular, one can again choose ρk ≤ µ εk for some
µ > 0. We will not go into detail here, since the extensions are straightforward.

24

4.2 Variable target values

From a practical viewpoint, it may be desirable to have an algorithm, using
dynamic step sizes, that does not require the user to know a priori whether
an estimate ϕ is larger or smaller than f∗, respectively. Moreover, relying on
a constant estimate may lead to overly small or large steps, which slows down
the convergence process (and, w.r.t. ISA (Algorithm 2), can also lead to many
projection accuracy refinement phases). Thus, a typical approach is to replace
the constant estimate ϕ by variable target values ϕk. These target values are
then updated in the course of the algorithm to increasingly better estimates
of f∗, so that the dynamic step size (2) more and more resembles the “ideal”
Polyak step size (which would use ϕ = f∗). In principle, such extensions are also
possible for the ISA framework. We briefly describe the most important aspects
in the following.

First, note that Theorems 2 and 3 provide bounds on the projection accura-
cies (εk) needed for convergence; clearly, if it is unknown whether ϕk ≥ f∗ or
ϕk < f∗, one must therefore choose 0 ≤ εk ≤ min{ε̄k, |ε̃k|, νk}, with ε̄k and ε̃k
given by (11) and (13), respectively.

Crucial for any variable target value method is the ability to somehow recog-
nize whether ϕk ≥ f∗ or ϕk < f∗. If all iterates are feasible, this amounts to rec-
ognizing whether X ∩{x | f(x) ≤ ϕk} 6= ∅ (or, as x ∈ X, simply f(x) ≤ ϕk), im-
plying ϕk ≥ f∗, or X ∩{x | f(x) ≤ ϕk} = ∅, to infer that ϕk < f∗, see, e.g., [14].
However, in the case of (possibly) infeasible iterates, fk ≤ ϕk does not necessar-
ily imply that ϕk is too large. On the other hand, viewing the ISA iterates xk as
points of the “blown-up” feasible set Bεk−1

X := {x | x = y+z, y ∈ X, ‖z‖ ≤ εk−1},
then BεkX ∩ {x | f(x) ≤ ϕk} = ∅ also implies that ϕk < f∗, since X ⊆ BεkX .

In view of Theorem 3, keeping ϕk constant once we recognized that ϕk < f∗

ensures convergence of (fk) to f∗ (in practice, it may nevertheless be desirable
to further improve the estimate ϕk in order to avoid overly large steps in the
vicinity of the optimum). The associated case BεkX ∩ {x | f(x) ≤ ϕk} = ∅ can be
detected in practice, see [14, Section III.C] for details in the case of a feasible
method; these results are extensible to the ISA framework with appropriate
modifications.

The other case, ϕk ≥ f∗, could be detected, e.g., with the help of an esti-
mate of the Lipschitz constant of f (recall that every convex function is locally
Lipschitz and useful estimates should usually be available) and the distances to
X implied by the projection accuracies.

In the literature, various schemes have been considered as update rules for
variable targets (ϕk), see, e.g., [5, 28, 19, 48, 40, 14, 31, 36]. In principle, many
such rules could be straightforwardly used in, or adapted to, a variable target
value ISA.

4.3 Computable bounds on dX∗(xk)

The results in Theorems 2 and 3 hinge on bounds εk and ε̃k on the projec-
tion accuracy parameters εk, respectively. These bounds depend on unknown

25

information and therefore seem of little practical use such as, for instance, an
automated accuracy control in an implementation of the dynamic step size ISA.
While the quantity f∗ can sometimes be replaced by estimates directly, it will
generally be hard to obtain useful estimates for the distance of the current iter-
ate to the optimal set. However, such estimates are available for certain classes
of objective functions. We will sketch several examples in the following.

For instance, when f is a strongly convex function, i.e., there exists some
constant C > 0 such that for all x, y and µ ∈ [0, 1]

f(µx+ (1− µ)y) ≤ µf(x) + (1− µ)f(y)− C µ(1− µ)‖x− y‖2,

one can use the following upper bound on the distance to the optimal set [28]:

dX∗(x) ≤ min
{√

f(x)−f∗

C , 1
2C min

h∈∂f(x)
‖h‖

}
.

