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Abstract

We consider quasi-Newton methods for generalized equations in Banach spaces under
metric regularity and give a sufficient condition for q-linear convergence. Then we show that
the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also
establish various modes of q-superlinear convergence of the Broyden update under strong
metric subregularity, metric regularity and strong metric regularity. Simple numerical exam-
ples illustrate the results.
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1 Introduction

In this paper we consider the generalized equation

f(x) + F (x) 3 0, (1)

where f : X → Y is a function and F : X ⇒ Y is a set-valued mapping. Throughout, unless
stated otherwise, X and Y are (real) Banach spaces. To simplify some of the arguments used
we make the standing assumption that f is continuously Fréchet differentiable everywhere with
derivative Df and F has closed graph.

If F is the zero mapping, then (1) reduces to the equation f(x) = 0 for which the standard
Newton iteration takes the form

f(xk) +Df(xk)(xk+1 − xk) = 0.

When F is nonzero, then the Newton iteration is extended in a natural way to

f(xk) +Df(xk)(xk+1 − xk) + F (xk+1) 3 0, (2)

that is, at each iteration we solve a partially linearized inclusion. In a path-breaking work
N. H. Josephy [16] was the first to consider a Newton iteration of the kind (2) specialized to
the case where F is the normal cone mapping; then (1) describes a variational inequality. Most
importantly, he employed the property of strong regularity coined by his PhD advisor S. M. Robin-
son [21]. In this paper, we adopt the definition given in [11]:

Definition 1.1 (strong metric regularity). A mapping H : X ⇒ Y is said to be strongly metrically
regular at x̄ for ȳ when ȳ ∈ H(x̄) and there are neighborhoods U of x̄ and V of ȳ such that the
mapping y 7→ H−1(y) ∩ U is a Lipschitz continuous function on V .

The result of Josephy [16] adapted for the generalized equation (1) essentially says that that if
x̄ is a solution of (1), the function f is twice continuously differentiable around x̄ and the mapping
f + F is strongly metrically regular at x̄ for 0, then there exists a neighborhood O of x̄ such that
for any starting point x0 ∈ O the iteration (2) generates a unique sequence in O and this sequence
is q-quadratically convergent to x̄.

A linear and bounded mapping A : X → Y is strongly metrically regular (everywhere) when-
ever its inverse A−1 is single-valued. If the mapping A is not necessarily invertible but only
surjective, then it is metrically regular. Metric regularity has played a major role in nonlinear
analysis in the last century, but whose importance has been fully recognized only recently. Its
formal definition follows:

Definition 1.2 (metric regularity). A mapping H : X ⇒ Y is said to be metrically regular at x̄
for ȳ when ȳ ∈ H(x̄) and there is a constant κ > 0 together with neighborhoods U of x̄ and V of
ȳ such that

d
(
x,H−1(y)

)
≤ κd(y,H(x)) for all (x, y) ∈ U × V. (3)

A central result in the theory of metric regularity is the Lyusternik–Graves theorem which says
that if a function f : X → Y is continuously Fréchet differentiable around x̄, then it is metrically
regular at x̄ (for f(x̄)) if and only if the derivative Df(x̄) is surjective. In parallel, the standard
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inverse function theorem can be stated as follows: if a function f : X → Y is continuously Fréchet
differentiable around x̄ then it is strongly metrically regular at x̄ (for f(x̄)) if and only if the
derivative Df(x̄) is invertible. The inverse function theorem can be extended in a natural way
to the generalized equation (1): the mapping f + F is (strongly) metrically regular at x̄ for 0 if
and only if the “partial linearization” f(x̄) + Df(x̄)(· − x̄) + F (·) has the same property. This
general pattern culminates in the inverse function theorem paradigm to which the recent book [11]
is dedicated.

The third author of the present paper proved in [7], see also Theorem 6C.6 in [11], the following
result which complements that of Josephy: if the derivative Df is Lipschitz continuous around x̄
and the mapping f + F is metrically regular at x̄ for 0, then there exists a neighborhood O of
x̄ such that for any starting point x0 ∈ O there exists a sequence generated by (2) which stays
in O and this sequence is q-quadratically convergent to x̄. By no means this sequence is to be
unique, as in Josephy’s theorem. Still the result in [7] has opened the way to developing a broader
perspective to set-valued extensions of Newton’s method. A number of results in this direction
are presented in the books [1], [11] and [19].

There is a third regularity property that plays an important role in establishing convergence
of Newton’s method.

Definition 1.3 (strong metric subregularity). Consider a mapping H : X ⇒ Y and a point
(x̄, ȳ) ∈ X × Y . Then H is said to be strongly metrically subregular at x̄ for ȳ when ȳ ∈ H(x̄)
and there is a constant κ > 0 together with neighborhoods U of x̄ such that

‖x− x̄‖ ≤ κd(ȳ, H(x)) for all x ∈ U.

Strong metric subregularity of H at x̄ for ȳ implies that x̄ is an isolated point in H−1(ȳ);
moreover, it is equivalent to the so-called isolated calmness of the inverse H−1, meaning that there
is a neighborhood U of x̄ such that H−1(y) ∩ U ⊂ x̄ + κ‖y − x̄‖B for all y ∈ Y . The isolated
calmness was introduced independently in [4] under the name semistability and in [6] under the
name local upper Lipschitz continuity. Every mapping H acting in finite dimensions, whose graph
is the union of finitely many convex polyhedral sets, is strongly metrically subregular at x̄ for ȳ
if and only if x̄ is an isolated point in H−1(ȳ). Most importantly, the strong metric subregularity
obeys the paradigm of the inverse function theorem in the same way as metric regularity and strong
metric regularity do. In particular, a smooth function f is strongly metrically subregular at x̄ if
and only if its derivative mapping Df(x̄) is injective. Consider the Newton method (2) for the
generalized equation (1) with a function f whose derivative mapping Df is Lipschitz continuous
around a reference solution x̄. If a sequence {xk} generated by (2) is convergent to x̄ then,
as shown in [4, Corollary 2.1], strong metric subregularity implies that this sequence converges
quadratically. Actually, in this case the following sharper result is shown in [8], see also [11, Section
6c]: there exists a neighborhood O of x̄ such that if a sequence {xk} generated by (2) stays in
O for all k, then it is quadratically convergence to x̄. Note that the strong metric subregularity
itself does not guarantee the existence of a Newton sequence. In order to ensure that Newton’s
method (2) is executable, the strong metric subregularity is usually combined with Bonnans [4]
introduced a property called by him hemistability which basically postulates the existence of a
Newton iteration. Specifically, in our notation this property requires that for ant ε > 0 there
exists δ > 0 such that for any x and M with ‖x − x̄‖ + ‖M − Df(x̄)‖ ≤ ε there exists x̂ with
‖x̂ − x̄‖ ≤ δ satisfying f(x) + M(x̂ − x) + F (x̂). In order to handle Newton’s method, among
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others, Klatte and Kummer, see [19] as well as previous papers of these authors, introduced the
property that there exist neighborhoods U of x̄ and V of 0 such that (f +F )−1(y)∩U 6= ∅ for all
y ∈ V ; then they called the combination of the strong metric subregularity and this property upper
regularity. Observe that for the mapping f +F with a smooth function f hemistability is implied
by metric regularity; this is a simple consequence of the Lyusternik-Graves theorem. The property
introduced by Klatte and Kummer is also implied by metric regularity, see [11, Proposition 3E.1].
On the other hand the combination of semistability and hemistability is stronger than metric
regularity, since metric regularity does not imply local uniqueness of the reference point, but is
weaker than strong metric regularity.

