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Abstract In this work linear-quadratic optimal control problems for parabolic
equations with mixed control-state constraints are considered. These problems
arise when a Lavrentiev regularization is utilized for state constrained linear-
quadratic optimal control problems. For the numerical solution a Galerkin
discretization is applied utilizing proper orthogonal decomposition (POD).
Based on a perturbation method it is determined how far the suboptimal
control, computed on the basis of the POD method, is from the (unknown)
exact one. Numerical examples illustrate the theoretical results. In particular,
the POD Galerkin scheme is applied to a problem with state constraints.

1 Introduction

In this paper we consider a certain class of linear-quadratic optimal control
problems governed by a linear evolution problem and mixed control-state con-
straints. Due to the following reasons mixed control-state constraints are of
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interest: (1) They arise in Lavrentiev-type regularizations of state constrained
problems and (2) they may appear in their own rights (e.g., if the control is
resticted by a multiple of the state). For the numerical solution we apply a
Galerkin approximation, which is based on proper orthogonal decomposition
(POD). Recall that POD is a method for deriving reduced-order models of
dynamical systems; see [11], for instance. In order to ensure that the POD
suboptimal solutions are sufficiently accurate, we derive an a-posteriori error
estimate for the difference between the exact (unknown) optimal control and
its POD suboptimal approximations. Moreover, it is shown that this error
tends to zero if the number of POD basis functions in the Galerkin ansatz is
increased. The proof relies on a perturbation argument [4] and a convergence
analysis for the POD Galerkin scheme, where we make use of a modified POD
approximation [6]. Although we can transform the optimal control problem
with mixed control-state constraints into a purely control constrained optimal
control problem, we can not directly apply the results from [21], because the
transformation itself depends on the POD discretization as well. Furthermore,
we propose a new POD Galerkin ansatz for state and adjoint equations which
avoids discretization errors coming from approxiamtions of the initial values.
In the numerical examples we combine the a-posteriori error estimator with
an adaptive basis update strategy; see [1]. Of course, other strategies can be
applied as well; see [2], for instance. Although linear-quadratic optimal con-
trol problems with mixed-control constraints can be cast into linear-quadratic
optimal control problems with purely control constraints, we can not simply
apply the results from [21]. This is due to the fact, that the transformation
itself depends on the POD discretization as well. Let us mention that the a-
posteriori analysis can also be utilized for nonlinear problems in an inexact
sequential quadratic programming (SQP) approach, where in each level of the
SQP iteration a linear-quadratic optimal control problem has to be solved. For
instance, this is done in [12] utilizing the a-posteriori analysis from [21].

The paper is organized as follows: In Section 2 we introduce our linear-
quadratic optimal control problems and review first-order optimality condi-
tions. The a-posteriori error analysis is carried out in Section 3. Section 4 is
devoted to the POD approximation and the POD convergence analysis. Fi-
nally, numerical test examples are studied in Section 5.

2 The optimal control problem

In this section we introduce a class of linear-quadratic optimal control prob-
lems. We recall the associated first-order optimality conditions and formulate
the optimization problem as a reduced problem for the control variable only.
For the solution of the optimal control problem we apply a primal-dual active
set strategy which is equivalent to a semismooth Newton method [7]. To utilize
the error analysis presented in [10,21] we transform the reduced problem to
an optimal control problem which is governed by bilateral control constraints
for a transformed control variable.
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2.1 Problem formulation

Let V and H be real, separable Hilbert spaces and suppose that V is dense
in H with compact embedding. In particular, there exists a constant CV > 0
such that

‖ϕ‖H ≤ CV ‖ϕ‖V ∀ϕ ∈ V. (2.1)

By 〈· , ·〉H and 〈· , ·〉V we denote the inner products in H and V , respectively.
Let T > 0 be the fixed final time. For t ∈ [0, T ] we define a time-dependent
symmetric bilinear form a(t; · , ·) : V × V → R satisfying