For functions f such that f(x) ≥ C ‖x‖ −D, with constants C,D > 0, one
can make use of dX∗(x) ≤ ‖x‖+ 1

C (f∗ +D), obtained by simply employing the
triangle inequality. Another related example class is induced by coercive self-
adjoint operators F , i.e., f(x) := 〈Fx, x〉 ≥ C‖x‖2 with some constant C > 0
and a scalar product 〈·, ·〉. The (usually) unknown f∗ appearing above may again
be treated using estimates.

Yet another important class is comprised of functions which have a set of
weak sharp minima [18] over X, i.e., there exists a constant µ > 0 such that

f(x)− f∗ ≥ µdX∗(x) ∀x ∈ X. (36)

Using dX∗(x) ≤ dX(x) + dX∗(PX(x)) for x ∈ IRn, we can then estimate the
distance of x to X∗ via the weak sharp minima property of f . An important
subclass of such functions is composed of the polyhedral functions, i.e., f has
the form f(x) = max{ a>i x+ bi | 1 ≤ i ≤ N }, where ai 6= 0 for all i; the scalar µ
is then given by µ = min{ ‖ai‖ | 1 ≤ i ≤ N }. Rephrasing (36) as

dX∗(x) ≤ f(x)− f∗

µ
∀x ∈ X,

we see that for ϕ ≤ f∗ (e.g., dual lower bounds ϕ),

dX∗(x) ≤ f(x)− ϕ
µ

∀x ∈ X.

Thus, when the bounds on the distance to the optimal set derived from using
the above inequalities become too conservative (i.e., too large, resulting in very
small ε̃k-bounds), one could try to improve the above bounds by improving the
lower bound ϕ.

In practice on might have access to (problem-specific) estimates of dX∗(x);
in [14], it is claimed that “for most problems” prior experience or heuristical con-
siderations can be used to that end. For instance, if X is compact, the diameter
of X leads to the (conservative) estimate dX∗(x) ≤ diam(X) + dX(x).

26

5 Examples

In this section, we briefly discuss two examples in which we can design adap-
tive approximate projections as considered in the ISA framework. In the first
example, we focus on the theoretical aspects of how our notion of adaptive
approximate projection could be used to handle a certain class of constraints
appearing in stochastic programs. The second application considers a (deter-
ministic) optimization problem for which we specialize ISA and present some
numerical experiments.

5.1 Convex expected value constraints

We consider expected value constraints [47, 33] of the following form

g(x) := E[f(x;ω)] =

∫
Ω

f(x;ω) p(ω) dω ≤ η, (37)

where E denotes the expected value, ω ∈ Ω ⊆ IRq is a vector of random variables
with density p, x are deterministic variables in IRn, f : IRn×IRq → IR, and η ∈ IR.
If f is convex in x for every ω ∈ Ω, (37) is a convex constraint. Expected value
constraint appear in stochastic programming as, for instance, the expectational
form of chance constraints, see, e.g., [11, 7], or when modeling expected loss or
Value-at-Risk via integrated chance constraints, see, e.g., [21, 27, 22].

While generally g(x) cannot be easily computed exactly, it can be approxi-
mated using Monte Carlo methods, if samples of ω can be (cheaply) generated.
Here, taking M independent samples ω1, . . . , ωM , yields the approximation

ĝM (x) :=
1

M

M∑
i=1

f(x;ωi) (38)

of g(x). Moreover, we assume that we can compute a subgradient G(x;ω) ∈
∂xf(x;ω) for each value of x and ω. Thus, we have h := E[G(x;ω)] ∈ ∂g(x). We
then use the approximation

ĥM (x) :=
1

M

M∑
i=1

G(x;ωi), (39)

which is a “noisy unbiased subgradient” of g at x; see [8] for details.

Considering the Lagrangean L(y, λ) = 1
2‖x− y‖

2 + λ (g(y) − η) of the pro-
jection problem for some point x and the set of feasible points w.r.t. (37), the
optimality conditions for the projection obtained by differentiating L are

−x+ y + λh = 0, for some h ∈ ∂g(y), (40)

g(y)− η = 0. (41)

27

Then, the idea is to replace g(y) and h by the estimates ĝM (y) and ĥM (y),
respectively. An adaptive approximate projection is obtained by solving

y = x− λ ĥM (y), ĝM (y) = η. (42)

For an appropriate sampling process, we can adaptively keep control on the
resulting projection error (with high probability).