In this paper we prove first a result parallel to the one in [7] concerning the convergence of the
following quasi-Newton method: given x0 compute xk+1 to satisfy

f(xk) +Bk(xk+1 − xk) + F (xk+1) 3 0, for k = 0, 1, . . . , (4)

where Bk is a sequence of linear and bounded mappings from X to Y . The specific way Bk is
constructed determines the quasi-Newton method, e.g., Broyden, BFGS, SR1, etc. In Theorem 3.1,
we show that if the mapping f + F of (1) is metrically regular at x̄ for 0 and the initial mapping
B0 is close to Df(x̄), then, under certain condition on the sequence of mappings Bk, there exists
a neighborhood O of x̄ such that for any starting point x0 ∈ O there exists a sequence generated
by (4) which stays in O and is q-linearly convergent to x̄. If in addition the mapping f + F is
strongly metrically regular, then there exists a unique in O sequence generated by (4), and hence
this sequence is q-linearly convergent.

In Section 4 we first prove in the Hilbert space setting that the Broyden method satisfies the
condition stated in Theorem 3.1 and hence, under (strong) metric regularity, this method generates
a (unique) sequence which is q-linearly convergent to the reference solution x̄. In Theorem 4.9,
on the condition that B0 −Df(x̄) is a Hilbert–Schmidt operator, we establish q-superlinear con-
vergence in three cases depending on the property of the mapping f + F : (i) under strong metric
subregularity there exists a neighborhood O of x̄ such that every sequence generated by (4) which
stays in O is q-superlinearly convergent to x̄; (ii) if in addition f + F is metrically regular then
there exists a neighborhood O of x̄ such that for every starting point x0 there exists a sequence
generated by (4) which is q-superlinearly convergent to x̄; (iii) under strong metric regularity the
unique in O sequence generated by (4) is q-superlinearly convergent to x̄. A key step in proving
this result, besides Theorem 3.1, is Proposition 4.8, where we show that in the case considered the
Broyden update satisfies the Dennis-Moré condition, which allows us to employ the generalization
of the Dennis-Moré theorem obtained in [9]. Theorem 4.9 sharpens, in the setting of (strong) met-
ric (sub)regularity, and extends to infinite dimensions the results in [4] developed for variational
inequalities in finite dimensions. Specifically, for a class of quasi-Newton methods including the
Broyden update [4, Theorem 2.3] shows the existence of a q-superlinear convergent sequence under
hemistability and semistability of the reference solution. In this paper we focus on the Broyden
method extending, among other results, [4, Theorem 2.3] to infinite dimensions under the stronger
condition that both metric regularity and strong metric subregularity hold.

Section 2 contains an auxiliary result concerning perturbed metric regularity, which is used as
a tool for proving local convergence of the method (4). In Section 5 we present two numerical
examples, the second of which is based on a model of economic equilibrium recently developed
in [12].
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We introduce next the notation, definitions and terminology we use throughout the paper,
and also put our results in perspective to the previous developments on the subject. Any norm
is denoted by ‖ · ‖ and any metric by ρ(·, ·). The distance from a point x to a set C is denoted
by d(x,C) and the excess from a set D to a set C by e(D,C) = supx∈D d(x,C). The closed ball
centered at x with radius a is denoted by Ba(x̄) and L(X, Y ) denotes the Banach space of linear
and bounded mappings acting from X to Y .

2 Preliminaries

We utilize the following generalization of Nadler’s fixed point theorem, originally proved in [10],
for more see [11, Theorem 5E.2]):

Theorem 2.1 (contraction mapping principle). Let (X, ρ) be a complete metric space, and con-
sider a set-valued mapping Φ : X ⇒ X, a point x̄ ∈ X, and positive scalars a and θ such that
θ < 1, the set gph Φ ∩

(
Ba(x̄)× Ba(x̄)

)
is closed, and the following conditions hold:

(i) d
(
x̄,Φ(x̄)

)
< a(1− θ);

(ii) e
(
Φ(u) ∩ Ba(x̄),Φ(v)

)
≤ θρ(u, v) for all u, v ∈ Ba(x̄).

Then Φ has a fixed point in Ba(x̄); that is, there exists x ∈ Ba(x̄) such that x ∈ Φ(x). In addition,
if Φ is single-valued, then Φ has a unique fixed point in Ba(x̄).

Theorem 2.2 (perturbed metric regularity). Let (X, ρ) be a complete metric space and (Y, ρ) be a
linear metric space with shift-invariant metric. Consider a mapping H : X ⇒ Y with closed graph
and a point (x̄, ȳ) ∈ gphH at which H is metrically regular, that is, there exist positive constants
a, b, and κ such that

d(x,H−1(y)) ≤ κd(y,H(x)) for all (x, y) ∈ Ba(x̄)× Bb(ȳ). (5)

Let µ > 0 be such that κµ < 1 and let κ′ > κ. Then for every positive α and β such that

α ≤ a/2, µα + 2β ≤ b and 2κ′β ≤ α(1− κµ) (6)

and for every function h : X → Y satisfying

ρ(h(x̄), 0) ≤ β (7)

and
ρ(h(x), h(x′)) ≤ µρ(x, x′) for every x, x′ ∈ Bα(x̄), (8)

the mapping h+H has the following property: for every y, y′ ∈ Bβ(ȳ) and every x ∈ (h+H)−1(y)∩
Bα(x̄) there exists x′ ∈ (h+H)−1(y′) such that

ρ(x, x′) ≤ κ′

1− κµ
ρ(y, y′). (9)