∣

∣a(t;ϕ,ψ)
∣

∣ ≤ α ‖ϕ‖V ‖ψ‖V ∀ϕ ∈ V a.e. in [0, T ], (2.2a)

a(t;ϕ,ϕ) ≥ α1 ‖ϕ‖
2
V − α2 ‖ϕ‖

2
H ∀ϕ ∈ V a.e. in [0, T ] (2.2b)

for constants α, α1 > 0 and α2 ≥ 0 which do not depend on t. In (2.2), the
abbreviation “a.e.” stands for “almost everywhere”. By identifying H with its
dual H ′ it follows that

V →֒ H = H ′ →֒ V ′,

each embedding being continuous and dense. Recall that the space W (0, T )

W (0, T ) =
{

ϕ ∈ L2(0, T ;V )
∣

∣ϕt ∈ L2(0, T ;V ′)
}

is a Hilbert space endowed with the common inner product [3, pp. 472-479].
The control space is given by U = L2(0, T ;Rm) with m ∈ N. In particular, we
identify U with its dual space U ′. For u ∈ U , y◦ ∈ H and f ∈ L2(0, T ;V ′) we
consider the linear evolution problem

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(f + Bu)(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in [0, T ],

y(0) = y◦ in H,
(2.3)

where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′

and B : U → L2(0, T ;V ′) is a continuous, linear operator.

It is known that for every f ∈ L2(0, T ;V ′), u ∈ U and y◦ ∈ H there is a
unique weak solution y ∈W (0, T ) satisfying (2.3) and

‖y‖W (0,T ) ≤ C
(

‖y◦‖H + ‖f‖L2(0,T ;V ′) + ‖u‖U

)

(2.4)

for a constant C > 0 which is independent of y◦, f and u. For a proof of the
existence of a unique solution we refer to [3, pp. 512-520]. The a-priori error
estimate follows from standard variational techniques and energy estimates. If
f+Bu ∈ L2(0, T ;H), a(t; · , ·) = a(· , ·) (independent of t) and y◦ ∈ V hold, we
have y ∈ L∞(0, T ;V ) ∩H1(0, T ;H); see [3, pp. 532-533] and [5, pp. 360-364].
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Remark 2.1 We split the solution to (2.3) in one part, which depends on the
fixed initial condition y◦ and right-hand side f , and another part depending
linearly on the control variable. Let ŷ ∈W (0, T ) be the unique solution to the
problem

d

dt
〈ŷ(t), ϕ〉H + a(t; ŷ(t), ϕ) = 〈f(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in [0, T ],

ŷ(0) = y◦ in H.

We define the subspace

W0(0, T ) =
{

ϕ ∈W (0, T )
∣

∣ϕ(0) = 0 in H
}

endowed with the topology ofW (0, T ). Let us now introduce the linear solution
operator S : U → W0(0, T ): for u ∈ U the function y = Su ∈ W0(0, T ) is the
unique solution to

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈(Bu)(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in [0, T ].

From y ∈W0(0, T ) it follows that y(0) = 0 in H. The boundedness of S follows
from (2.4). Now, the solution to (2.3) can be expressed as y = ŷ + Su. ♦

We introduce the Hilbert space

X =W (0, T )× U

endowed with the natural product topology. Let I : L2(0, T ;V ) → U be a
bounded linear operator. By Xad we denote the closed, convex and bounded
subset

Xad =
{

(ŷ + Su, u) ∈ X
∣

∣ua ≤ εu+ I(ŷ + Su) ≤ ub in R
m a.e. in [0, T ]

}

,

where ua, ub ∈ U satisfy ua ≤ ub componentwise in R
m a.e. and ε > 0 holds.

The cost function J : X → R is given by

J(x) =
σQ
2

∫ T

0

‖y(t)− yQ(t)‖
2
H dt+

σΩ
2

‖y(T )− yΩ‖
2
H +

σ

2
‖u‖2U (2.5)

for x = (y, u) ∈ X, where (yQ, yΩ) ∈ L2(0, T ;H) × H are desired states.
Furthermore, σQ , σΩ ≥ 0 and σ > 0. The optimal control problem is given by

min J(x) subject to (s.t.) x ∈ Xad. (P)