We now demonstrate this approach on a simple example constraint in which
the above system can be solved easily and we obtain explicit projection error
bounds: Consider a linear function with random coefficients, i.e., f(x;ω) = ω>x
and q = n. This particular type of constraint is closely related to integrated
chance constraints which are used, for instance, to model bounds on expected
losses of some sort; see, e.g., [21, 27]. For this choice of f , our Monte Carlo
estimates are

ĥM (x) = ĥM =
1

M

M∑
i=1

ωi and ĝM (x) = ĥ>Mx. (43)

Note that if E[ĥM (x)] is unknown, the feasibility operator construction in [23]

is not applicable. Moreover, assuming h, ĥM 6= 0 corresponds to imposing a
lower bound on the subgradient norm, like in the convergence theorems for ISA.
Observing that ĥM is independent of x (so in particular, ĥM (y) = ĥM as well),
we can solve (42) to obtain the solution

PM (x) := x−

(
ĥ>Mx− η
‖ĥM‖2

)
ĥM (44)

to the approximated projection problem. The exact projection is given by

P∞(x) := x− h>x− η
‖h‖2

h, (45)

and—as the notation suggests—we have P∞(x) = limM→∞ PM (x) almost-

surely, since Prob(limM→∞ ĥM = h) = 1 by the (strong) law of large numbers.
For sufficiently large M , we can use explicit (1 − α)-confidence intervals for

the expected value h = E[ĥM] via the central limit theorem, and eventually
obtain

Prob
(
‖PM (x)− P∞(x)‖ ≤ εM

)
= 1− α, (46)

where

εM :=

∥∥∥∥∥ ĥ>Mx− η‖ĥM‖2
ĥM −

ĥ>Mx− η + c · q>Mx
‖ĥM + c · qM‖2

(ĥM + c · qM)

∥∥∥∥∥ ,
with c = −sign(ĥ>MqM) and

qM =
q(1−α/2)√
M
√
M − 1

√√√√ M∑

i=1

((ωi)1 − (ĥM)1)2, . . . ,

√√√√ M∑
i=1

((ωi)n − (ĥM)n)2

> ,
28

where q(1−α/2) denotes the (1− α
2)-quantile of the standard normal distribution.

Thus, for any given α ∈ (0, 1) and for sufficiently large M , PM defines an
adaptive approximate projection operator as specified in the ISA framework,
with probability 1− α.

It is noteworthy that the projection accuracy directly depends on M , and in
the linear example above we could iteratively refine the estimate ĥM easily by
incorporating newly drawn independent samples.

5.2 Compressed sensing

Compressed Sensing (CS) is a recent and very active research field dealing,
loosely speaking, with the recovery of signals from incomplete measurements.
We refer the interested reader to [17, 9, 15] for more information, surveys, and
key literature. A core problem of CS is finding the sparsest solution to an un-
derdetermined linear system, i.e.,

min ‖x‖0 s. t. Ax = b, (A ∈ IRm×n, rank(A) = m, m < n), (47)

where ‖x‖0 denotes the `0 quasi-norm or support size of the vector x, i.e., the
number of its nonzero entries. This problem is known to be NP-hard. Hence, a
common approach is considering the convex relaxation known as `1-minimization
or Basis Pursuit [12]:

min ‖x‖1 s. t. Ax = b. (48)

It was shown that under certain conditions, the solutions of (48) and (47) coin-
cide, see, e.g., [10, 17]. This motivated a large amount of research on the efficient
solution of (48), especially in large-scale settings. In this section, we briefly out-
line a specialization of the ISA to the `1-minimization problem (48) and present
some numerical experiments indicating that the algorithm is an interesting can-
didate in the context of Compressed Sensing.

Subgradients. The subdifferential of the `1-norm at a point x is given by

∂‖x‖1 =
{
h ∈ [−1,1]n

∣∣∣ hi =
xi
|xi|

, ∀ i ∈ {1, . . . , n} with xi 6= 0
}
. (49)

We may therefore simply use the signs of the iterates as subgradients, i.e.,

∂‖xk‖1 3 hk := sign(xk) =

1, (xk)i > 0,

0, (xk)i = 0,

− 1, (xk)i < 0.

(50)

As long as b 6= 0, the upper and lower bounds on the norms of the subgradients
satisfy H ≥ 1 and H ≤ n.