In addition, if the mapping H is strongly metrically regular at x̄ for ȳ; that is, the mapping
y 7→ H−1(y) ∩ Ba(x̄) is single-valued and Lipschitz continuous on Bb(ȳ) with a Lipschitz constant
κ, then for µ, κ′, α and β as above and any function h satisfying (7) and (8), the mapping
y 7→ (h + H)−1(y) ∩ Bα(x̄) is a Lipschitz continuous function on Bβ(ȳ) with a Lipschitz constant
κ′/(1− κµ).
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Before proving the theorem we will make some comments. If we assume h(x̄) = 0 then
Theorem 2.2 simply says that if H is (strongly) metrically regular at x̄ for ȳ and h has a sufficiently
small Lipschitz constant, then the perturbed h+H is (strongly) metrically regular at x̄ for ȳ; indeed
in this case the claim involving (9) means that (h+H)−1 has the Aubin property at ȳ for x̄ which
is equivalent to metric regularity of h+H at x̄ for ȳ, and then we obtain the (extended) Lyustenik–
Graves theorem as stated in [11, Theorem 5E.1]. For the strong regularity part we get a version of
Robinson’s theorem, see [11, Theorem 5F.1]. However, if h(x̄) 6= 0 then (x̄, ȳ) may be not in the
graph of h + H and then we cannot claim that h + H is (strongly) metrically regular at x̄ for ȳ.
Of course, this could be handled by choosing a new function h̃ with h̃(x) = h(x)− h(x̄) and then
apply [11, Theorem 5F.1] but the latter does not specify how the constants (e.g. the radii of the
balls involved) depend on the data of the problem, which is the crux of the matter in obtaining
estimates in the following section. Clearly, the result in Theorem 2.2 is parallel to [11, Theorem
5F.1] and can be recovered from the latter; still, but we feel that giving a complete proof would
be beneficial for the reader.

Proof. Choose µ and κ′ as required and then α and β to satisfy (6). For any x ∈ Bα(x̄) and
y ∈ Bβ(ȳ), using the shift-invariance of the metric in Y , (7), (8) and the triangle inequality, we
obtain

ρ(−h(x) + y, ȳ) ≤ ρ(0, h(x̄)) + ρ(h(x̄), h(x)) + ρ(y, ȳ) ≤ β + µρ(x, x̄) + β ≤ 2β + µα ≤ b, (10)

where the last inequality follows from the second inequality in (6). Fix y′ ∈ Bβ(ȳ) and consider
the mapping

Φy′ : x 7→ H−1(−h(x) + y′) for x ∈ Bα(x̄).

Clearly, gph Φy′ is closed. Let y ∈ Bβ(ȳ), y 6= y′ and let x ∈ (h+H)−1(y) ∩ Bα(x̄). We will apply
Theorem 2.1 with the complete metric space X identified with the closed ball Bα(x̄) to show that
there is a fixed point x′ ∈ Φy(x

′) in the closed ball centered at x with radius

ε :=
κ′ρ(y, y′)

1− κµ
. (11)

Then, from the third inequality in (6), we obtain

ε ≤ κ′(2β)

1− κµ
≤ α.

Hence, from the first inequality in (6) we get Bε(x) ⊂ Ba(x̄). Since y ∈ h(x) + H(x) and (x, y)
satisfies (10), from the assumed metric regularity of H we get

d(x,Φy′(x)) = d(x,H−1(−h(x) + y′)) ≤ κd(−h(x) + y′, H(x))

= κd(y′, h(x) +H(x)) ≤ κρ(y, y′)

< κ′ρ(y, y′) = ε(1− κµ).

For any u, v ∈ Bε(x), using (8), we have

e(Φy′(u) ∩ Bε(x),Φy′(v)) ≤ e(H−1(−h(u) + y′) ∩ Ba(x̄), H−1(−h(v) + y′))
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≤ κρ(h(u), h(v)) ≤ κµ ρ(u, v).

Applying Theorem 2.1 to the mapping Φy′ , with x̄ identified with x and constants a = ε and
θ = κµ, we obtain the existence of a fixed point x′ ∈ Φy′(x

′) = H−1(−h(x′) + y′), which is
equivalent to x′ ∈ (h+H)−1(y′), within distance ε given by (11) from x.

For the second part of the theorem, suppose that y 7→ s(y) := H−1(y) ∩ Ba(x̄) is a Lipschitz
continuous function on Bb(ȳ) with a Lipschitz constant κ. Choose µ, κ′, α and β as in the statement
and let h satisfy (7) and (8). For any y ∈ Bβ(ȳ), since x̄ ∈ (h+H)−1(ȳ + h(x̄)) ∩ Bα(x̄), from (9)
we obtain that there exists x ∈ (h+H)−1(y) such that

ρ(x, x̄) ≤ κ′

1− κµ
ρ(y, ȳ + h(x̄)).

Since ρ(y, ȳ+ h(x̄)) ≤ 2β, by (6) we get ρ(x, x̄) ≤ α, that is, (h+H)−1(y)∩Bα(x̄) 6= ∅. Hence the
domain of the mapping (h+H)−1 ∩ Bα(x̄) contains Bβ(ȳ).

If x ∈ (h + H)−1(y) ∩ Bα(x̄), then x ∈ H−1(y − h(x)) ∩ Bα(x̄) ⊂ H−1(y − h(x)) ∩ Ba(x̄) =
s(y − h(x)) since y − h(x) ∈ Bb(ȳ) according to (10). Hence,

H−1(y − h(x)) ∩ Bα(x̄) = s(y − h(x)) = x. (12)

Assume that there exist y ∈ Bβ(ȳ) and x, x′ ∈ (h+H)−1(y) ∩ Bα(x̄) such that x 6= x′. From (10)
we have that both y − h(x) and y − h(x′) are in Bb(ȳ). Then from (12) we get

ρ(x, x′) = ρ(s(−h(x′) + y), s(−h(x) + y))

≤ κρ(−h(x′) + y,−h(x) + y) = κρ(h(x′), h(x))

≤ κµρ(x′, x) < ρ(x′, x),

which is a contradiction. Hence, the mapping y 7→ g(y) := (h + H)−1(y) ∩ Bα(x̄) is single-
valued, that is, a function, defined on Bβ(ȳ). Let y, y′ ∈ Bβ(ȳ). Utilizing the equality g(y) =
s(−h(g(y)) + y), see (12), we have

ρ(g(y), g(y′)) = ρ(s(−h(g(y)) + y), s(−h(g(y′)) + y′)))

≤ κρ(h(g(y)), h(g(y′))) + κρ(y, y′)

≤ κµρ(g(y), g(y′)) + κρ(y, y′).

Thus,

ρ(g(y), g(y′)) ≤ κ′

1− κµ
ρ(y, y′);

that is, g is Lipschitz continuous with Lipschitz constant κ′/(1− κµ). The proof is complete.

3 Convergence under metric regularity

In this section we show that under certain conditions, the quasi-Newton iteration (4) is locally
q-linearly convergent. We note that in (4) the update Bk+1 is usually defined in terms of Bk, xk,
and xk+1. This is the case in the Broyden update considered in the next section, for which we
show that the sufficient conditions for q-linear convergence are satisfied and we are able to get
q-superlinear convergence under stronger conditions.
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Theorem 3.1. Suppose that f + F is metrically regular at x̄ for 0 with constant λ. Then, in
particular, x̄ is a solution of (1). Consider the quasi-Newton method (4) and assume that

‖B0 −Df(x̄)‖ < 1/(2λ). (13)

Furthermore, assume that there exist a constant c > 0 and a neighborhood U of x̄ such that, for
k = 0, 1, . . . , and for any Bk and any xk, xk+1 ∈ U , xk 6= xk+1, all satisfying (4), the operator
Bk+1 is chosen in such a way that

‖Bk+1 −Df(x̄)‖ ≤ ‖Bk −Df(x̄)‖+ c(‖xk − x̄‖+ ‖xk+1 − x̄‖). (14)

Then there exists a neighborhood O of x̄ such that for any x0 ∈ O there exists a sequence {xk}
starting at x0 and generated by (4) which stays in O and is q-linearly convergent to a solution
to (1); moreover, if xk+1 6= xk for all k then {xk} converges to x̄. If in addition f + F is strongly
metrically regular at x̄ for 0 then there is a unique in O sequence {xk} starting at x0 and generated
by (4), and hence it converges q-linearly to x̄.