Applying standard arguments [15] one can prove that there exists a unique
optimal solution x̄ = (ȳ, ū) to (P). The uniqueness follows from the strict con-
vexity properties of the objective functional on Xad. Throughout this paper, a
bar indicates optimality. Next we formulate the first-order sufficient optimality
conditions of (P) (see [20], for instance):
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Theorem 2.1 Suppose that the feasible set Xad is nonempty and that (ȳ, ū) ∈
Xad is the solution to (P). Then there exists a unique Lagrange multiplier pair
(p̄, λ̄) ∈ X satisfying together with (ȳ, ū) the primal-dual system

ȳ = ŷ + Sū, (2.6a)

−
d

dt
〈p̄(t), ϕ〉H + a(t; p̄(t), ϕ) + 〈(I⋆λ̄)(t), ϕ〉V ′,V

+σQ 〈ȳ(t)− yQ(t), ϕ〉H = 0 ∀ϕ ∈ V a.e., (2.6b)

p̄(T ) + σΩ
(

ȳ(T )− yΩ
)

= 0 in H,

σū(t)− (B⋆p̄)(t) + ελ̄(t) = 0 in R
m a.e., (2.6c)

λ̄(t) = max
(

0, λ̄(t) + γ((I ȳ)(t) + εū(t)− ub(t))
)

(2.6d)

+min
(

0, λ̄(t) + γ((I ȳ)(t) + εū(t)− ua(t))
)

in R
m a.e.,

where B⋆ : L2(0, T ;V ) → U and I⋆ : U → L2(0, T ;V ′) denote the adjoints
of B and I, respectively. Furthermore, γ 6= 0 is an arbitrary real number.
In (2.6d) the max- and min-operations are interpreted componentwise in the
pointwise everywhere sense.

Remark 2.2 Analogous to Remark 2.1 we split the adjoint variable into one
part depending on the fixed desired states and into two other parts, which
depend linearly on the control variable and on the multiplier λ. Recall that
we have defined ŷ as well as the operator S in Remark 2.1. For given yQ ∈
L2(0, T ;H) and yΩ ∈ H let p̂ = p̂ ∈ W (0, T ) denote the unique solution to
the adjoint equation

−
d

dt
〈p̂(t), ϕ〉H + a(t; p̂(t), ϕ) = σQ 〈(yQ − ŷ)(t), ϕ〉H ∀ϕ ∈ V a.e.,

p̂(T ) = σΩ
(

yΩ − ŷ(T )
)

in H.

Further, we define the linear, bounded operators A1, A2 : U → W (0, T ) as
follows: for given u ∈ U the function p = A1u is the unique solution to

−
d

dt
〈p(t), ϕ〉H + a(t; p(t), ϕ) = −σQ 〈(Su)(t), ϕ〉H ∀ϕ ∈ V a.e.,

p(T ) = −σΩ(Su)(T ) in H

and for given λ ∈ U the function p = A2λ uniquely solves

−
d

dt
〈p(t), ϕ〉H + a(t; p(t), ϕ) + 〈(I⋆λ)(t), ϕ〉V ′,V = 0 ∀ϕ ∈ V a.e.,

p(T ) = 0 in H.

Then, the solution to (2.6b) can be expressed by p̄ = p̂+A1ū+A2λ̄. ♦
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2.2 The reduced problem

In Remark 2.1 we have introduced the solution operator S. The reduced cost
functional Ĵ : U → R is defined as

Ĵ(u) = J(ŷ + Su, u), u ∈ U.

We define the set of admissible controls by

Uad =
{

u ∈ U
∣

∣ua ≤ εu+ I
(

ŷ + Su
)

≤ ub in R
m a.e. in [0, T ]

}

,

which is convex, closed and bounded in U ; see [8, Prop. 2.2]. Now we consider
the reduced optimal control problem:

min Ĵ(u) s.t. u ∈ Uad. (P̂)

Clearly, if ū is the optimal solution to (P̂), then x̄ = (ŷ+Sū, ū) is the optimal
solution to (P). On the other hand, if x̄ = (ȳ, ū) is the solution to (P), then ū
solves (P̂). A first-order sufficient optimality condition for the convex linear-
quadratic problem (P̂) is given by the variational inequality

〈∇Ĵ(ū), u− ū〉U ≥ 0 for all u ∈ Uad. (2.7)

