
SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE

POLYNOMIAL PROGRAMMING

LI WANG AND FENG GUO

Abstract. This paper studies how to solve semi-infinite polynomial program-

ming (SIPP) problems by semidefinite relaxation method. We first introduce
two SDP relaxation methods for solving polynomial optimization problems

with finitely many constraints. Then we propose an exchange algorithm with

SDP relaxations to solve SIPP problems with compact index set. At last, we
extend the proposed method to SIPP problems with noncompact index set

via homogenization. Numerical results show that the algorithm is efficient in

practice.

1. Introduction

Consider the semi-infinite polynomial programming (SIPP) problem:

(P) :

{
f∗ := min

x∈X
f(x)

s.t. g(x, u) ≥ 0, ∀ u ∈ U,

where
X = {x ∈ Rn | θ1(x) ≥ 0, · · · , θm2

(x) ≥ 0},
U = {u ∈ Rp | h1(u) ≥ 0, · · · , hm1(u) ≥ 0}.

Here f(x), θi(x) are polynomials in x ∈ Rn, hj(u) are polynomials in u ∈ Rp and
g(x, u) is a polynomial in (x, u) ∈ Rn × Rp. Throughout this paper, we assume
that X is compact and U is an infinite index set, i.e., there are infinitely many
constraints in (P). The SIPP problem is a special subclass of the semi-infinite
programming (SIP) which has many applications, e.g., Chebyshev approximation,
maneuverability problems, some mathematical physics problems and so on [10, 16].

There are various algorithms for SIP problems based on discretization schemes of
U , such as central cutting plane method [3], Newton’s method [24], SQP methods
[26] and the like. Most of algorithms for SIP problems, however, are only locally
convergent or globally convergent under some strong assumptions, like convexity
or linearity, and to the authors best knowledge, few of them are specially designed
for SIPP problems exploiting features of polynomial optimization problems. Parpas
and Rustem [22] proposed a discretization like method to solve min-max polynomial
optimization problems, which can be reformulated as SIPP problems. Using a
polynomial approximation and an appropriate hierarchy of semidefinite relaxations,
Lasserre presented an algorithm to solve the generalized SIPP problems in [15].

Before introducing the contribution of this paper, we first review some of the
considerable progress recently made in solving polynomial optimization problems
with finite constraints via sums of squares relaxations, which are typically based on
the Positivstellensatz [23]. We define a so-called quadratic module which is a set

1

ar
X

iv
:1

30
6.

18
75

v1
 [

m
at

h.
O

C
]

 8
 J

un
 2

01
3

2 LI WANG AND FENG GUO

of polynomials generated by the finitely many constraints, to which any polynomi-
als positive over the feasible set belong. The classic Lasserre’s hierarchy [13] is to
compute the maximal real number, minus which the objective lies in the quadratic
module. By increasing the order of the quadratic module, Lasserre’s hierarchy re-
sults in a sequence of lower bounds of the global optimum and the asymptotical
convergence is established under the Archimedean Condition. Interestingly, finite
convergence of Lasserre’s hierarchy is generic [19]. To guarantee the finite conver-
gence of Lasserre’s hierarchy, Nie [20] proposed a refined SDP relaxation by some
“Jacobian-type” technique which represents optimality conditions of the considered
polynomial optimization problem. More importantly, these SDP relaxation meth-
ods are global and the minimizers can be extracted if the flat extension condition
[2] or more general, flat truncation condition [21] holds. The aim of this paper is
to apply these SDP relaxation methods to solve SIPP problems.

An efficient method based on discretization scheme for solving SIP is the ex-
change method which approaches the optimum in an iterative manner. Generally
speaking, given a finite subset Uk ⊆ U in an iteration, we obtain at least one global
minimizer xk of f(x) under the associated finitely many constraints and then com-
pute the global minimum gk and minimizers u1, . . . , ut of g(xk, u) over U . If gk ≥ 0,
stop; otherwise, update Uk+1 = Uk∪{u1, . . . , ut} and proceed to the next iteration.
Therefore, to guarantee the success of the exchange method, the subproblems in
each iteration need to be globally solved and at least one minimizer of each subprob-
lem can be extracted. The compactness of the index set U is commonly assumed in
many algorithms for SIP problems, which ensure the existence of global minimizers
for constraint subproblem. However, when the constraint subproblem is nonconvex,
globally solving it and extracting global minimizers are very challenging.

Specializing the exchange method in SIPP problem (P), the subproblems are
polynomial optimization problems with finitely many constraints, which can be
solved exactly by SDP relaxations. Assuming the index set U is compact, an ex-
change type method with SDP relaxations is given in this paper. Numerical experi-
ments show that this algorithm is efficient in practice. We also apply this approach
to optimization problems with polynomial matrix inequality and get good numeri-
cal performance. If U is noncompact, the exchange method might fail, see Example
4.1. Another novelty of this paper is that we extend the proposed algorithm to
solve SIPP problems with noncompact U . By a technique of homogenization, we
first reformulate the original SIPP problem as a new one with a compact index set,
to which we then apply the proposed semidefinite relaxation algorithm. We prove
that these two problems are equivalent under some generic conditions.

The paper is organized as follows. In Section 2, we introduce two SDP relax-
ation methods for solving polynomial optimization problems with finitely many
constraints. In Section 3, we propose a semidefinite relaxation algorithm to solve
SIPP problem (P) with compact index set U . In Section 4, we consider how to
apply the proposed algorithm to solve SIPP problems with noncompact index set
U by homogenization.

Notation. The symbol N (resp., R, C) denotes the set of nonnegative integers
(resp., real numbers, complex numbers). For any t ∈ R, dte denotes the smallest
integer that is not smaller than t. For integer n > 0, [n] denotes the set {1, · · · , n}.
For x ∈ Rn, xi denotes the i-th component of x. For x ∈ Rn and α ∈ Nn,
xα denotes xα1

1 · · ·xαn
n . For a finite set T , |T | denotes its cardinality. R[x] =

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 3

R[x1, · · · , xn] denotes the ring of polynomials in (x1, · · · , xn) with real coefficients.
For a symmetric matrix W , W � 0(� 0) means that W is positive semidefinite
(definite). For any vector u ∈ Rp, ‖u‖ denotes the standard Euclidean 2-norm.

2. SDP relaxations for polynomial optimization

In this section, we study how to solve the following polynomial optimization
problem with finitely many constraints:

(2.1)

fmin := min

x∈Rn
f(x)

s.t. h1(x) = · · · = hm1
(x) = 0,

g1(x) ≥ 0, . . . , gm2(x) ≥ 0,

where f(x), hi(x), gj(x) ∈ R[x]. Based on the Positivstellensatz, considerable works
have recently been done on solving (2.1) by means of SDP relaxation. Generally
speaking, these methods relax (2.1) as a sequence of SDPs whose optima are lower
bounds of fmin and converge to fmin under some assumptions. We first introduce
the classic Lasserre’s SDP relaxation [13] and then Nie’s Jacobian SDP relaxation
[20] with property of finite convergence.

2.1. Lasserre’s SDP relaxation. Denote K as the feasible set of (2.1). Let
F := {h1, . . . , hm1

, g0, g1, . . . , gm2
} and g0 = 1. We say a polynomial is SOS if it

is a sum of squares of other polynomials. The k-th truncated quadratic module
generated by F is defined as

Qk(F) :=

m1∑
j=1

φjhj +

m2∑
i=0

σigi

∣∣∣∣∣σi are SOS, φj ∈ R[x], ∀ i, j
deg(σigi) ≤ 2k, deg(φjhj) ≤ 2k

 .

The k-th Lasserre’s SDP relaxation [13] for solving (2.1) (k is also called the relax-
ation order) is

(2.2) fk := max γ s.t. f(x)− γ ∈ Qk(F).

The relaxation (2.2) is equivalent to a semidefinite program and could be solved
efficiently by numerical methods like interior-point algorithms. Clearly, fk ≤ fmin

for every k and the sequence {fk} is monotonically increasing. The quadratic
module generated by F is

Q(F) :=

∞⋃
k=1

Qk(F).