Proof. Choose κ > λ such that

δ := ‖B0 −Df(x̄)‖ < 1/(2κ). (15)

Let κ′ > κ be such that
κ′δ

1− κδ
< 1

and then fix γ > 0 to satisfy
κ′δ

1− κδ
< γ < 1.

Choose ε > 0 such that
κ′

1− κ(δ + ε)
(ε+ δ) < γ. (16)

Let
H(x) = f(x̄) +Df(x̄)(x− x̄) + F (x), (17)

for x ∈ X. From Theorem 2.2 applied to f +F and h(·) = f(x̄) +Df(x̄)( · − x̄)− f(·) (or simply
by the standard Lyusternik–Graves theorem, see e.g. [11, Theorem 5E.1]), since h(x̄) = 0, κ > λ,
and (f + F ) + h = H, then (9) implies metric regularity of H at x̄ for 0 with constant κ. Thus,
it follows the existence of some positive constants a and b such that

d(x,H−1(y)) ≤ κd(y,H(x)) for all x ∈ Ba(x̄), y ∈ Bb(0).

Using (16), make a smaller if necessary so that Ba(x̄) ⊂ U ,

‖f(u)− f(v)−Df(x̄)(u− v)‖ ≤ ε‖u− v‖ for all u, v ∈ Ba(x̄), (18)

κ

(
δ +

ca

1− γ

)
< 1,

and
κ′

1− κ
(
δ + ca

1−γ

) (ε+ δ +
ca

1− γ

)
< γ, (19)
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where c is from (14). Set

µ := δ +
ca

1− γ
and choose positive α and β to satisfy the inequalities (6) in Theorem 2.2. Choose τ ∈ (0, α) such
that (

ε+ δ +
ca

1− γ

)
τ ≤ β. (20)

Denote O := Bτ (x̄) and choose any x0 ∈ O \ {x̄}. Consider the function

h0(x) = f(x0) +B0(x− x0)− f(x̄)−Df(x̄)(x− x̄).

Then we have

ȳ0 ∈ h0(x̄) +H(x̄) where ȳ0 := f(x0)− f(x̄) +B0(x̄− x0). (21)

Further,

‖h0(x̄)‖ = ‖f(x0) +B0(x̄− x0)− f(x̄)‖
≤ ‖f(x0)− f(x̄)−Df(x̄)(x0 − x̄)‖+ ‖(B0 −Df(x̄))(x̄− x0)‖ (22)

≤ (ε+ δ)τ ≤ β,

where we use (20). For any x, x′ ∈ Bα(x̄) from (15) we have

‖h0(x)− h0(x′)‖ = ‖(B0 −Df(x̄))(x− x′)‖ ≤ δ‖x− x′‖ ≤ µ‖x− x′‖.

Also, observe that ȳ0 = h0(x̄), hence from (22) we get ȳ0 ∈ Bβ(0). Finally, from (21) we have
x̄ ∈ (h0 + H)−1(ȳ0). We are now ready to apply Theorem 2.2 with H defined in (17), h = h0, κ,
µ, κ′, a, b, α, β having the values defined above, to obtain that there exists x1 ∈ (h0 + H)−1(0),
that is, x1 satisfies (4) for k = 0, and also

‖x1 − x̄‖ ≤
κ′

1− κµ
‖ȳ0‖ ≤

κ′

1− κµ
(ε+ δ)‖x0 − x̄‖ ≤ γ‖x0 − x̄‖,

where we use the estimates (19) and (22). Since γ < 1, this yields x1 ∈ O = Bτ (x̄).
If x1 = x̄, by taking xk = x̄ for all k > 1 we are done. If x1 = x0, by taking xk = x0 for all

k > 1 we are also done. Otherwise, we use induction which is somewhat parallel to the first step of
the proof with some important differences. Suppose that there exist an integer n > 1 and points
x1, . . . , xn with xk ∈ Bτ (x̄), xk−1 6= xk 6= x̄ and

‖xk − x̄‖ ≤ γ‖xk−1 − x̄‖ for k = 1, . . . , n. (23)

From condition (14) and taking into account that τ ≤ α ≤ a/2 we get

‖Df(x̄)−Bn‖ ≤ ‖Df(x̄)−B0‖+ c

n∑
k=1

(‖xk − x̄‖+ ‖x̄− xk−1‖)

≤ δ + c

n∑
k=1

(‖xk − x̄‖+ ‖x̄− xk−1‖) (24)
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≤ δ + 2c
n∑
k=0

‖xk − x̄‖ ≤ δ + 2c
∞∑
k=0

γk‖x0 − x̄‖ ≤ δ +
ca

1− γ
.

Define
hn(x) = f(xn) +Bn(x− xn)− f(x̄)−Df(x̄)(x− x̄)

and
ȳn := f(xn)− f(x̄) +Bn(x̄− xn).

Then, using (24), we obtain

‖ȳn‖ = ‖f(xn)− f(x̄)−Df(x̄)(xn − x̄)‖+ ‖(Bn −Df(x̄))(x̄− xn)‖

≤
(
ε+ δ +

ca

1− γ

)
‖xn − x̄‖ ≤

(
ε+ δ +

ca

1− γ

)
‖x0 − x̄‖. (25)

Hence, by (20),

‖ȳn‖ ≤
(
ε+ δ +

ca

1− γ

)
τ ≤ β. (26)

Since hn(x̄) = ȳn, we get ‖hn(x̄)‖ ≤ β. Also, for any x, x′ ∈ Bα(x̄) we obtain

‖hn(x)− hn(x′)‖ = ‖(Bn −Df(x̄))(x− x′)‖ ≤
(
δ +

ca

1− γ

)
‖x− x′‖ = µ‖x− x′‖.

The assumptions of Theorem 2.2 are then satisfied, hence, taking into account that x̄ ∈ (hn +
H)−1(ȳn) we conclude that there exists xn+1 ∈ (hn + H)−1(0), that is, satisfying (4) for k = n,
such that

‖xn+1 − x̄‖ ≤
κ′

1− κµ
‖ȳn‖.

Then, utilizing (19) and (25) we obtain

‖xn+1 − x̄‖ ≤
κ′

1− κµ

(
ε+ δ +

ca

1− γ

)
‖xn − x̄‖ ≤ γ‖xn − x̄‖.

Hence, xn+1 ∈ Bτ (x̄) and the induction step is complete. Since γ < 1, if xn 6= xn+1 for all n,
the sequence xk converges to x̄ q-linearly. Otherwise the sequence converges in a finite number of
steps to a solution to the equation (1).

For the final statement, when f + F is strongly metrically regular, then, according to the
second part of Theorem 2.2, the point xn+1 ∈ (hn + H)−1(0) is unique in O. Furthermore,
(f + F )−1 ∩O = {x̄} and hence the sequence must converge to x̄. The proof is complete.

4 Convergence of the Broyden update

In this section X and Y are real Hilbert spaces with scalar products denoted by 〈·, ·〉 . We consider
the following well-known Broyden update:

Bk+1 := Bk +
(yk −Bksk) 〈sk, ·〉

‖sk‖2
, (27)
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where yk := f(xk+1)− f(xk) and sk := xk+1 − xk. Usually, B0 is taken as Df(x0).
There are quite a few papers dealing with quasi-Newton methods for solving the nonlinear

equations in the infinite-dimensional setting, and some of them use the Broyden update, see e.g.
[3], [13], [15], [18], [22], [23], [25]. In some of these papers, such as [15] and [18], Y is a Banach
space; in [15] X is also a Banach space having a continuous inner product, and with (27) being
defined on the completion of X in the norm induced by this inner product.

We apply Theorem 3.1 to the Broyden update (27) showing that it satisfies condition (14) and
hence is q-linearly convergent, locally.

We start with an elementary lemma.

Lemma 4.1. Let A ∈ L(X, Y ). If x ∈ X \ {0}, then∥∥∥∥A− 〈x, ·〉Ax‖x‖2

∥∥∥∥ =

{
0, if dimX = 1;
‖A‖, if dimX > 1.

(28)

Proof. Let z ∈ span(x) = {λx | λ ∈ R}. Then there is some λ0 ∈ R such that z = λ0x, from
where, ∥∥∥∥Az − 〈x, z〉Ax‖x‖2

∥∥∥∥ =

∥∥∥∥λ0Ax− λ0〈x, x〉Ax
‖x‖2

∥∥∥∥ = 0.

If dimX = 1, then X = span(x), and from the above equality we obtain (28). Otherwise, assume
that dimX > 1. For any z ∈ BX , one has∥∥∥∥z − 〈x, z〉x‖x‖2

∥∥∥∥2 = ‖z‖2 − 〈x, z〉
2

‖x‖2
≤ 1.

Hence, ∥∥∥∥A− 〈x, ·〉Ax‖x‖2

∥∥∥∥ = sup
w∈BX

∥∥∥∥A(w − 〈x,w〉x‖x‖2

)∥∥∥∥ ≤ ‖A‖ sup
w∈BX

∥∥∥∥w − 〈x,w〉x‖x‖2

∥∥∥∥ ≤ ‖A‖.
For any z ∈ {x}⊥ = {w ∈ X | 〈w, x〉 = 0} 6= ∅, one has∥∥∥∥Az − 〈x, z〉Ax‖x‖2

∥∥∥∥ = ‖Az‖,

and therefore (28) follows.

The following result is a generalization to Hilbert spaces of a statement included in the first
part of the proof of [24, Th. 5.4.13].

Proposition 4.2. Suppose that the Fréchet derivative mapping Df is Lipschitz continuous with
constant L in a convex neighborhood U of a point x̄. Given Bk ∈ L(X, Y ) and xk, xk+1 ∈ U , with
xk+1 6= xk, if Bk+1 is defined as in (27), then

‖Bk+1 −Df(x̄)‖ ≤ ‖Bk −Df(x̄)‖+
L

2
(‖xk+1 − x̄‖+ ‖x̄− xk‖) . (29)
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Proof. By assumption,

‖Df(u)−Df(v)‖ ≤ L‖u− v‖ for all u, v ∈ U.

Let xk+1, xk ∈ U , xk 6= xk+1 and let Bk+1 be defined as in (27). Then

Bk+1 −Df(x̄) = Bk −Df(x̄) +
(yk −Bksk)〈sk, · 〉

‖sk‖2

= Bk −Df(x̄)− (Bk −Df(x̄))sk〈sk, · 〉
‖sk‖2

+
(yk −Df(x̄)sk)〈sk, · 〉

‖sk‖2
.

Thus,

‖Bk+1 −Df(x̄)‖ ≤
∥∥∥∥(Bk −Df(x̄))− (Bk −Df(x̄))sk〈sk, · 〉

‖sk‖2

∥∥∥∥+
‖yk −Df(x̄)sk‖

‖sk‖
.

By Lemma 4.1, ∥∥∥∥(Bk −Df(x̄))− (Bk −Df(x̄))sk〈sk, · 〉
‖sk‖2

∥∥∥∥ ≤ ‖Bk −Df(x̄)‖.

Utilizing the mean value theorem we obtain

‖yk −Df(x̄)sk‖ = ‖f(xk+1)− f(xk)−Df(x̄)sk‖

=

∥∥∥∥∫ 1

0

[Df(xk + t(xk+1 − xk))(xk+1 − xk)−Df(x̄)sk]dt

∥∥∥∥
≤ ‖sk‖

∫ 1

0

‖Df(xk + t(xk+1 − xk))−Df(x̄)‖dt

≤ L‖sk‖
∫ 1

0

((1− t)‖xk − x̄‖+ t‖xk+1 − x̄‖) dt

=
L

2
‖sk‖ (‖xk+1 − x̄‖+ ‖xk − x̄‖) .

This yields (29).

Thus, applying Theorem 3.1 we obtain the following result:

Theorem 4.3. Consider the generalized equation (1) in the setting of Hilbert spaces X and Y with
a solution x̄ and suppose that the derivative mapping Df is Lipschitz continuous around x̄. Also,
suppose that f + F is metrically regular at x̄ for 0 with constant λ. Consider the quasi-Newton
method (4) applied to (1) with the Broyden update (27) and with B0 satisfying (13). Then there
exists a neighborhood O of x̄ such that for any x0 ∈ O there exists a sequence {xk} starting from
x0 and generated by (4) which stays in O and is q-linearly convergent; moreover, if xk+1 6= xk then
the sequence is q-linearly convergent to x̄. If in addition f + F is strongly metrically regular at x̄
for 0 then there is a unique in O sequence {xk} starting from x0 and generated by (4), and hence
it converges q-linearly to x̄.
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We devote the remainder of this section to the q-superlinear convergence of the Broyden update,
that is, the mode of convergence satisfying

lim
k→∞

‖ek+1‖
‖ek‖

= 0, (30)

where ek = xk − x̄.
Recall that the Hilbert–Schmidt norm of an operator A ∈ L(X, Y ) is defined as

‖A‖HS =

√∑
i∈I

‖Aei‖2,

where {ei, i ∈ I} is an orthonormal basis of X. DenoteH(X, Y ) = {A ∈ L(X, Y ) | ‖A‖HS < +∞}.
Endowed with the inner product

〈A,B〉HS =
∑
i∈I

〈Aei, Bei〉,

H(X, Y ) becomes a Hilbert space, see [20]. In Euclidean spaces this norm coincides with the
Frobenius norm.

We start with a lemma which echoes Lemma 4.1.

Lemma 4.4. Let A ∈ H(X, Y ). If 0 6= x ∈ X, then∥∥∥∥A− 〈x, ·〉Ax‖x‖2

∥∥∥∥2
HS

= ‖A‖2HS −
‖Ax‖2

‖x‖2
. (31)

Proof. Note that∥∥∥∥A− 〈x, ·〉Ax‖x‖2

∥∥∥∥2
HS

= ‖A‖2HS +

∥∥∥∥〈x, ·〉Ax‖x‖2

∥∥∥∥2
HS

− 2

〈
A,
〈x, ·〉Ax
‖x‖2

〉
HS

.

Further, by the Parseval identity,

‖〈x, ·〉Ax‖2HS =
∑
i∈I

‖〈x, ei〉Ax‖2 = ‖Ax‖2
∑
i∈I

〈x, ei〉2 = ‖Ax‖2‖x‖2,

and 〈
A, 〈x, ·〉Ax

〉
HS

=
∑
i∈I

〈
Aei, 〈x, ei〉Ax

〉
=
∑
i∈I

〈
A〈x, ei〉ei, Ax

〉
= ‖Ax‖2,

where to get the last equality we apply Remark 1.2.1(c) in [20]. This yields (31).

Lemma 4.4 implies that the Proposition 4.2 is valid also for the Hilbert–Schmidt norm.

Proposition 4.5. Suppose that the derivative mapping Df is Lipschitz continuous with respect
to the Hilbert–Schmidt norm with constant L in a convex neighborhood U of a point x̄. Given
Bk ∈ H(X, Y ) and xk, xk+1 ∈ U , with xk+1 6= xk, if Bk+1 is defined as in (27), then

‖Bk+1 −Df(x̄)‖HS ≤ ‖Bk −Df(x̄)‖HS +
L

2
(‖xk+1 − x̄‖+ ‖x̄− xk‖) . (32)
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Proof. This can be obtained by applying the same argument as in Proposition 4.2 but using
Lemma 4.4 instead of Lemma 4.1.

Corollary 4.6. If B0 −Df(x̄) is a Hilbert–Schmidt operator and Df is Lipschitz with respect to
the Hilbert–Schmidt norm, then Bk −Df(x̄) is a Hilbert–Schmidt operator, for all k ∈ N.

Proof. This follows from (32).

The following proposition is the main stepping stone to obtain q-superlinear convergence. It
links to analysis presented so far with a central result in the theory of quasi-Newton methods —
the Dennis–Moré theorem. This theorem, first published in [5], gives a characterization for the
q-superlinear convergence of a quasi-Newton method applied to a smooth equation f(x) = 0 with a
zero at x̄ at which the derivative mapping Df(x̄) is invertible. Namely, if a quasi-Newton method
generates a sequence {xk} which stays near x̄ and xk+1 6= xk for all k, then {xk} is convergent
q-superlinearly if and only if it is convergent and, in addition,

lim
k→∞

‖Eksk‖
‖sk‖

= 0, (33)

where Ek := Bk −Df(x̄).
It is known that the Broyden update (27) applied to a smooth equation in finite dimensions

with a nonsingular Jacobian at the reference solution x̄ satisfies condition (33), hence in that case
the Broyden update (27) converges q-superlinearly, see [17, Theorem 7.2.4]. We will now show
that (33) also holds in the setting of generalized equations currently considered. This will allow
us to apply the Dennis–Moré theorem for generalized equations in Banach spaces proved in [9,
Theorem 3]. For completeness we state next the sufficiency part of this theorem which is used in
further lines.

Theorem 4.7. Consider the generalized equation (1) with a solution x̄ and suppose that f is
Fréchet differentiable in a neighborhood U of x̄ and the derivative mapping Df is continuous at x̄.
Also, suppose that the mapping x 7→ f(x̄) +Df(x̄)(x− x̄) +F (x) is strongly metrically subregular
at x̄ for 0. If a sequence {xk} generated by (4) is convergent to x̄ and satisfies (33), then it is
convergent q-superlinearly.

The following proposition gives conditions under which the Broyden update satisfies the Dennis-
Moré condition (33). Observe that this result is new even in finite dimensions.

Proposition 4.8. Consider the generalized equation (1) with a solution x̄ and suppose that the
derivative mapping Df is Lipschitz continuous around x̄ with respect to the Hilbert–Schmidt norm.
Consider the quasi-Newton method (4) applied to (1) with the Broyden update (27) such that B0

satisfies (13) and B0−Df(x̄) is a Hilbert–Schmidt operator. Consider a sequence {xk} generated
by (4) which is convergent to x̄. Then the Dennis–Moré condition (33) holds.

Proof. We first show that
lim
k→∞
‖Bk+1 −Bk‖HS = 0. (34)
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The proof of (34) parallels the analysis in [14], similarly to the proof of [4, Theorem 2.3]. Consider
the convex set

Ck := {A ∈ L(X, Y ) | ‖A−Df(x̄)‖HS <∞ and Ask = yk}.

where sk := xk+1 − xk and yk := f(xk+1)− f(xk). Observe that Ck is closed: if An ∈ Ck converges
to A ∈ L(X, Y ) (with respect to the Hilbert–Schmidt norm), then

‖A−Df(x̄)‖HS ≤ ‖A− An‖HS + ‖An −Df(x̄)‖HS <∞,

and
‖Ask − yk‖ = ‖Ask − Ansk‖ ≤ ‖A− An‖HS‖sk‖,

where we employ the inequality ‖A − Bk‖ ≤ ‖A − Bk‖HS (see e.g. [20, Corollary 16.9]). Taking
the limit when n→∞, we get Ask = yk.

Let {ei, i ∈ I} be an orthonormal basis of X for an index set I. By Corollary 4.6, Bk+1 ∈ Ck.
Moreover, for all A ∈ Ck, one has

‖Bk+1 −Bk‖2HS =

∥∥∥∥(yk −Bksk)〈sk, ·〉
‖sk‖2

∥∥∥∥2
HS

=
‖(A−Bk)sk〈sk, ·〉‖2HS

‖sk‖4

=

∑
i∈I ‖(A−Bk)sk〈sk, ei〉‖2

‖sk‖4
=

∑
i∈I〈sk, ei〉2‖(A−Bk)sk‖2

‖sk‖4

=
‖(A−Bk)sk‖2

‖sk‖2
≤ ‖A−Bk‖2HS,

where we again use the inequality ‖A − Bk‖ ≤ ‖A − Bk‖HS. Then Broyden update (27) is the
(unique) solution to the minimization problem

min
A∈Ck
‖A−Bk‖HS.