29

Adaptive approximate projection. For linear equality constraints as in (48),
the Euclidean projection of a point z ∈ IRn onto the affine feasible set X :=
{x | Ax = b } can be explicitly calculated as

PX(z) =
(
I −A>(AA>)−1A

)
z +A>(AA>)−1 b, (51)

where I denotes the (n×n) identity matrix. However, for numerical stability, we
wish to avoid the explicit calculation of the projection matrix because it involves
determining the inverse of the matrix product AA>. Instead of applying (51) in
each iteration, we can use the following adaptive procedure:

zk := xk − αkhk (unprojected next iterate), (52)

find an approximate solution qk of AA>q = Azk − b, (53)

xk+1 := zk −A>qk. (54)

Note that the matrix AA> is symmetric and positive definite, for A with full
(row-)rank m. Hence, the linear system in (53) can be solved by an iterative
method, e.g., the method of Conjugate Gradients (CG) [24].

For a given εk, stopping the CG procedure in (53) as soon as the iteratively
updated approximate solution qk satisfies

‖AA>qk −
(
A(xk − αkhk)− b

)
‖2 ≤ σmin(A) εk, (55)

where σmin(A) > 0 is the smallest singular value of A, ensures that (52)–(54)
form an adaptive approximate projection operator of the type (7). Note that a
truncated CG procedure (with any fixed number of iterations) can also be shown
to define a “feasibility operator” of the type considered in [23].

Furthermore, to obtain computable upper bounds on (εk), we can use the
results about weak sharp minima discussed in the previous section: The `1-norm
can be rewritten as a polyhedral function. With ϕ ≤ f∗ (which is easily available,
e.g., ϕ = 0), we can thus derive

dX∗(xk) ≤ 2
‖Axk − b‖2
σmin(A)

+
‖xk‖1 − ϕ√

n
.

In total, this yields bounds that can be easily computed from the original data
only. Theorems 1, 2, or 3 then provide explicit convergence statements.

Numerical Experiments It is well-known that (48) can be solved as a linear
program (LP), e.g., employing the standard variable split x = x+ − x−:

min x+ + x− s. t. Ax+ −Ax− = b, x+ ≥ 0, x− ≥ 0. (56)

Another common approach to (48) is to solve a sequence of regularized problems
of the form

min 1
2‖Ax− b‖

2
2 + τ‖x‖1, (57)

30

with decreasing τ . As τ → 0, the solution sequence x(τ) of (57) converges to a
solution of (48). The homotopy method (see, e.g., [43, 39]) traces this solution
path for decreasing τ and has the desirable property to require only k steps to
reach the optimal solution x∗ to (48), if x∗ has only k nonzero entries and k is
sufficiently small.

We performed experiments to compare our ISA Algorithm 2, applied to (48)
(using adaptive approximate or exact projections), with the commercial LP-
solver Cplex 12.5 (dual simplex method applied to (56)) and the homotopy im-
plementation (version 1.0) available at http://users.ece.gatech.edu/~sasif/
homotopy/. In our ISA implementation we employ at most 5 CG steps to ap-
proximate the projection; albeit differing from theory, this turned out to suffice.
Moreover, the subgradients are stabilized as in [37], and the parameter λk is
halved after 5 consecutive iterations without relevant improvement of the objec-
tive (λ0 = 0.85); the method terminates when the step sizes become too small
or if a stagnation of the algorithmic process is detected. By stagnation, we mean
that either the objective improvement stalls over a span of 500 iterations, or
the approximate support S = {i : |xki | > max{10−6, s}} does not change over
10 successive updates, which are performed every m/100 iterations; here s is
chosen such that the entries xkj with |xkj | ≥ s account for at least 99.99% of

‖xk‖1. Finally, as a postprocessing step after termination, we try to improve the
solution by solving the system restricted to columns indexed by S, similar to the
“debiasing” step described in [51, Section II.I].

Note that in contrast to Cplex, the homotopy method and ISA are imple-
mented in Matlab (version R2012a/7.14). Moreover, by default, Cplex ensures
feasibility in the sense that the computed solution x obeys ‖Ax− b‖∞ ≤ 10−6;
from the respective convergence results, both the homotopy method and ISA
will reach this level of feasibility after finitely many iterations. As a safeguard,
we added an additional high-accuracy projection after regular termination. How-
ever, this step was not required for the homotopy method, and only on a single
instance for ISA (this induced additional running time and the time for the
postprocessing step is incorporated in the times reported below).