Definition 2.1. The set Q(F) satisfies the Archimedean Condition if there exists
ψ ∈ Q(F) such that inequality ψ(x) ≥ 0 defines a compact set in x ∈ Rn.

Note that the Archimedean Condition implies the feasible set K is compact but
the inverse is not necessarily true. However, for any compact K we can always
“force” the associated quadratic module to satisfy the Archimedean Condition by
adding a “redundant” constraint, e.g., ρ− ‖x‖2 ≥ 0 for sufficiently large ρ.

The convergence for Lasserre’s hierarchy (2.2), i.e., limk→∞ fk = fmin, is implied
by Putinar’s Positivstellensatz:

Theorem 2.2. ([22]) If a polynomial p is positive on K and the Archimedean
Condition holds, then p ∈ Q(F).

4 LI WANG AND FENG GUO

We next consider the dual optimization problem of (2.2). Let y be a truncated
moment sequence (tms) of degree 2k, i.e., y = (yα) be a sequence of real numbers
which are indexed by α := (α1, . . . , αn) ∈ Nn with |α| := α1 + · · ·+ αn ≤ 2k. The
associated k-th moment matrix is denoted as Mk(y) which is indexed by Nnk , with
(α, β)-th entry yα+β . Given polynomial p(x) =

∑
α pαx

α where xα := xα1
1 · · ·xαn

n ,
denote dp = ddeg(p)/2e. For k ≥ dp, the (k − dp)-th localizing moment matrix

L
(k−dp)
p (y) is defined as the moment matrix of the shifted vector ((py)α)α∈Nn

2(k−dp)

with (py)α =
∑
β pβyα+β . Denote by M2k the space of all tms whose degrees are

2k. Let R[x]2k be the space of real polynomials in x with degree at most 2k. For
any y ∈M2k, a Riesz functional Ly on R[x]2k is defined as

Ly

(∑
α

qαx
α1
1 · · ·xαn

n

)
=
∑
α

qαyα, ∀ q(x) ∈ R[x]2k.

For convenience, we hereafter still use q to denote the coefficient vector of q(x) in
the graded lexicographical ordering and denote 〈q, y〉 = Ly(q). From the definition

of the localizing moment matrix L
(k−dp)
p (y), it is easy to check that

qTL(k−dp)
p (y)q = Ly(p(x)q(x)2), ∀ q(x) ∈ R[x]k−dp .

The dual optimization problem of (2.2) is ([13, 14])

(2.3)

f∗k := min

y∈M2k

〈f, y〉

s.t. L
(k−dhj

)

hj
(y) = 0, j ∈ [m1], L

(k−dgi)
gi (y) � 0, i ∈ [m2],

Mk(y) � 0, 〈1, y〉 = 1.

Let

d = max{1, dgi , dhj | i ∈ [m1], j ∈ [m2]}.
Lasserre [13] shows that fk ≤ f∗k ≤ fmin for every k ≥ max{df , d} and both {fk}
and {f∗k} converge to fmin if the Archimedean Condition holds.

We say Lasserre’s hierarchy (2.2) and (2.3) has finite convergence if

(2.4) fk1 = f∗k1 = fmin for some order k1 <∞.

Interestingly, Nie proved that under the Archimedean Condition, Lasserre’s SDP
relaxation has finite convergence generically (cf. [19, Theorem 1.1]). Since fmin is
usually unknown, a practical issue is how to certify the finite convergence if it
happens. Moreover, if it is certified, how do we get minimizers?

Let y∗ be an optimizer of (2.3). By [2, Theorem 1.1], f∗k = fmin for some k if
the flat extension condition (FEC) [2] holds, i.e.,

(2.5) rank Mk−d(y
∗) = rank Mk(y∗).

By solving some SVD and eigenvalue problems ([7]), we can get r := rank Mk(y∗)
global optimizers for (2.1). However, (2.5) is not a generally necessary condition
for checking finite convergence of Lasserre’s hierarchy (cf. [21, Example 1.1]). To
certify the finite convergence of (2.2) and get minimizers of (2.1) from (2.3), a
weaker condition was proposed in [21]. We say a minimizer y∗ of (2.3) satisfies flat
truncation condition (FTC) if there exists an integer t ∈ [max{df , d}, k] such that

(2.6) rank Mt−d(y
∗) = rank Mt(y

∗).

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 5

If an optimizer of (2.3) has a flat truncation, by [2, Theorem 1.1] again, we still
have f∗k = fmin.

Moreover, if there is no duality gap between (2.2) and (2.3), we obtain fk = fmin.
More importantly, [21, Theorem 2.2] shows that the flat truncation is also necessary
for Lasserre’s hierarchy (2.2) under some generic assumptions.

Algorithm 2.3. Lasserre’s SDP relaxation
Input: Objective function f(x), constraint functions hi(x), gj(x) and maximal
relaxation order kmax.
Output: Global minimum and minimizers of problem (2.1).

I Set d := max{1, df , dhi
, dgj} and initial relaxation order k = d.

II Solve primal and dual SDP problems (2.2) and (2.3) by standard SDP solver
(e.g., SeDuMi [25], SDPT3 [27], SDPNAL [28]).

III For t ∈ [d, k], check condition (2.6).
1 If (2.6) holds for some t, get minimizers by Extraction Algorithm [7] and

stop;
2 Otherwise, go to Step IV.

IV If k > kmax, stop; otherwise, set k = k + 1 and go to Step II.

2.2. Jacobian SDP relaxation. The convergence of Lasserre’s SDP relaxations
(2.2) and (2.3) might be asymptotic for some instances, i.e., only lower bounds
are found for each order k. To overcome this hurdle, Nie [20] proposed a refined
reformulation of (2.1) by some “Jacobian-type” technique whose SDP relaxation
has finite convergence.

Roughly speaking, Jacobian SDP relaxation is to add auxiliary constraints to
(2.1) which represent optimality conditions under the assumption that the optimum
fmin is achievable. The basic idea is that at each optimizer, the Jacobian matrix of
the objective function, the equality constraints and the active inequality constraints
must be singular, i.e., all its maximal minors vanish. For convenience, denote

h := (h1, . . . , hm1) and g := (g1, . . . , gm2).

For a subset J = {j1, . . . , jk} ⊆ [m2], denote gJ := (gj1 , . . . , gjk). Symbols ∇h and
∇gJ represent the gradient vectors of the polynomials in h and gJ , respectively.
Denote the determinantal variety of (f, h, gJ)’s Jacobian being singular by

GJ =
{
x ∈ Cn | rank BJ(x) ≤ m1 + |J |

}
,

where

BJ(x) = [∇f(x) ∇h(x) ∇gJ(x)] .

Instead of using all maximal minors to define GJ , [20, Section 2.1] discusses how
to get the smallest number of defining equations. Let ηJ1 , . . . , η

J
len(J) be the set of

defining polynomials for GJ where len(J) is the number of these polynomials. For
each i = 1, . . . , len(J), define

(2.7) ϕJi (x) = ηJi ·
∏
j∈Jc

gj(x), where Jc = [m2]\J.

For simplicity, we list all possible ϕJi in (2.7) sequentially as

ϕ1, ϕ2, . . . , ϕr, where r =
∑

J⊆[m2],|J|≤m−m1

len(J).

6 LI WANG AND FENG GUO

Consider the following optimization by adding all ϕl’s to (2.1):

(2.8)

s∗ := min

x∈Rn
f(x)

s.t. hi(x) = 0, i ∈ [m1], ϕl(x) = 0, l ∈ [r],

gj(x) ≥ 0, j ∈ [m2].

As shown in [20, Lemma 3.1] and [6, Lemma 3.5], by adding auxiliary constraints
ϕl(x) = 0, the feasible set of (2.8) is restricted to the KKT points and singular
points of the feasible set of (2.1). Therefore, (2.1) and (2.8) are equivalent if the
minimum fmin of (2.1) is achievable.

Lemma 2.4. ([6, Lemma 3.6]) Assume m1 ≤ n and at most n−m1 of g1(x),. . .,gm2(x)
vanish for any feasible point x. If the minimum fmin of (2.1) is achievable, then
s∗ = fmin.

Remark 2.5. Since s∗ is the minimal value of f(x) achieved among the KKT
points and singular points of the feasible set of (2.1), it is possible that s∗ > fmin

(cf. [20, Section 2.2]) if fmin is not achievable.

If the Archimedean Condition holds for the feasible set K, then K is compact and
fmin is achievable. By Lemma 2.4, we always have s∗ = fmin. Applying Lasserre’s
SDP relaxations (2.2) and (2.3) to (2.8), the resulting SDP relaxations for (2.8)
have finite convergence under some generic conditions (cf. [20, Theorem 4.2], [6,
Theorem 3.9]).

Algorithm 2.6. Nie’s Jacobian SDP relaxation
Input: Objective function f(x), constraints functions hi(x), gj(x), maximal relax-
ation order kmax.
Output: Global minimum and minimizers of problem (2.1).

I Construct the auxiliary polynomials ϕl(x)’s.
II Set d := max{1, df , dhi , dgj , dϕl

} and initial relaxation order k = d.
III Solve (2.8) by Algorithm 2.3.
IV For t ∈ [d, k], check condition (2.6).

1 If (2.6) holds for some t, get minimizers by Extraction Algorithm [7] and
stop;

2 Otherwise, go to Step V.
V If k > kmax, stop; otherwise, set k = k + 1 and go to Step III.

In contrast to Lasserre’s SDP relaxation, Jacobian SDP relaxation is more com-
plicated due to the auxiliary polynomials ϕl(x)’s. We refer to [20, Section 4] for
some simplified versions of Jacobian SDP relaxation method.

3. SIPP with compact set U

The two SDP relaxation algorithms shown in Section 2 provide strong tools to
globally solve polynomial optimization problems with finitely many constraints. In
this section, we will discuss how to use them to solve SIPP problems globally.

3.1. A semidefinite relaxation algorithm. One main difficulty in solving a SIP
problem is that there are infinite number of constraints. How to deal with the
infinite index set U is the key difference among various SIP algorithms. Exchange
method is commonly used in SIP computation, and is regarded as the most efficient
method on solving SIP problems [10, 16]. The general steps of exchange method

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 7

are determined algorithmically as follows [10]. Given a subset Uk ⊆ U in iteration
k with |Uk| <∞, compute at least one global solution xk of

(3.1) min
x∈X

f(x) s.t. g(x, u) ≥ 0, ∀ u ∈ Uk,

and solutions u1, . . . , ut of the subproblem

(3.2) gk := min
u∈U

g(xk, u).

If gk ≥ 0, stop; otherwise, set Uk+1 = Uk ∪ {u1, . . . , ut} and go to next iteration.
Therefore, to successfully apply exchange method to solve SIPP problems, we need
to globally solve subproblems (3.1)-(3.2) and extract global minimizers in each
iteration. As we have discussed in Section 2, the SDP relaxation methods are
proper means for this propose. The specific description of exchange method with
SDP relaxations for SIPP problems is shown in the following.

Algorithm 3.1. Semidefinite relaxations for SIPP
Input: Objective function f(x), constraint function g(x, u), semi-algebraic sets X,
U , tolerance ε and maximum iteration number kmax.
Output: Global optimum f∗ and set X∗ of minimizers of problem (P).

Step 1 Choose random u0 ∈ U and let U0 = {u0}. Set X∗ = ∅ and k = 0.
Step 2 Use Algorithm 2.3 to solve

(3.3) (Pk) :

{
fmin
k := min

x∈X
f(x)

s.t. g(x, u) ≥ 0, ∀ u ∈ Uk.

Let Sk = {xk1 , · · · , xkrk} be the set of the global minimizers of problem (Pk).
Step 3 Set Uk+1 = Uk. For i = 1, · · · , rk,

(a) Use Algorithm 2.6 to solve

(3.4) (Qki) : gki := min
u∈U

g(xki , u).

Let T ki =
{
uki,j , j = 1, · · · , tki

}
be the set of global minimizers of (Qki).

(b) Update Uk+1 = Uk+1

⋃
T ki .

(c) If gki ≥ −ε, then update X∗ = X∗
⋃
{xki }.

Step 4 If X∗ 6= ∅ or k > kmax, stop;
otherwise, set k = k + 1 and go back to Step 2.

Remark 3.2. Subproblems (Pk) and (Qki) in Algorithm 3.1 can be solved by both
Algorithm 2.3 and 2.6. Finite convergence can be guaranteed by Algorithm 2.6
which, however, produces SDPs of size exponentially depending on the number
of the constraints. Since Uk enlarges as k increases, subproblem (Pk) consequently
becomes hard to be solved by Algorithm 2.6. Therefore, we solve (Pk) by Algorithm
2.3 which is also proved to have finite convergence generically [19]. Because the
index set U is fixed and compact, Algorithm 2.6 is a better choice for solving (Qki).

Proposition 3.3 (Monotonic Property). For optimal values of (Pk) in (3.3), we
have

(3.5) fmin
1 ≤ · · · ≤ fmin

k ≤ fmin
k+1 ≤ · · · ≤ f∗.

Proof. Because

U1 ⊆ · · · ⊆ Uk ⊆ Uk+1 ⊆ · · · ⊆ U.

8 LI WANG AND FENG GUO

So the feasible sets of (Pk) and (P) satisfy

K ⊆ · · · ⊆ Kk+1 ⊆ Kk ⊆ · · · ⊆ K1,

we obtain the conclusion. �

We have the following convergence analysis of Algorithm 3.1:

Theorem 3.4. Suppose that X is compact. If at each step k,

(a) subproblems (Pk) and each (Qki) are globally solved,
(b) intermediate results Sk and at least one T ki are nonempty,

then either Algorithm 3.1 stops with solutions to (P) in a finite number of iterations
or for any sequence {xk} with xk ∈ Sk, there exists at least one limit point as k
increases and each of them solves (P).

Proof. At each step, if (a) holds, then global optima fmin
k and gki are obtained and

monotonic property (3.5) is true. Additionally, if (b) is satisfied, then Algorithm
3.1 either stops in a finite number of iterations or proceeds without interrupt as k
increases.

If Algorithm 3.1 stops at k-th iteration with k < kmax, then gki ≥ 0 for some i,
which implies that the associated xki is feasible for (P). Moreover, xki is a global
minimizer of (P) by (3.5). Now we assume gki < 0 for each k and i which implies
T ki 6⊆ Uk and Uk ⊂ Uk+1 for all k. The following argument is based on the proof of
[10, Theorem 7.2]. For any x ∈ X, define

v(x) := min{g(x, u), u ∈ U}.
Obviously, v(x) is continuous. Fix a sequence {xk} with xk ∈ Sk, then a limit point
x̄ ∈ X always exists since X is compact. Without loss of generality, assume xk → x̄.
By (3.5), it suffices to prove that x̄ is feasible for (P). Let v(xk) = g(xk, uk) and
Xk be the feasible set of (Pk). Since Uk ⊂ Uk+1, we have x̄ ∈ ∩∞k=1Xk and therefore
g(x̄, uk) ≥ 0. Then

v(x̄) = v(xk) + [v(x̄)− v(xk)]

= g(xk, uk) + [v(x̄)− v(xk)]

≥ [g(xk, uk)− g(x̄, uk)] + [v(x̄)− v(xk)].

By the continuity of v and g, we have v(x̄) ≥ 0, i.e., x̄ is feasible for (P). �

If X and U are compact, then the optima of (Pk) and (Qki) are achievable. By
applying SDP relaxations Algorithm 2.3 and Algorithm 2.6 to (Pk) and (Qki), as we
have mentioned in Section 2, (a) and (b) are generically satisfied no matter what
initial U0 we choose. In section 4, we will consider the case when U is noncompact
for which the convergence of Algorithm 3.1 might fail if we choose an arbitrary initial
U0 (Example 4.1). We will deal with this issue by the technique of homogenization.

3.2. Numerical experiments. This subsection presents some numerical examples
to illustrate the efficiency of Algorithm 3.1. The computation is implemented with
Matlab 7.12 on a Dell 64-bit Linux Desktop running CentOS (5.6) with 8GB mem-
ory and Intel(R) Core(TM) i7 CPU 860 2.8GHz. Algorithm 3.1 is implemented with
software Gloptipoly [9]. SeDuMi [25] is used as a standard SDP solver. Through-
out the computational experiments, we set parameters kmax = 15, ε = 10−4 in
Algorithm 3.1. After Algorithm 3.1 terminates, let X∗ be the output set of global

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 9

minimizers of (P), f∗ be the value of the objective function f over X∗ and Iter be
the number of iterations Algorithm 3.1 has proceeded. Let

Obj2 := min
x∗∈X∗

min
u∈U

g(x∗, u).

By the discussion in Subsection 3.1, the global minimizers in X∗ can be certified
by inequality Obj2 ≥ −ε.

3.2.1. Examples of small SIPP problems. We test some small examples taken from
[1, Appendix A]. For nonpolynomial functions, e.g., sine, cosine or exponential
function, we use their Taylor polynomial approximations, see Appendix A. Let
X = [−100, 100]n. Test results are reported in Table 1. The Iter column in Table
1 indicates that Algorithm 3.1 takes a very few steps to find the global minimizer
which are certified by the Obj2 column.

Table 1. Computational results for small SIPP problems.

No. x∗ Iter f∗ Obj2
Example A.1 (-0.0008, 0.4999) 2 -0.2504 6.4744e-7

Example A.2 (-0.7500, -0.6180) 3 0.1945 3.5305e-7

Example A.3 (-0.1514, -1.7484, 2.5725) 2 9.6973 7.8870e-5

Example A.4 (-1,0,0) 2 1 6.2320e-5

Example A.5 (0,0) 2 0 -1.1578e-12

Example A.6 (0,0,0) 2 4 -4.7070e-12

Example A.7 (0,0) 2 0 1.9285e-12

3.2.2. Examples of random SIPP problems. We test the performance of Algorithm
3.1 on some random SIPP problems which are generated as follows.

Let x = (x1, . . . , xn) and u = (u1, . . . , up). Given d ∈ N, let [x]d and [u]d be the
vectors of monomials with degree up to d in R[x] and R[u], respectively. Denote
〈[x]d, [u]d〉 as the vector obtained by stacking [x]d and [u]d. Let f(x) = ηT [x]2d1 be
the objective function where η is a Gaussian random vector of matching dimension.
Let g(x, u) = τ−〈[x]d2 , [u]d2〉TM〈[x]d2 , [u]d2〉, where τ is a random number in [1, 10]
and M is a random positive semidefinite matrix of matching dimension. Let X =
Bn(0, 1) be the unit ball in Rn and U varies among U1 = Bp(0, 1), U2 = [−1, 1]p

and U3 = ∆p where ∆p is the p dimensional simplex.
The results using Algorithm 3.1 are shown in Table 2 where the Inst column

denotes the number of randomly generated instances, the consumed computer time
is in the format hr:mn:sc with hr (resp. mn, sc) standing for the consumed hours
(resp. minutes, seconds). The column Obj2 shows that Algorithm 3.1 successfully
solves all the random problems.

3.3. Application to PMI problems. In this subsection, we apply Algorithm 3.1
to the following optimization problem with polynomial matrix inequality (PMI):

(3.6) fmin := min
x∈Rn

f(x) s.t. G(x) � 0,

where f(x) ∈ R[x] and G(x) is an m×m symmetric matrix with entries Gij(x) ∈
R[x]. PMI is a special SIPP problem and has been widely arising in control system
design, e.g., static output feedback design problems [8]. PMI is also interesting
in optimization theory, e.g., SDP representation of a convex semialgebra set [17].

10 LI WANG AND FENG GUO

Table 2. Computational results for random SIPP problems

No. n p d1 d2 Inst U time (min, max) Obj2 (min, max)
1 5 3 3 2 10 U1 0:00:17 0:00:28 1.3479 2.0779
2 5 3 2 2 10 U3 0:00:06 0:00:12 -9.5236e-9 0.6343
3 6 2 2 2 10 U1 0:00:19 0:00:22 1.7144 2.1185
4 6 3 2 2 10 U1 0:00:19 0:00:24 1.0450 1.7220
5 7 3 3 2 10 U3 0:00:26 0:00:59 3.7797e-8 0.3198
6 8 3 2 2 10 U1 0:04:52 0:05:18 1.3213 1.8438
7 9 2 2 2 5 U1 0:45:26 0:49:28 1.5850 2.2807
8 9 2 2 2 5 U3 0:44:40 0:52:49 1.7521e-8 2.9119e-7
9 5 2 2 2 5 U2 0:57:17 1:04:02 1.3116e-6 1.6986e-5

Some traditional methods for globally solving (3.6) are based on branch-and-bound
schemes and alike [5] which, as pointed in [8], are computationally expensive. Re-
cently, some global methods based on SOS relaxations are proposed in [11, 12] as
well as in [5] in a dual view.

Define

X := {x ∈ Rn | G(x) � 0} and U := {u ∈ Rm | ‖u‖2 = 1}.

Then problem (3.6) is equivalent to the following SIPP problem

(3.7)

{
min
x∈Rn

f(x)

s.t. g(x, u) = uTG(x)u ≥ 0, ∀ u ∈ U.

Assume the feasible set X is compact, then we can apply Algorithm 3.1 to solve
SIPP problem (3.7). The following examples show that Algorithm 3.1 is efficient
to solve PMI problems.

Example 3.5. Consider the following PMI problem:

(3.8)

min
x∈R2

f(x) = x1 + x2

s.t. G(x) =

 4− x21 − x22 x1 x2
x1 x22 − x1 x1x2
x2 x1x2 x21 − x2

 � 0.

The characteristic polynomial of matrix G(x) is:

p(t, x) = det(tI3 −G(x)) = t3 − g1(x)t2 + g2(x)t− g3(x)

where

g1(x) = 4− x1 − x2,
g2(x) = x21x2 − 4x2 − x41 + x1x2 − x42 − 2x21x

2
2 + x1x

2
2 − 4x1 + 3x21 + 3x22,

g3(x) = x21x2 + 4x1x2 + 2x21x
2
2 + x1x

2
2 − x31x2 − 4x31 + x22x

3
1 − x32x1 − 4x32

− x41 − x42 + x51 + x52 + x21x
3
2.

According to Descartes’ rule of signs [8], the feasible set of (3.8) is{
x ∈ R2 | g1(x) ≥ 0, g2(x) ≥ 0, g3(x) ≥ 0

}
which is shown shaded in Figure 1. We first reformulate (3.8) as a SIPP problem
(3.7), then apply Algorithm 3.1 to it. After 5 iterations, we get a global minimizer
x∗ ≈ (−1.2853,−1.2763) which is certified by Obj2 = −1.4523×10−4. The accuracy
of this result can be seen from Figure 1. �

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 11

Figure 1. Feasible region of PMI problem (3.8) in Example 3.5.

Figure 2. Feasible region of PMI problem (3.9) in Example 3.6.

Example 3.6. Consider the following PMI problem:

(3.9)

min
x∈R2

f(x) = x1 − x2

s.t. G(x) =

10− x21 − x22 x1 −x21 + x2 x2 + 3

x1 x22 x1 − x22 x1
−x21 + x2 x1 − x22 x1 + 2x22 x2
x2 + 3 x1 x2 x22

 � 0.