Thus, Bk+1 is the projection of Bk onto the closed convex set Ck. The projection mapping onto
Ck, denoted by PCk , is firmly nonexpansive (see e.g. [2, Prop. 4.8]). Therefore, for all A ∈ Ck, one
has

‖PCk(Bk)− PCk(A)‖2HS + ‖(I − PCk)(Bk)− (I − PCk)(A)‖2HS ≤ ‖Bk − A‖2HS,

where I denotes the identity mapping. Hence, for all A ∈ Ck,

‖Bk+1 − A‖2HS + ‖Bk+1 −Bk‖2HS ≤ ‖Bk − A‖2HS. (35)

Define

Ak :=

∫ 1

0

Df(xk + t(xk+1 − xk))dt. (36)

We have

Aksk =

∫ 1

0

Df(xk + t(xk+1 − xk))(xk+1 − xk)dt = f(xk+1)− f(xk) = yk. (37)
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Furthermore, since Df is Lipschitz continuous with respect to the Hilbert–Schmidt norm, there
is a constant L ≥ 0 such that, eventually,

‖Ak −Df(x̄)‖HS =

∥∥∥∥∫ 1

0

(
Df(xk + t(xk+1 − xk))−Df(x̄)

)
dt

∥∥∥∥
HS

≤
∫ 1

0

‖Df(txk+1 + (1− t)xk)−Df(x̄)‖HS dt

≤ L

∫ 1

0

‖t(xk+1 − x̄) + (1− t)(xk − x̄))‖ dt

≤ L

2
(‖xk+1 − x̄‖+ ‖xk − x̄‖) <∞. (38)

Thus, Ak ∈ Ck. Since xk converges to x̄, we deduce from (38) that ‖Ak −Df(x̄)‖HS converges to
zero. Moreover, (32) together with the linear convergence of xk to x̄ implies that ‖Bk−Df(x̄)‖HS
is convergent. Indeed, let 0 < γ < 1 be such that

‖xk+1 − x̄‖ ≤ γ‖xk − x̄‖ for all k = 0, 1, . . . .

Then, for all m > n, one has by (32)

‖Bm −Df(x̄)‖HS ≤ ‖Bn −Df(x̄)‖HS +
L

2

m∑
k=n+1

(‖xk − x̄‖+ ‖xk−1 − x̄‖)

≤ ‖Bn −Df(x̄)‖HS + L
m−1∑
k=n

‖xk − x̄‖

≤ ‖Bn −Df(x̄)‖HS + L
∞∑
k=n

γk‖x0 − x̄‖

≤ ‖Bn −Df(x̄)‖HS +
Lγn

1− γ
‖x0 − x̄‖.

This implies that ‖Bk−Df(x̄)‖HS is a Cauchy sequence, and thus is convergent. Therefore, since
Ak defined in (36) converges to Df(x̄), we get that ‖Bk −Ak‖HS and ‖Bk+1−Ak‖HS converge to
the same limit. Furthermore, (35) implies

‖Bk+1 − Ak‖2HS + ‖Bk+1 −Bk‖2HS ≤ ‖Bk − Ak‖2HS (39)

which in turn yields (34).
We are now ready to prove that (33) is satisfied. Since ‖Bk+1 −Bk‖ ≤ ‖Bk+1 −Bk‖HS, by the

triangle inequality we have

‖Eksk‖ = ‖(Bk −Df(x))sk‖ ≤ ‖(Bk+1 −Df(x))sk‖+ ‖Bk+1 −Bk‖HS ‖sk‖ . (40)

The next steps mimics the proof of Proposition 4.2. Taking into account that

‖(Bk+1 −Df(x))sk‖ = ‖yk −Df(x)sk‖ = ‖f(xk+1)− f(xk)−Df(x)sk‖
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and

f(xk+1)− f(xk) =

∫ 1

0

Df(xk + t(xk+1 − xk))skdt,

we get

‖(Bk+1 −Df(x))sk‖ ≤ ‖sk‖
∫ 1

0

‖Df(xk + t(xk+1 − xk))−Df(x)‖ dt

≤ ‖sk‖
∫ 1

0

‖Df(xk + t(xk+1 − xk))−Df(x)‖HS dt

≤ L ‖sk‖
∫ 1

0

‖t(xk+1 − x) + (1− t)(xk − x)‖ dt

≤ L ‖sk‖
2

(‖xk+1 − x‖+ ‖xk − x‖).

Thus, from (40),

‖Eksk‖
‖sk‖

≤ L

2
(‖xk+1 − x‖+ ‖xk − x‖) + ‖Bk+1 −Bk‖HS .

Since ‖Bk+1 −Bk‖HS → 0 by (34) and xk → x, we come to (33).

The following theorem presents the main result of this section.

Theorem 4.9. Consider the generalized equation (1) with a solution x̄ and suppose that the
derivative mapping Df is Lipschitz continuous around x̄ with respect to the Hilbert–Schmidt norm.
Consider the quasi-Newton method (4) applied to (1) with the Broyden update (27) such that B0

satisfies (13) and B0 −Df(x̄) is a Hilbert–Schmidt operator.
(i) If f +F is strongly metrically subregular at x̄ for 0, then there exists a neighborhood O of x̄

such that any sequence {xk} generated by (4) which converges to x̄ is q-superlinearly convergent;
(ii) If f + F is both strongly metrically subregular and metrically regular at x̄ for 0, then there

exists a neighborhood O of x̄ such that any starting point x0 ∈ O there exists a sequence {xk}
generated by (4) which is convergent to x̄; moreover, every sequence which is convergent to x̄ is
q-superlinearly convergent;

(iii) If f + F is strongly metrically regular at x̄ for 0, then there exists a neighborhood O of x̄
such that for any x0 ∈ O there exists a unique in O sequence {xk} starting from x0 and generated
by (4) which is q-superlinearly convergent to x̄.

Proof. To prove (i) it is sufficient to combine Proposition 4.8 with Theorem 4.7. Then (ii) follows
from (i) and Theorem 4.3. Since strong metric regularity implies strong metric subregularity, in
order to to prove (iii) it is sufficient to combine (i) with the last part of Theorem 4.3.

We note that the condition E0 := B0 − Df(x) be a Hilbert-Schmidt operator is used in [23,
Theorem 3.5] to prove q-superlinear convergence of the Broyden method for equations. Thus,
Theorem 4.7 also extend [23, Theorem 3.5] to generalized equations.
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5 Two numerical examples

Our first example is one-dimensional. Let f : R→ R and F : R ⇒ R be given by

f(x) := 3x3 − 2x2, for x ∈ R;

F (x) :=

{
{x,−x}, x ≥ 0;
∅, x < 0.

The graph of f + F is plotted in Figure 5.1. The generalized equation 0 ∈ f(x) + F (x) has two
solutions: 0 and 1.

0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

4

5

6

7

Figure 5.1: The graph of f + F is the union of the graphs of the two curves.