Combining (2.6c) with (2.6d) and choosing γ = σε−2 to prevent the depen-
dency of the min- and max-terms on u, this is equivalent with

u =
(

B⋆p− εN (y, p)
)

/σ in U, (2.8)

where (y, p) solves the coupled nonlinear primal-dual system

y = ŷ +
1

σ
S
(

B⋆p− εN (y, p)
)

,

p = p̂+
1

σ
A1

(

B⋆p− εN (y, p)
)

+A2N (y, p),

(2.9)

and the nonlinearity N :W (0, T )×W (0, T ) → U ,

N (y, p) = max(0, ε−1B⋆p+ ε−2σ(Iy − ub))

+ min(0, ε−1B⋆p+ ε−2σ(Iy − ua)),

coincides with the Lagrange multiplier λ.

2.3 The primal-dual active set method

To solve (P) numerically, a primal-dual active set strategy is utilized. This
method is equivalent to a locally superlinearly convergent semi-smooth Newton
algorithm applied to the first-order necessary optimality conditions; see [7,8].
For given iterates (yk, pk) ∈ W (0, T ) ×W (0, T ), k ≥ 0, and for i = 1, . . . ,m
we introduce the active and inactive sets

A
k
ai =

{

t ∈ [0, T ]
∣

∣

(

εσ−1B⋆pk + Iyk
)

i
(t) < uai(t)

}

, Aki = A
k
ai ∪A

k
bi,

A
k
bi =

{

t ∈ [0, T ]
∣

∣

(

εσ−1B⋆pk + Iyk
)

i
(t) > ubi(t)

}

, I
k
i = [0, T ]\Aki .

(2.10)

In Algorithm 1 we formulate the semismooth Newton method for our problem.
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Algorithm 1 (Primal-dual active set strategy)

Require: Starting value (y0, p0) and maximal iteration number kmax.
1: Set k = 0, determine the active and inactive sets according to (2.10).
2: repeat

3: Compute the solution (yk+1, pk+1) to (2.9) and set k = k + 1.
4: Compute the active and inactive sets according to (2.10).

5: until (Ak
ai = A

k−1
ai and Ak

bi
= A

k−1
bi

) or k = kmax.

6: Set u = (B⋆pk − ελk)/σ.

2.4 Restatement of (P) as a control constrained problem

It is known [16] that (P) can be cast into a purely control constrained optimal
control problem. Recall that I and S are linear and continuous operators, i.e.
the operator F = ε + IS : U → U is linear and bounded, too. The proof of
Lemma 2.1 can be found in the Appendix.

Lemma 2.1 Suppose that for every ǫ > 0 there is a constant Cǫ > 0 satisfying

‖(BIϕ)(t)‖V ′ ≤ Cǫ ‖ϕ(t)‖H + ǫ ‖ϕ(t)‖V (2.11)

for all ϕ ∈W (0, T ) a.e. in [0, T ]. Then, the linear operator F = ε+ IS has a
bounded inverse.

Next we introduce the transformed control variable v = Fu ∈ U for u ∈ U .
From Remark 2.1 we conclude that the solution y to (2.3) satisfies Su = y− ŷ.
Consequently, v has the representation v = εu+ I(y − ŷ). Using (y, u) ∈ Xad,
it follows that v satisfies the bilateral box constraints

va ≤ v ≤ vb in [0, T ] a.e., (2.12)

where we set va = ua − I ŷ and vb = ub − I ŷ. Let

Vad =
{

v ∈ U
∣

∣ va ≤ v ≤ vb a.e. in [0, T ]
}

.

Let us assume that F has a bounded inverse. We replace the state and
control variable in J as follows:

J̃(v) = Ĵ(F−1v) = J(ŷ + SF−1v,F−1v) for v ∈ U.