The first test uses a 1024 × 4096 Gaussian matrix, the second one a partial
discrete cosine transform (DCT) matrix consisting of 512 randomly drawn rows
of the 2048 × 2048 DCT matrix; all columns are normalized to unit Euclidean
length. For both matrices, we constructed ten vectors xi with sparsities ‖xi‖0 =
i ·m/10, i ∈ {1, . . . , 10}, (rounded down to the next integer value). The nonzero
entries are ±1 and each xi is the known unique solution to the instance given by
the respective matrix A and right hand side vector b := Axi, where uniqueness
was achieved by ensuring the “strong source condition” (see, e.g., [20]) by means
of the methodology proposed in [32].

Figure 3 shows the running times (in seconds) and the `2-norm distances
to the respective known optimal solution. As explained above, all solutions are
feasible to within an `∞-tolerance of 10−6. The experiments show that using
adaptive approximate projections instead of the exact ones in ISA saves a con-
siderable amount of time, as was to be expected. The achieved final accuracy

31

102 204 307 409 512 614 716 819 921 1024
10

−15

10
−10

10
−5

10
0

10
2

solution sparsity

d
is

ta
n
c
e
 t
o
 o

p
ti
m

u
m

ISA

ISA ex.Proj.

Homotopy

CPLEX

(a) `2-distances to optimum for instances
with 1024× 4096 Gaussian matrix.

102 204 307 409 512 614 716 819 921 1024
10

0

10
1

10
2

solution sparsity

ru
n
n
in

g
 t
im

e

ISA

ISA ex.Proj.

Homotopy

CPLEX

(b) Running times (s) for instances with
1024× 4096 Gaussian matrix.

51 102 153 204 256 307 358 409 460 512
10

−15

10
−10

10
−5

10
0

10
2

solution sparsity

d
is

ta
n
c
e
 t
o
 o

p
ti
m

u
m

ISA

ISA ex.Proj.

Homotopy

CPLEX

(c) `2-distances to optimum for instances
with 512× 2048 partial DCT matrix.

51 102 153 204 256 307 358 409 460 512
10

−1

10
0

10
1

solution sparsity

ru
n

n
in

g
 t

im
e

ISA

ISA ex.Proj.

Homotopy

CPLEX

(d) Running times (s) for instances with
512× 2048 partial DCT matrix.

Fig. 3. Numerical experiments for Gaussian matrix ((a) and (b)) and partial DCT
matrix ((c) and (d)), each with normalized columns, for varying solution sparsities.

is almost always (nearly) the same. For the varying sparsity levels of the solu-
tion, we see that all solvers struggle when the number of nonzero entries in the
optimum exceeds about m/2: Cplex and the homotopy method still produce
mostly accurate solutions but at the cost of a significant increase in the required
solution times (note the logarithmic scales on the vertical axes), ISA on the other
hand has a somewhat more stable runtime behavior, but loses accuracy when
the solution is dense.

Since in Compressed Sensing, the solutions encountered are typically very
sparse, the interesting cases are those with sparsity (much) smaller than m/2.
Clearly, for such sparse optimal solutions, ISA (with adaptive approximate pro-
jections) is superior to Cplex and the homotopy implementation both in terms
of accuracy and speed. Thus, these examples show the potential of ISA as a
successful algorithm for CS sparse recovery.

32

6 Concluding remarks

Several aspects remain subject to future research. For instance, it would be in-
teresting to investigate whether our framework extends to (infinite-dimensional)
Hilbert space settings, incremental subgradient schemes, bundle methods (see,
e.g., [25, 29]), or Nesterov’s algorithm [42]. It is also of interest to consider how
the ISA framework could be combined with error-admitting settings such as those
in [52, 41], i.e., for random or deterministic (non-vanishing) noise and erroneous
function or subgradient evaluations. Some of the recent results in [41], which all
require feasible iterates, seem conceptually close to our convergence analyses, so
we presume a blend of the two approaches to be rather fruitful. It would also
be of interest to investigate convergence behavior with other general notions of
“adaptive approximate projections”, e.g., solving the projection problem with an
approximation algorithm with additive or multiplicative performance guarantee.

From a practical viewpoint, it will be interesting to see how ISA, or possi-
bly a variable target value variant as described in Section 4.2, compares with
other solvers in terms of solution accuracy and runtime. For the `1-minimization
problem (48), we have seen in Section 5.2 that ISA promises to be an interesting
candidate; an extensive computational comparison of various state-of-the-art `1-
solvers, including (a more refined version of) our ISA implementation, can be
found in [38]. An extensive test for convex expected value constraints, while
beyond the scope of this paper, would be an interesting further line of work.

Acknowledgments. We thank the anonymous referees for their numerous helpful
comments which greatly helped improving this paper.

References

1. Y. I. Alber, A. N. Iusem, and M. V. Solodov, On the projected subgradi-
ent method for nonsmooth convex optimization in a Hilbert space, Mathematical
Programming, 81 (1998), pp. 23–35.

2. E. Allen, R. Helgason, J. Kennington, and B. Shetty, A generalization of
Polyak’s convergence result for subgradient optimization, Mathematical Program-
ming, 37 (1987), pp. 309–317.

3. K. M. Anstreicher and L. A. Wolsey, Two “well-known” properties of subgra-
dient optimization, Mathematical Programming, 120 (2009), pp. 213–220.

4. H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex
feasibility problems, SIAM Review, 38 (1996), pp. 367–426.

5. M. S. Bazaraa and H. D. Sherali, On the choice of step size in subgradient
optimization, European Journal of Operations Research, 7 (1981), pp. 380–388.

6. D. P. Bertsekas and S. K. Mitter, A descent numerical method for optimiza-
tion problems with nondifferentiable cost functionals, SIAM Journal of Control, 11
(1973), pp. 637–652.

7. J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer
Series in Operations Research, Springer, 1999. corrected second printing.

8. S. Boyd and A. Mutapcic, Stochastic subgradient methods. Lecture
notes, http://see.stanford.edu/materials/lsocoee364b/04-stoch_subgrad_

notes.pdf, 2007.

33

9. A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of
systems of equations to sparse modeling of signals and images, SIAM Review, 51
(2009), pp. 34–81.

10. E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information, IEEE Transactions on
Information Theory, 52 (2006), pp. 489–509.

11. A. Charnes and W. W. Cooper, Chance-constrained programming, Management
Science, 6 (1959), pp. 73–79.

12. S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by
basis pursuit, SIAM Journal on Scientific Computing, 20 (1998), pp. 33–61.

13. A. Cohen, W. Dahmen, and R. DeVore, Adaptive wavelet methods. II. Beyond
the elliptic case, Foundations of Computational Mathematics. The Journal of the
Society for the Foundations of Computational Mathematics, 2 (2002), pp. 203–245.

14. P. L. Combettes and J. Luo, An adaptive level set method for nondifferentiable
constrained image recovery, IEEE Transactions on Image Processing, 11 (2002),
pp. 1295–1304.

15. Compressive sensing resources. http://dsp.rice.edu/cs (Accessed 03/26/2012).
16. G. D’Antonio and A. Frangioni, Convergence analysis of deflected condi-

tional approximate subgradient methods, SIAM Journal on Optimization, 20 (2009),
pp. 357–386.

17. D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory,
52 (2006), pp. 1289–1306.

18. M. C. Ferris, Weak sharp minima and exact penalty functions, Tech. Rep. 779,
Comp. Sci. Dept., University of Wisconsin, Madison, WI, 1988.

19. J. L. Goffin and K. Kiwiel, Convergence of a simple subgradient level method,
Mathematical Programming, 85 (1999), pp. 207–211.

20. M. Grasmair, M. Haltmeier, and O. Scherzer, Necessary and sufficient con-
ditions for linear convergence of `1-regularization, Communications on Pure and
Applied Mathematics, 64 (2011), pp. 161–182.

21. W. K. K. Haneveld, Duality in Stochastic Linear and Dynamic Programming,
vol. 274 of Lecture Notes in Economics and Mathematical Systems, Springer, 1986.

22. W. K. K. Haneveld and M. H. van der Vlerk, Integrated chance constraints:
reduced forms and an algorithm, Computational Management Science, 3 (2006),
pp. 245–269.

23. E. S. Helou Neto and A. R. De Pierro, Incremental subgradients for con-
strainted convex optimization: A unified framework and new methods, SIAM Jour-
nal on Optimization, 20 (2009), pp. 1547–1572.

24. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving
linear systems, Journal of Research of the National Bureau of Standards, 49 (1952),
pp. 409–436.

25. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization
algorithms. II, vol. 306 of Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], Springer, 1993.

26. , Fundamentals of Convex Analysis, Springer, 2004. Corrected Second Print-
ing.

27. P. Kall and J. Mayer, Stochastic Linear Programming. Models, Theory, and
Computation, Springer, 2005.

28. S. Kim, H. Ahn, and S.-C. Cho, Variable target value subgradient method, Math-
ematical Programming, 49 (1991), pp. 359–369.

29. K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable
minimization, Mathematical Programming, 46 (1990), pp. 105–122.

34

30. , Subgradient method with entropic projections for convex nondifferentiable
minimization, Journal on Optimization Theory and Applications, 96 (1998),
pp. 159–173.

31. , Convergence of approximate and incremental subgradient methods for convex
optimization, SIAM Journal on Optimization, 14 (2004), pp. 807–840.

32. C. Kruschel and D. A. Lorenz, Maximal recoverable supports for sparse recov-
ery. Preprint, 2013.

33. D. Kuhn, Convergent bounds for stochastic programs with expected value con-
straints, Journal of Optimization Theory and Applications, 141 (2009), pp. 597–
618.

34. T. Larsson, M. Patriksson, and A.-B. Strömberg, Conditional subgradient
optimization – theory and applications, European Journal of Operations Research,
88 (1996), pp. 382–403.

35. A. S. Lewis, D. R. Luke, and J. Malick, Local linear convergence for alternating
and averaged nonconvex projections, Foundations of Computational Mathematics,
9 (2009), pp. 485–513.

36. C. Lim and H. D. Sherali, Convergence and computational analyses for some
variable target value and subgradient deflection methods, Computational Optimiza-
tion and Applications, 34 (2005), pp. 409–428.

37. A. Löbel, Optimal Vehicle Scheduling in Public Transit, PhD thesis, Technische
Universität Berlin, 1998. Shaker.

38. D. A. Lorenz, M. E. Pfetsch, and A. M. Tillmann, Solving Basis Pursuit:
Subgradient algorithm, heuristic optimality check, and solver comparison. Opti-
mization Online E-Print ID 2011-07-3100, 2011.

39. D. Malioutov, M. Çetin, and A. Willsky, Homotopy continuation for sparse
signal representation, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP’05), vol. 5, 2005, pp. 733–736.

40. A. Nedić and D. P. Bertsekas, Incremental subgradient methods for nondiffer-
entiable optimization, SIAM Journal on Optimization, 12 (2001), pp. 109–138.

41. , The effect of deterministic noise in subgradient methods, Mathematical Pro-
gramming, 125 (2010), pp. 75–99.

42. Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Pro-
gramming, 103 (2005), pp. 127–152.

43. M. Osbourne, B. Presnell, and B. Turlach, A new approach to variable
selection in least squares problems, IMA Journal of Numerical Analysis, 20 (2000),
pp. 389–402.

44. B. T. Polyak, A general method for solving extremal problems, Dokl. Akad. Nauk
SSSR, 174 (1967), pp. 33–36.

45. , Minimization of nonsmooth functionals, USSR Computational Mathematics
and Mathematical Physics, 9 (1969), pp. 14–29.

46. , Subgradient methods: A survey of soviet research, in Nonsmooth Optimiza-
tion, C. Lemaréchal and R. Mifflin, eds., IIASA Proceedings Series, Pergamon
Press, 1978, pp. 5–29.

47. A. Prékopa, Contributions to the theory of stochastic programming, Mathematical
Programming, 4 (1973), pp. 202–221.

48. H. D. Sherali, G. Choi, and C. H. Tubcbilek, A variable target value method
for nondifferentiable optimization, Operations Research Letters, 26 (2000), pp. 1–8.

49. N. Z. Shor, Minimization Methods for Non-Differentiable Functions, Springer,
1985.

35

50. E. van den Berg, M. Schmidt, M. P. Friedlander, and K. Murphy, Group
sparsity via linear-time projection, Tech. Rep. TR-2008-09, University of British
Columbia, 2008.

51. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction
by seperable approximation, IEEE Transactions on Signal Processing, 57 (2009),
pp. 2479–2493.

52. A. J. Zaslavski, The projected subgradient method for nonsmooth convex opti-
mization in the presence of computational error, Numerical Functional Analysis
and Optimization, 31 (2010), pp. 616–633.

36