Observe that the mapping f +F is strongly regular at any point of its graph, and particularly
at 0 for 0 and at 1 for 0. Hence the assumptions of Theorem 4.9 are satisfied, and the quasi-Newton
method (4) with the Broyden update (27) generates a locally unique q-superlinearly convergent
sequence when started within a neighborhood of each of the solutions. The numerical results with
B0 := Df(x0) are shown in Table 5.1 for two staring points: x0 = 0.1 (left) and x0 = 0.3 (right).
Note that the obtained convergence is actually q-superlinear in each case.

Iteration ‖ek‖ ‖ek+1‖
‖ek‖

‖Eksk‖
‖sk‖

‖ek‖ ‖ek+1‖
‖ek‖

‖Eksk‖
‖sk‖

1 0.02028986 0.20289855 0.31000000 0.02950820 0.09836066 0.39000000
2 0.00417421 0.20572906 0.20325772 0.01398735 0.47401564 0.35984682
3 0.00017129 0.04103511 0.04738675 0.00084106 0.06012992 0.08255372
4 0.00000143 0.00836626 0.00863650 0.00002369 0.02817032 0.02903246
5 0.00000000 0.00034261 0.00034536 0.00000004 0.00168284 0.00172732
6 0.00000000 0.00000287 0.00000287 0.00000000 0.00004739 0.00004746

Table 5.1. Numerical results for the first example with x0 = 0.1 (left) and x0 = 0.3 (right).
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In the paper [12] the following model of economic equilibrium was introduced. Consider a
group of r agents, each of which starts with a vector x0i ∈ Rn of goods and trades them for another
goods vectors xi ∈ Rn. Each good has a price to be determined by the market and the price vector
is p ∈ Rn

+. Agent i has an initial amount of money m0
i ∈ R+ and ends up, after trading, with an

amount of money mi ∈ R+. Agent i aims at maximizing a utility function ui(mi, xi) over a set
R+ × Ui subject to the budget constraint

mi −m0
i + 〈p, xi − x0i 〉 ≤ 0, (41)

where the sets Ui ⊂ Rn are nonempty, closed and convex and the functions ui are continuously
differentiable, concave and nondecreasing over R+×Ui. In addition to the budget constraints (41)
there are supply-demand requirements for money and goods, of the form

r∑
i=1

[mi −m0
i ] ≤ 0,

r∑
i=1

[xi − x0i ] ≤ 0. (42)

The problem is to find an equilibrium value of the vector variable (p,m, x) such that each utility
function attains its maximum subject to the budget and the supply-demand constraints. It is
shown in [12, Theorem 1] that under some mild conditions that are satisfied in the example
displayed below an equilibrium always exists, moreover it satisfies a first-order optimality condition
for each agent involving the Lagrange functions

Li(p,mi, xi, λi) = −u(mi, xi) + λi(mi −m0
i + 〈p, xi − x0i 〉)

with a Lagrange multiplier λi ≥ 0, i = 1, . . . , r, associated with the budget constraint (41). Adding
the supply-demand constraints (42) written as complementarity conditions, we obtain a variational
inequality for the vectors p ∈ Rn

+, m = (m1, . . . ,mr)
T ∈ Rr

+, x = (x1, . . . , xr)
T ∈ U1 × U2 × . . . Ur,

and λ = (λ0, . . . , λr)
T ∈ Rr

+ of the form

−g(p,m, x, λ,m0, x0) ∈ NC(p,m, x, λ), (43)

where
C = Rn

+ × Rr
+ × U1 × · · · × Ur × Rr

+, (44)

and

g(p,m, x, λ,m0, x0) =



∑r
i=1[x

0
i − xi]

. . .
λi −∇mi

ui(mi, xi)
. . .

λip−∇xiui(mi, xi)
. . .

m0
i −mi + 〈p, x0i − xi〉

. . .


. (45)

The initial endowments are represented by the vectors m0 = (m0
1, . . . ,m

0
r)

T ∈ Rr
+ and x0 =

(x01, . . . , x
0
r)

T ∈ U1 × U2 × . . . Ur. In [12, Theorem 3] it is shown that the equilibrium mapping
associated with (43) is strongly regular provided that for each agent i the initial goods x0i are
sufficiently close to the equilibrium vector x̄i; in other words, when the trade starts with amounts
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of goods not too far from the equilibrium. Note that the first inequality in (42) does not appear
in (43) since at equilibrium that automatically becomes an equality.

We consider a specific example where there are two agents with utility functions

ui(mi, xi) = αi ln(mi) + βi ln(xi), i = 1, 2,

and a single good subject to the constraints

xi ∈ Ui = [ξi, ηi], i = 1, 2

for some positive ξi and ηi. The variational inequality (43) for the vector (p,m1,m2, x1, x2, λ1, λ2)
has the following specific form:

−



∑2
i=1[x

0
i − xi]

λ1 − α1

m1

λ2 − α2

m2

λ1p− β1
x1

λ2p− β2
x2

m0
1 −m1 + 〈p, x01 − x1〉

m0
2 −m2 + 〈p, [x02 − x2〉


∈



NR+(p)
NR+(m1)
NR+(m2)
NU1(x1)
NU2(x2)
NR+(λ1)
NR+(λ2)


.

The numerical implementation of Broyden’s update (43) for this variational inequality has been
done in Matlab. Each step of the method reduces to solving linear complementarity problems
(LCP). The matlab function LCP by Yuval available at
http://www.mathworks.com/matlabcentral/fileexchange/20952 has been used for solving these
problems. The computations are done for the following data. For the parameters αi = βi = 0.1
we consider the first agents with endowment of good 0.9 and money 1.3 and the second agent with
unit endowments: x0 = (0.9, 1)T, m0 = (1.3, 1)T. The survival interval of consumption for each
agent is [0.94, 1.08]. Then the solution is: p = 1.2745, m = (1.2235, 1.0765)T, x = (0.96, 0.94)T,
λ = (0.0817, 0.0929)T.

We did numerical testing with various starting points and starting updates, and obtained rather
similar results. The result of one of these tests is presented below for the starting point of the
algorithm equal p0 = 1.3745, m0 = (1.3235, 1.1765)T, x0 = (1.06, 1.04)T, λ0 = (0.1817, 0.1929)T

and initial update B0 equal the value of the Jacobian at the starting point. The results of com-
putations are given in Table 5.2. We have q-superlinear convergence also for this case, as proved
theoretically.

Iteration ‖ek‖ ‖ek+1‖
‖ek‖

‖Eksk‖
‖sk‖

1 0.26457513 0.20651049 0.03359845
2 0.05463754 0.54349707 0.00097674
3 0.02969534 0.00930219 0.00039065
4 0.00027623 0.03250097 0.00000396
5 0.00000898 0.01002655 0.00000021
6 0.00000009 0.01152241 0.00000000

Table 5.2. Numerical results for the second example.

Acknowledgment. The authors wish to thank the anonymous referees for their valuable
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