Then, we consider the optimal control problem

min J̃(v) s.t. v ∈ Vad. (P̃)

If v̄ is the solution to (P̃), then the pair x̄ = (ȳ, ū) with ȳ = ŷ + SF−1v̄ and
ū = F−1v̄ is the solution to (P).
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Remark 2.3 Let u ∈ U , then v = Fu is given by computing y = Su and
choosing v = εu+ Iy. On the other hand, suppose that we know v ∈ U , then
u = F−1v can be calculated by solving

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ)

+
1

ε
〈(BIy)(t), ϕ〉V ′,V =

1

ε
〈Bv(t), ϕ〉V ′,V ∀ϕ ∈ V a.e.,

y(0) = 0 in H

and choosing u = (v − Iy)/ε. Hence, the transformations v 7→ u and u 7→ v
both require to solve a state equation. ♦

2.5 First-order sufficient optimality conditions for (P̃)

In this subsection we present the first-order optimality conditions for (P̃). We
suppose that F has a bounded inverse. Assume that v̄ denotes the unique
optimal control for (P̃). Using a Lagrangian framework [20] the optimal con-
trol v̄ satisfies together with the corresponding state variable ȳ and Lagrange
multiplier q̄ the following first-order optimality conditions for (P̃) :

ȳ = ŷ + SF−1v̄, (2.13a)

q̄ = p̂+A1F
−1v̄ (2.13b)

〈σF−⋆F−1v̄ −F−⋆B⋆q̄, v − v̄〉U ≥ 0 ∀v ∈ Vad, (2.13c)

where F−⋆ : U → U stands for the dual operator of F−1.
The operator A1 can be expressed in terms of the adjoint S⋆ :W0(0, T )

′ →
L2(0, T ;V ). This follows from an adaption of Lemma 4.1 in [10] and Lemma
2.4 in [21]:

Lemma 2.2 Define the linear and bounded operator Θ :W (0, T ) →W0(0, T )
′

〈Θy, ϕ〉W (0,T )′,W (0,T ) = σQ

∫ T

0

〈y(t), ϕ(t)〉H dt+ σΩ 〈y(T ), ϕ(T )〉H

for y ∈W (0, T ) and ϕ ∈W0(0, T ). Then, we have B⋆A1 = −S⋆ΘS.

2.6 A distributed optimal control problem

In this subsection we introduce an example for (P) and discuss the presented
theory for this application. Let Ω ⊂ R

d, d ∈ {1, 2, 3}, be an open and bounded
domain with Lipschitz-continuous boundary Γ = ∂Ω. For T > 0 we set Q =
(0, T ) × Ω and Σ = (0, T ) × Γ . We choose H = L2(Ω) and V = H1

0 (Ω)
endowed with the usual inner products

〈ϕ,ψ〉H =

∫

Ω

ϕψ dx, 〈ϕ,ψ〉V =

∫

Ω

ϕψ +∇ϕ · ∇ψ dx
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and their induced norms, respectively. In (2.1) we have CV = 1. Let χi ∈ H,
1 ≤ i ≤ m, denote given control shape functions. Then, for given control u ∈ U ,
initial condition y◦ ∈ H and inhomogeneity f ∈ L2(0, T ;H) we consider the
linear heat equation

yt(t,x)−∆y(t,x) = f(t,x) +
m
∑

i=1

ui(t)χi(x), a.e. in Q,

y(t,x) = 0, a.e. in Σ,

y(0,x) = y◦(x), a.e. in Ω.

(2.14)

We introduce the time-independent, symmetric bilinear form

a(ϕ,ψ) =

∫

Ω

∇ϕ · ∇ψ dx for ϕ,ψ ∈ V

and the bounded, linear operator B : U → L2(0, T ;H) →֒ L2(0, T ;V ′) as

(Bu)(t,x) =
m
∑

i=1

ui(t)χi(x) for (t,x) ∈ Q a.e. and u ∈ U.

Hence, we have α = α1 = α2 = 1 in (2.2). It follows that the weak formula-
tion of (2.14) can be expressed in the form (2.3). Moreover, the unique weak
solution to (2.14) belongs to the space L∞(0, T ;V ) provided y◦ ∈ V holds.

We choose certain shape functions π1, . . . , πm ∈ H and introduce the op-
erator I : L2(0, T ;V ) → U by

(Iϕ)(t) =







(I1ϕ)(t)
...

(Imϕ)(t)






with (Iiϕ)(t) =

∫

Ω

πi(x)ϕ(t,x) dx

for ϕ ