Skip to main content
Log in

Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The stochastic uncapacitated single allocation p-hub center problem is an extension of the deterministic version which aims to minimize the longest origin-destination path in a hub and spoke network. Considering the stochastic nature of travel times on links is important when designing a network to guarantee the quality of service measured by a maximum delivery time for a proportion of all deliveries. We propose an efficient reformulation for a stochastic p-hub center problem and develop exact solution approaches based on variable reduction and a separation algorithm. We report numerical results to show effectiveness of our new reformulations and approaches by finding global solutions of small-medium sized problems. The combination of model reformulation and a separation algorithm is particularly noteworthy in terms of computational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190(1), 1–21 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baron, O., Berman, O., Krass, D.: Facility location with stochastic demand and constraints on waiting time. Manuf. Serv. Oper. Manag. 10, 484–505 (2008)

    Google Scholar 

  3. Campbell, J.F.: Location and allocation for distribution systems with transshipments and transportation economies of scale. Ann. Oper. Res. 40, 77–99 (1992)

    Article  MATH  Google Scholar 

  4. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)

    Article  MATH  Google Scholar 

  5. Campbell, J.F., Ernst, A., Krishnamoorthy, M.: Hub location problems. In: Hamacher, H., Drezner, Z. (eds.) Location Theory: Applications and Theory, pp. 373–406. Springer, Berlin (2001)

    Google Scholar 

  6. Contreras, I., Cordeau, J.-F., Laporte, G.: Stochastic uncapacitated hub location (2011). HEC Montreal and Interuniversity Res. Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Montreal, Canada

  7. Contreras, I., Diaz, J.A., Fernandez, E.: Branch-and-price for large-scale capacitated hub location problems with single assignment. INFORMS J. Comput. 23, 41–55 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation p-hub center problems. Comput. Oper. Res. 36, 2230–2241 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ernst, A.T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Sci. 4, 139–154 (1996)

    Article  MATH  Google Scholar 

  10. Ernst, A.T., Krishnamoorthy, M.: Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. Eur. J. Oper. Res. 104(1), 100–112 (1998)

    Article  MATH  Google Scholar 

  11. Fotheringham, A.S.: A new set of spatial interaction models. The theory of competing destinations. Environ. Plan. A 15–36 (1983). http://www.envplan.com/abstract.cgi?id=a150015

  12. Garnett, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf. Serv. Oper. Manag. 4(3), 208–227 (2002)

    Google Scholar 

  13. Gurvich, I., Armony, M., Mandelbaum, A.: Service-level differentiation in call centers with fully flexible servers. Manag. Sci. 54(2), 279–294 (2008)

    Article  MATH  Google Scholar 

  14. Juette, S., Gavriliouk, O., Hamacher, H.: Polyhedral analysis of uncapacitated single allocation p-hub center problems. Technical Report 109, FB Mathematik, TU Kaiserslautern (2007)

  15. Kara, B.Y., Tansel, B.: On the single assignment p-hub center problem. Eur. J. Oper. Res. 125(3), 648–655 (2000)

    Article  MATH  Google Scholar 

  16. Marianov, V., Serra, D.: Location models for airline hubs behaving as m/d/c queues. Comput. Oper. Res. 30, 983–1003 (2003)

    Article  MATH  Google Scholar 

  17. Meyer, T., Ernst, A.T., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation p-hub center problem. Comput. Oper. Res. 36, 3143–3151 (2009)

    Article  MATH  Google Scholar 

  18. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  19. O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32, 393–404 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Elhedhli, H.W.S.: A Lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion. INFORMS J. Comput. 22, 282–296 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Savage, S.: Decision Making with Insight. Duxbury, N. Scituate (2003)

    Google Scholar 

  22. Sim, T., Lowe, T., Thomas, B.: The stochastic p-hub center problem with service-level constraints. Comput. Oper. Res. 36, 3166–3177 (2009)

    Article  MATH  Google Scholar 

  23. Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M.E.: Tight linear programming relaxations of uncapacitated p-hub median problems. Eur. J. Oper. Res. 94, 582–593 (1996)

    Article  MATH  Google Scholar 

  24. Wang, J.: The β-reliable median on a network with discrete probabilistic demand weights. Oper. Res. 55, 966–975 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, T.-H.: Stochastic air freight hub location and flight routes planning. Appl. Math. Model. 33, 4424–4430 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houyuan Jiang.

Additional information

This paper is dedicated to Professor Masao Fukushima in celebration of his 65th birthday.

Appendix

Appendix

Proof of Lemma 1

(a) Suppose that X jm =1. Let j=i and m=k. Then constraint (7) reduces to \(\beta\geq t_{jjmm} + z_{\gamma} \delta_{jjmm} = 2 d_{jm} + z_{\gamma} \sqrt{2} \sigma_{jm}\), which implies that a feasible solution with X jm =1 gives a worse objective function value than the current available upper bound β U. Hence, X jm =0 is a valid cut for SpHCPL.

(b) Suppose that X jm =1. Then constraint (7) reduces to

$$\sum_{k = 1}^N (t_{ijkm} + z_{\gamma} \delta_{ijkm}) X_{ik} \geq \min _{k=1}^N (t_{ijkm} + z_{\gamma} \delta_{ijkm}) \sum_{k =1}^N X_{ik} = \min_{k=1}^N (t_{ijkm} + z_{\gamma} \delta_{ijkm}), $$

which is greater than β U according to the assumption. This shows that any feasible solution with X jm =1 gives a worse objective function value than β U. Therefore, X jm =0 is a valid cut for SpHCPL.

(c) Suppose that X jm =1. Then constraint (7) reduces to

$$\begin{aligned} \beta \geq&\sum_{k =1}^N (t_{ijkm} + z_{\gamma} \delta_{ijkm}) X_{ik} \leq \max _{k=1}^N (t_{ijkm} + z_{\gamma} \delta_{ijkm}) \sum_{k =1}^N X_{ik} \\ =& \max_{k=1}^N (t_{ijkm} + z_{\gamma} \delta_{ijkm}) < \beta^L, \end{aligned}$$

which is redundant for the given i,j,m.

(d) Suppose that X jm =1 and assume \(d_{mi} = \max_{\ell=1}^{N} d_{m\ell}\) and X in =1. It follows from constraint (7) and the triangle inequality property that

$$\begin{aligned} \beta \geq& (t_{ijnm} + z_{\gamma} \delta_{ijnm}) \\ = & d_{in} + \alpha d_{nm} + d_{mj} + z_{\gamma} \sqrt{(\sigma_{in})^2 + \alpha^2 (\sigma_{nm})^2 + (\sigma _{mj})^2} \\ \geq& \alpha d_{im} + d_{mj} + z_{\gamma} \sigma_{mj} \\ = & d_{mj} + \alpha\max_{\ell=1}^N d_{m\ell} + z_{\gamma} \sigma _{mj} \\ > & \beta^U. \end{aligned}$$

This shows that any feasible solution with X jm =1 gives a worse objective function value than β U. Hence X jm =0 is a valid cut.

(e) When X jm =0, the right-hand side of constraint (7) for any i and the corresponding j,m is non-positive. Clearly, this constraint is redundant for SpHCPL. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hult, E., Jiang, H. & Ralph, D. Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem. Comput Optim Appl 59, 185–200 (2014). https://doi.org/10.1007/s10589-013-9629-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9629-5

Keywords

Navigation