Similar to Example 3.5, we obtain the feasible set of (3.9) by Descartes’ rule of
signs [8] and show it shaded in Figure 2. Applying Algorithm 3.1 to the reformu-
lation (3.7) of problem (3.9), we get global minimizer x∗ ≈ (0.5093,−1.0678) and
minimum f(x∗) ≈ 1.5771 which are certified by Obj2 = −9.4692 × 10−5. From
Figure 2, we can see this result is accurate. �

We end this subsection by pointing out a trick hidden in the reformulation (3.7)
of (3.6). PMI optimization problem (3.6) can be regarded as a SIPP problem with

noncompact index set Ũ = Rm. Since the constraint function g(x, u) is homogenous

in u, we can restrict Ũ to the unit sphere U . By Theorem 3.4, to guarantee the
convergence of Algorithm 3.1, the optimum of (Qki) needs to be achievable for each

12 LI WANG AND FENG GUO

k which might fail if U is noncompact. The reformulation (3.7) of (3.6) gives us a
clue for dealing with SIPP with noncompact U by the technique of homogenization.
We will go into detail about this technique in next section.

4. SIPP with noncompact set U

At some k-th iteration of Algorithm 3.1, if the global minima gki of (Qki) are not
achievable for all xki ∈ Sk, then by Remark 2.5, either

case 1. T ki = ∅, then Uk+1 can not be updated and consequently Sk+1 remains the
same as Sk, or

case 2. Uk+1 is updated by T ki which consists of KKT points or singular points of
the feasible set of (Qki) rather than global minimizers.

As we have discussed in Subsection 3.1, the convergence property of Algorithm
3.1 might fail or wrong global minimizers might be outputted if the above cases
happen. For example,

Example 4.1. Consider the following problem:

(4.1)

f∗ := min

x1,x2∈R
− x1 − x2

s.t. x1(u21 − 1) + (x2 − u1u2)2 ≥ 0, ∀ u1, u2 ∈ R,
x21 + x22 = 2.

We choose u1, u2 such that x2 − u1u2 = 0. By letting u1 tend to infinity and 0
respectively, we obtain that x1 = 0 for any feasible point x. Therefore, there are
only two feasible points (0,±

√
2) and the global minimum is −

√
2 with minimizer

(0,
√

2).
We claim that Algorithm 3.1 fails to solve (4.1) if we set initial U0 = {(u01, u02)}

such that

(u01, u
0
2) /∈ U := {u ∈ R2 | u1u2 =

√
2, u21 < 2

√
2− 2}.

We prove it in the following. First, we show that for any (u1, u2) ∈ R2 there always
exists (x̄1, x̄2) with x̄1 > 0, x̄2 > 0 such that

g(x̄, u) := x̄1(u21 − 1) + (x̄2 − u1u2)2 ≥ 0, x̄21 + x̄22 = 2.

This is true if g((0,
√

2), u) > 0 or g((
√

2, 0), u) > 0 by the continuity of g(x, u).
Now we assume

g((0,
√

2), u) ≤ 0 and g((
√

2, 0), u) ≤ 0.

From the first inequality, we get u1u2 =
√

2. Then by the second inequality, we
have u21 ≤ 1−

√
2 which is a contradiction. Therefore, the following subproblem

(P0) :

 fmin
0 := min

x∈R2
− x1 − x2

s.t. x21 + x22 = 2, g(x, u) ≥ 0, ∀ u1, u2 ∈ R,

has global minimizer S0 = {(x̃1, x̃2)} with x̃1 > 0, x̃2 > 0. Then we solve subprob-
lem

(4.2) (Q0) : g0 := min
u∈R2

g(x̃, u) = x̃1(u21 − 1) + (x̃2 − u1u2)2.

Obviously, g0 = −x̃1 is not achievable. Applying Jacobian SDP relaxation Al-
gorithm 2.6, we obtain T 0 = {(0, 0)} which consists of the only critical point (0, 0)

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 13

of map g(x0, u) with critical value x̃22 − x̃1. If x̃22 − x̃1 ≥ 0, then Algorithm 3.1 ter-
minates and outputs X∗ = {(x̃1, x̃2)} which is a wrong solution. Now we assume
x̃22 − x̃1 < 0 and continue. By Algorithm 3.1, U1 = {(ū1, ū2), (0, 0)}. Then we go
to the next iteration and solve

(P1) :

fmin
1 := min

x∈R2
− x1 − x2

s.t. x22 − x1 ≥ 0, g(x, ū) ≥ 0,

x21 + x22 = 2.

Let K1 be the feasible set of (P1), then

case 1. There exists no (x̄1, x̄2) ∈ K1 with x̄1 > 0, x̄2 > 0. The global minimizer

of (P1) is S1 = {(0,
√

2)} and g1 := min
u∈R2

g((0,
√

2), u) ≥ 0. Therefore, the

correct global solution of (4.1) is outputted. In this case, by the continuity

of g(x, u), we have g((0,
√

2), ū) ≤ 0 and g((1, 1), ū) < 0. From these two
inequalities, we get (ū1, ū2) ∈ U .

case 2. There exists (x̄1, x̄2) ∈ K1 with x̄1 > 0, x̄2 > 0. Then the global minimizer
of (P1) is S1 = {(x̂1, x̂2)} with x̂1 > 0, x̂2 > 0. Similar to g0, g1 is not
achievable and U1 = {(ū1, ū2), (0, 0)} can not be updated. Consequently,
the same process will be repeated in the following iterations.

Now we have proved the claim. Since the set U is a subset of a Zariski closed set
of R2, Algorithm 3.1 fails if we choose a generic initial U0 = {(u1, u2)}. �

Hence, Algorithm 3.1 might fail to solve SIPP problem (P) if the optima of
subproblems (Qki) can not be reached for all xki ∈ Sk which might happen when U
is noncompact. As we have mentioned at the end of Section 3, the reformulation
(3.7) of (3.6) sheds light on this issue by the technique of homogenization. In the
following, we apply this technique to general SIPP problem (P) with noncompact
index set U .

For given polynomial q(u) ∈ R[u] := R[u1, . . . , up] with degree d = deg(q), let
q̃(ũ) = ud0q(u/u0) be the homogenization of q(u) where ũ = (u0, u) ∈ Rp+1. Define

g̃(x, ũ) = u
dg
0 g(x, u/u0) where dg = degu g(x, u)

and
U = {u ∈ Rp|h1(u) ≥ 0, · · · , hm1

(u) ≥ 0},

U0 = {ũ ∈ Rp+1|h̃1(ũ) ≥ 0, · · · , h̃m1(ũ) ≥ 0, u0 > 0, ‖ũ‖2 = 1},

Ũ = {ũ ∈ Rp+1|h̃1(ũ) ≥ 0, · · · , h̃m1
(ũ) ≥ 0, u0 ≥ 0, ‖ũ‖2 = 1}.

Proposition 4.2. q(u) ≥ 0 on U if and only if q̃(ũ) ≥ 0 on closure(U0).

Proof. “If ” direction. Suppose there exists v ∈ U such that q(v) < 0. For i ∈ [m1],
we have hi(v) ≥ 0. Let ṽ = (1√

1+‖v‖2
, v√

1+‖v‖2
), then

h̃i(ṽ) = (1 + ‖v‖2)−
deg(hi)

2 hi(v) ≥ 0, i ∈ [m1],

which implies ṽ ∈ U0 and

q̃(ṽ) = (1 + ‖v‖2)−
d
2 q(v) < 0.

It contradicts the assumption that q̃(ṽ) ≥ 0 on closure(U0).

14 LI WANG AND FENG GUO

“Only if” direction. Let ṽ = (v0, v) ∈ closure(U0), then there exists a sequence
ṽk = (vk0 , v

k) ∈ U0 such that lim
k→∞

(vk0 , v
k) = (v0, v) with vk0 > 0 for all k. We have

hi(v
k/vk0) = (vk0)− deg(hi)h̃i(ṽ

k) ≥ 0, i ∈ [m1], for all k.

Therefore, the sequence {vk/vk0} ∈ U and q(vk/vk0) ≥ 0. Since q is continuous,

q̃(ṽ) = lim
k→∞

q̃(ṽk) = lim
k→∞

(vk0)dq(vk/vk0) ≥ 0,

which shows q̃(ṽ) ≥ 0 on closure(U0). The proof is completed. �

Corollary 4.3. A polynomial q(u) ≥ 0 on Rp if and only if q̃(ũ) ≥ 0 on {ũ ∈
Rp+1 | ‖ũ‖2 = 1}.

Proof. From the proof of Proposition 4.2, we can see the inequality u0 > 0 can be
removed from U0 such that q(u) ≥ 0 on Rp if and only if q̃(ũ) ≥ 0 on

closure({ũ ∈ Rp+1 | ‖ũ‖2 = 1}) = {ũ ∈ Rp+1 | ‖ũ‖2 = 1}.
�

By Proposition 4.2, we have the following equivalent reformulation of problem
(P):

(P0) :

{
f∗ := min

x∈X
f(x)

s.t. g̃(x, ũ) ≥ 0, ∀ ũ ∈ closure(U0).

Some natural questions arise: how to get the explicit expression of semi-algebraic

set closure(U0)? Is it true that closure(U0) = Ũ? Clearly, we have

(4.3) closure(U0) ⊆ Ũ .
Unfortunately, the equality does not always hold even if set U is compact (cf. [18,
Example 5.2]).

Definition 4.4. ([18]) U is closed at ∞ if closure(U0) = Ũ .

Since it might be hard to express closure(U0) for a given particular SIPP problem,
we consider to solve the following problem in general:

(P̃) :

 f̃∗ := min
x∈X

f(x)

s.t. g̃(x, ũ) ≥ 0, ∀ ũ ∈ Ũ .

As set Ũ is compact, the semidefinite relaxation Algorithm 3.1 in Section 3 can
successfully solve this problem with any arbitrary initial U0. Next we investigate

the relation between problem (P) and problem (P̃).
We define

M = {x ∈ Rn|g(x, u) ≥ 0, ∀ u ∈ U}.

M̃ = {x ∈ Rn|g̃(x, ũ) ≥ 0, ∀ ũ ∈ Ũ}.

Proposition 4.5. We have M̃ ⊆M and the equality holds if U is closed at ∞.

Proof. By Proposition 4.2, we have

M = {x ∈ Rn|g̃(x, ũ) ≥ 0, ∀ ũ ∈ closure(U0)}.
Then the conclusion follows due to the relationship (4.3). �

Consequently, we have

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 15

Theorem 4.6. f̃∗ ≥ f∗ and the equality holds if U is closed at ∞.

Corollary 4.3 shows that U = Rp is closed at ∞ and therefore,

Corollary 4.7. The following two problems are equivalent:{
min
x∈X

f(x)

s.t. g(x, u) ≥ 0, ∀ u ∈ Rp,

min
x∈X

f(x)

s.t. g̃(x, ũ) ≥ 0, ∀ ũ ∈ Ũ ,

where Ũ = {ũ ∈ Rp+1 | ‖ũ‖2 = 1}.

Example 4.1 (Continued). We reformulate the problem (4.1) as

(4.4)

f̃∗ := min

x1,x2∈R
− x1 − x2

s.t. x1(u21 − u20) + (x2u
2
0 − u1u2)2 ≥ 0, ∀ ũ ∈ Ũ ,

x21 + x22 = 2,

where Ũ = {(u0, u1, u2) ∈ R3 | u20 + u21 + u22 = 1}. By choosing u0 = 1, we know

M̃ ⊇ {(0,±
√

2)} which, obviously, are feasible to (4.4). Therefore, f̃∗ = f∗ = −
√

2

with minimizer (0,
√

2). Choosing U0 = {(1, 0, 0)} in Algorithm 3.1, Figure 3
shows the feasible regions of subproblems (Pk) for iterations k = 0, 1, · · · , 5. Let
h(x) = x21 + x22 − 2. At i-th iteration, the feasible region is defined by

Ki := {x ∈ R2 | h(x) = 0, g0(x) ≥ 0, . . . , gi(x) ≥ 0}

where
g0 = −x1 + x22,

g1 ≈ 0.026046− 0.31963x1 − 0.19679x2 + 0.37171x22,

g2 ≈ 0.054893− 0.11577x1 − 0.18811x2 + 0.16116x22,

g3 ≈ 0.06865− 0.049084x1 − 0.14992x2 + 0.081854x22,

g4 ≈ 0.072498− 0.025711x1 − 0.12039x2 + 0.049977x22,

g5 ≈ 0.073368− 0.018151x1 − 0.10683x2 + 0.038891x22.

For each i, the feasible region Ki is the intersection of the left parts of the circle
x21 + x22 = 2 devided by hyperbolas gi(x) = 0, i = 0, · · · , 5. From Figure 3, we can

see the minimizers of subproblems (Pk) converge to (0,
√

2) which is the minimizer
of problem (4.1). �

We would like to point out that if U is not closed at ∞, we might have f̃∗ > f∗.
For example,

Example 4.8. Consider the following SIPP problem:

(4.5)

f∗ := min

x∈R
x2

s.t. x(u1 − u2 + 1) ≥ 0, ∀ u ∈ U,
x ∈ [1, 2],

where

U = {u ∈ R2 : u21(u1 − u2)− 1 = 0}.

16 LI WANG AND FENG GUO

Figure 3. Feasible region of Example 4.1 at each iteration.

Since for all u ∈ U ,

g(1, u) = u1 − u2 + 1 =
1

u21
+ 1 > 0,

x∗ = 1 is feasible and furthermore the minimizer of problem (4.5). Hence, f∗ = 1.
By definition,

Ũ = {ũ ∈ R3 : u21(u1 − u2)− u30 = 0, u0 ≥ 0, u20 + u21 + u22 = 1}.

As is shown in [6, 18], U is not closed at∞ because there exists a point (0, 0, 1) ∈ Ũ
but (0, 0, 1) /∈ closure(U0). Since for any x ∈ [1, 2],

g̃(x, (0, 0, 1)) = −x < 0,

we have M̃ = ∅. Therefore, f̃∗ =∞ > f∗. �

Example 4.8 shows that the problem (P̃) might not be equivalent to (P) when
set U is not closed at ∞. In the following, however, we show that U is closed at ∞
in general. In other words, U is closed at ∞ if it is defined by generic polynomials.

Suppose that U is not closed at ∞, then by definition there exists (0, ū) ∈
Ũ\closure(U0) with 0 6= ū ∈ Rp. Let ĥi denote the homogeneous part of highest
degree of hi for i ∈ [m1] and

{j1, . . . , j`} := {j ∈ [m1] | h̃j(0, ū) = ĥj(ū) = 0}.

Then ū is a solution to the polynomial system

(4.6) ĥj1(ū) = · · · = ĥj`(ū) = ‖ū‖2 − 1 = 0.

The Jacobian matrix of the system (4.6) at ū is

A(u) :=

∂ĥj1

∂u1
(ū) · · · ∂ĥj1

∂up
(ū)

...
...

...
∂ĥj`

∂u1
(ū) · · · ∂ĥj`

∂up
(ū)

2ū1 · · · 2ūp

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 17

Lemma 4.9. ([6, Lemma 2.10]) Suppose U is not closed at ∞ and ` < p, then
rank A(u) < `+ 1.

Let ĥm1+1 := ‖ũ‖2 − 1 and J(ū) = {j1, . . . , j`,m1 + 1}. We review some back-
ground about resultants and discriminants in Appendix B. By Proposition B.1 and
Proposition B.3, we have

Theorem 4.10. If U is not closed at ∞, then

(a) If |J(ū)| > p, then for every subset {j1, · · · , jp+1} ⊆ J(ū),

Res(ĥj1 , · · · , ĥjp+1
) = 0.

(b) If |J(ū)| ≤ p, then ∆(ĥj1 , · · · , ĥj` , ĥm1+1) = 0.

The above theorem shows that if U is defined by some generic polynomials,
then it is closed at ∞. Hence, the assumption that U is closed at ∞ is a generic

condition. Therefore, SIPP problems (P) and (P̃) are equivalent in general.

Example 4.11. Consider the following problem

(4.7)

{
min
x∈X

f(x) = x21 + x22

s.t. g(x, u) = x1u1 + u2 + x2 ≥ 0, ∀ u ∈ U,

where

X := {(x1, x2) ∈ R2 | x21+x22 ≤ 4} and U := {(u1, u2) ∈ R2 | u31+u32−3u1u2 ≥ 0}.

The set U is shown shaded in Figure 4. Since u1+u2+1 = 0 is the asymptote of the
curve u31+u32−3u1u2 = 0, the inequality g(x, u) ≥ 0 for all u ∈ U requires x1 = 1 and

x2 ≥ 1. Therefore, the feasible set of (4.7) is {x ∈ R2 | x1 = 1, 1 ≤ x2 ≤
√

3} and
the global minimizer is x∗ = (1, 1). It is easy to see that for a given (x̄1, x̄2) ∈ X,
the global minimum of g(x̄, u) over U is either −∞ or finite but not achievable.
Therefore, by the discussion at the beginning of this section, Algorithm 3.1 might
fail to solve (4.7). For example, if we set U0 = {(1,−1)}, then we get minimizer
X∗ = {(0.5000, 0.4999)}; if U0 = {(1, 0)}, then X∗ = {(0.0262, 0.3086)× 10−5}.

Now we use the homogenization technique to reformulate (4.7). First, we show
that U is closed at ∞. Let

U0 = {(u0, u1, u2) ∈ R3|u31 + u32 − 3u1u2u0 ≥ 0, u20 + u21 + u22 = 1, u0 > 0},

Ũ = {(u0, u1, u2) ∈ R3|u31 + u32 − 3u1u2u0 ≥ 0, u20 + u21 + u22 = 1, u0 ≥ 0}.

By definition, if U is not closed at ∞, then there exists (0, ū1, ū2) ∈ Ũ\closure(U0)
which implies

ū31 + ū32 = 0, ū21 + ū22 = 1.

Therefore

(ū1, ū2) ∈

{(
−
√

2

2
,

√
2

2

)
,

(√
2

2
,−
√

2

2

)}
.

Let

ũk :=

(
√

2εk,−
√

1

2
− εk,

√
1

2
− εk

)
, ûk :=

(
√

2εk,

√
1

2
− εk,−

√
1

2
− εk

)
.

18 LI WANG AND FENG GUO

Figure 4. The feasible region U in Example 4.11.

Let εk → 0, then ũk, ûk ∈ U0 for all k large enough and

lim
k→∞

ũk =

(
0,−
√

2

2
,

√
2

2

)
, lim

k→∞
ûk =

(
0,

√
2

2
,−
√

2

2

)
.

This shows U is closed at ∞. Therefore, by homogenization, we reformulate (4.7)
as the following equivalent problemmin

x∈X
x21 + x22

s.t. g̃(x, ũ) = x1u1 + u2 + x2u0 ≥ 0, ũ ∈ Ũ .

By Algorithm 3.1, we find a global minimizer

x∗ ≈ (0.9999, 0.9998) with Obj2 = −9.8148× 10−7,

after several iterations. �

In this section, by homogenization technique, we reformulate the SIPP problem

(P) with noncompact index set U as the problem (P̃) with compact index set Ũ
which can be globally solved by Algorithm 3.1. Under the assumption that set U is
closed at∞ which is a generic condition, we show the two problems are equivalent.

Appendix A. Small SIPP examples

Example A.1. Let U = [0, 2] and

f(x) =
1

3
x21 +

1

2
x1 + x22 − x2, g(x, u) = −x21 − 2x1x2u

2 + sin(u).

Replace the function sin(u) by u− u3

6 .

Example A.2. Let U = [0, 1] and

f(x) =
1

3
x21 + x22 +

1

2
x1, g(x, u) = −(1− x21u2)2 + x1u

2 + x22 − x2.

Example A.3. Let U = [0, 1] and

f(x) = x21 + x22 + x23, g(x, u) = −x1 − x2ex3u − e2u + 2 sin(4u).

Replace function ex3u by 1 + x3u + 1
2x

2
3u

2 + 1
6x

3
3u

3 + 1
24x

4
3u

4, function e2u by

1 + 2u+ 2u2 + 4
3u

3 + 2
3u

4, and function sin(4u) by 4u− 32
3 u

3.

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 19

Example A.4. Let U = [0, 1]2 and

f(x) = x21+x22+x23, g(x, u) = −x1(u1+u22+1)−x2(u1u2−u22)−x3(u1u2+u22+u2)−1.

Example A.5. Let U = [0, π] and

f(x) = x22 − 4x2, g(x, u) = −x1 cos(u)− x2 sin(u) + 1.

Replace function sin(u) by u− 1
6u

3 and cos(u) by 1− 1
2u

2 + 1
24u

4.

Example A.6. Let U = [0, π] and

f(x) = (x1 + x2 − 2)2 + (x1 − x2)2 + 30 min(0, (x1 − x2))2,

g(x, u) = −x1 cos(u)− x2 sin(u) + 1.

Like in [15], let x3 = min(0, (x1−x2)), then f(x) = (x1+x2−2)2+(x1−x2)2+30x23.
We add new constraints x23 = (x1 − x2)2 and x3 ≥ 0 in X. Replace function sin(u)

by u− u3

6 + y5

5! .

Example A.7. Let U = [−1, 1] and

f(x) = x2, g(x, u) = −2x21u
2 + u4 − x21 + x2.

Appendix B. Resultants and discriminants

We review some background about resultants and discriminants. More details
can be found in [4, 18, 20].

Let f1, . . . , fn be homogeneous polynomials in x = (x1, . . . , xn). The resultant
Res(f1, . . . , fn) is a polynomial in the coefficients of f1, . . . , fn satisfying

Res(f1, . . . , fn) = 0 ⇔ ∃ 0 6= u ∈ Cn, f1(u) = · · · = fn(u) = 0.

Let f1, . . . , fm be homogenous polynomials with m < n. The discriminant for
f1, . . . , fm is denoted by ∆(f1, . . . , fm), which is a polynomial in the coefficients of
f1, . . . , fm such that

∆(f1, . . . , fm) = 0

if and only if the polynomial system

f1(x) = · · · = fm(x) = 0

has a solution 0 6= u ∈ Cn such that the Jacobian matrix of f1, . . . , fm does not
have full rank.

Given inhomogeneous polynomial h(x) ∈ R[x], let h̃ denote the homogenization

of h, i.e., h̃ = h̃(x̃) = x
deg(h)
0 h(x/x0). For inhomogeneous polynomials f0, f1, . . . , fn ∈

R[x], the resultant Res(f0, f1, . . . , fn) is defined to be

Res(f̃0, f̃1, . . . , f̃n).

For inhomogeneous polynomials f1, . . . , fm ∈ R[x] with m ≤ n, the discriminant
∆(f1, . . . , fm) is defined as

∆(f̃1, . . . , f̃m).

We have

20 LI WANG AND FENG GUO

Proposition B.1. Let f0, f1, . . . , fn ∈ R[x] be inhomogeneous polynomials. Sup-
pose the polynomial system

f0(x) = f1(x) = · · · = fn(x) = 0

has a solution in Cn, then

Res(f0, f1, . . . , fn) = 0.

Proof. If the polynomial system

f0(x) = f1(x) = · · · = fn(x) = 0

has a solution u ∈ Cn, then the polynomial system

f̃0(x̃) = f̃1(x̃) = · · · = f̃n(x̃) = 0

has a nonzero solution (1, u) ∈ Cn+1. The conclusion follows by the properties of
resultant for homogeneous polynomials . �

Proposition B.2. Let m ≤ n. The polynomial system

f1(x) = · · · = fm(x) = 0

has a solution u ∈ Cn such that the Jacobian matrix of f1, . . . , fm is rank deficient
at u if and only if the polynomial system

f̃1(x̃) = · · · = f̃m(x̃) = 0

has a solution (1, u) ∈ Cn+1 such that the Jacobian matrix of f̃1, . . . , f̃m is rank
deficient at (1, u).

Proof. Let di = degx (fi), fi,j denote the homogenous part of degree j of polynomial

fi and f̃i,j = xdi−j0 fi,j for i = 1, · · · ,m and j = 0, · · · , di. Denote

∇x :=

{
∂

∂x1
, · · · , ∂

∂xn

}
and ∇x̃ :=

{
∂

∂x0
,
∂

∂x1
, · · · , ∂

∂xn

}
.

The “if” direction is implied by

(B.1)
∂f̃i
∂xj

(1, u) =
∂fi
∂xj

(u), i = 1, · · · ,m, j = 1, · · · , n.

Next we prove the “only if” direction. By assumption, there exists a set of n scalars
c1, . . . , cn, not all zero, such that

m∑
i=1

ci(∇xfi)(u) = 0

which means

m∑
i=1

ci

 di∑
j=1

∂fi,j
∂xk

(u)

 = 0, k = 1, · · · , n.

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 21

Then by Euler’s Homogeneous Function Theorem, we have

0 =

n∑
k=1

m∑
i=1

ci

 di∑
j=1

∂fi,j
∂xk

(u)uk

=

m∑
i=1

ci

 di∑
j=1

n∑
k=1

∂fi,j
∂xk

(u)uk

=

m∑
i=1

ci

 di∑
j=1

jfi,j(u)

=

m∑
i=1

ci

 di∑
j=1

jfi,j(u) +

di∑
j=0

(di − j)fi,j(u)−
di∑
j=0

(di − j)fi,j(u)

=

m∑
i=1

ci

di di∑
j=0

fi,j(u)−
di∑
j=0

∂f̃i,j
x0

(1, u)

=

m∑
i=1

ci

(
difi(u)− ∂f̃i

∂x0
(1, u)

)

= −
m∑
i=1

ci
∂f̃i
∂x0

(1, u).

By combining (B.1), we obtain
m∑
i=1

ci(∇x̃f̃i)(1, u) = 0

which concludes the proof. �

By Proposition B.2 and the properties of discriminant for homogeneous polyno-
mials, we have

Proposition B.3. Let m ≤ n and f1, . . . , fm ∈ R[x] be inhomogeneous polynomi-
als. Suppose that the polynomial system

f1(x) = · · · = fm(x) = 0

has a solution in Cn at which the Jacobian matrix of f1, . . . , fm is rank deficient,
then

∆(f1, . . . , fm) = 0.

Note that the reverses of Proposition B.1 and Proposition B.3 are not necessarily
true.

References

[1] Binita Bhattacharjee, William H. Green, and Paul I. Barton. Interval methods for semi-
infinite programs. Computational Optimization and Applications, 30(1):63–93, 2005.

[2] Raúl E. Curto and Lawrence A. Fialkow. Truncated K-moment problems in several variables.

Journal of Operator Theory, 54(1):189–226, 2005.
[3] Jack Elzinga and Thomas G. Moore. A central cutting plane algorithm for the convex pro-

gramming problem. Mathematical Programming, 8:134–145, 1975.

22 LI WANG AND FENG GUO

[4] Israel M. Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discriminants, Resultants, and

Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, 1994.

[5] Keat-Choon Goh, Michael G. Safonov, and George P. Papavassilopoulos. Global optimization
for the biaffine matrix inequality problem. Journal of Global Optimization, 7(4):365–380,

1995.

[6] Feng Guo, Li Wang, and Guangming Zhou. Minimizing rational polynomial by exact Jacobian
SDP relaxation applicable to finite singularities. Journal of Global Optimization, to appear.

Available at http://arxiv.org/abs/1205.6442.

[7] Didier Henrion and Jean B. Lasserre. Detecting global optimality and extracting solutions in
GloptiPoly, volume 312. Springer, Berlin, 2005.

[8] Didier Henrion and Jean B. Lasserre. Convergent relaxations of polynomial matrix inequalities

and static output feedback. IEEE Transactions on Automatic Control, 51(2):192–202, 2006.
[9] Didier Henrion, Jean B. Lasserre, and Johan Löfberg. GloptiPoly 3: moments, optimization

and semidefinite programming. Optimization Methods and Software, 24(4-5):761–779, 2009.
[10] R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods, and applica-

tions. SIAM Review, 35(3):380–429, 1993.

[11] Camile W. J. Hol and Carsten W. Scherer. Sum of squares relaxations for polynomial semi-
definite programming. In International Symposium on Mathematical Theory of Networks and

Systems, Leuven, Belgium, July 2004.

[12] Masakazu Kojima. Sums of squares relaxations of polynomial semidefinite programs. Techni-
cal Report B-397, Department of Mathematical and Computing Sciences Tokyo Institute of

Technology, Tokyo, Japan, 2003.

[13] Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[14] Jean B. Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College

Press, London, UK, 2009.
[15] Jean B. Lasserre. An algorithm for semi-infinite polynomial optimization. TOP, 20(1):119–

129, 2012.
[16] Marco López and Georg Still. Semi-infinite programming. European Journal of Operational

Research, 180(2):491–518, 2007.

[17] Jiawang Nie. Polynomial matrix inequality and semidefinite representation. Mathematics of
operations research, 36(3):398–415, 2011.

[18] Jiawang Nie. Discriminants and nonnegative polynomials. Journal of Symbolic Computation,

47(2):167–191, 2012.
[19] Jiawang Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy. preprint,

2012.

[20] Jiawang Nie. An exact Jacobian SDP relaxation for polynomial optimization. Mathematical
Programming, Ser. A, 137:225–255, 2013.

[21] Jiawang Nie. Certifying convergence of Lasserre’s hierarchy via flat truncation. Mathematical

Programming, Ser. A, to appear.
[22] Panos Parpas and Berç Rustem. An algorithm for the global optimization of a class of contin-

uous minimax problems. Journal of Optimization Theory and Applications, 141(2):461–473,
2009.

[23] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University

Mathematics Journal, 42:969–984, 1993.
[24] Georg Still. Generalized semi-infinite programming: numerical aspects. Optimization,

49(3):223–242, 2001.
[25] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optimization Methods and Software, 11/12:625–653, 1999.

[26] Yoshihiro Tanaka, Masao Fukushima, and Toshihide Ibaraki. A globally convergent SQP

method for semi-infinite nonlinear optimization. Journal of Computational and Applied Math-
ematics, 23:141–153, 1988.

[27] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 - a MATLAB software package for
semidefinite programming. Optimization Methods and Software, 11:545–581, 1998.

[28] Xinyuan Zhao, Defeng Sun, and Kim chuan Toh. SDPNAL version 0.1 – a MATLAB software

for semidefinite programming based on a semi-smooth Newton-CG augmented Lagrangian

method. http://www.math.nus.edu.sg/~mattohkc/SDPNAL.html.

http://arxiv.org/abs/1205.6442
http://www.math.nus.edu.sg/~mattohkc/SDPNAL.html

SEMIDEFINITE RELAXATIONS FOR SEMI-INFINITE POLYNOMIAL PROGRAMMING 23

Department of Mathematics, University of California, 9500 Gilman Drive, La Jolla,

CA 92093.

E-mail address: liw022@ucsd.edu

Department of Mathematics, University of California, 9500 Gilman Drive, La Jolla,

CA 92093.
E-mail address: f1guo@math.ucsd.edu.

	1. Introduction
	2. SDP relaxations for polynomial optimization
	2.1. Lasserre's SDP relaxation
	2.2. Jacobian SDP relaxation

	3. SIPP with compact set U
	3.1. A semidefinite relaxation algorithm
	3.2. Numerical experiments
	3.3. Application to PMI problems

	4. SIPP with noncompact set U
	Appendix A. Small SIPP examples
	Appendix B. Resultants and discriminants
	References

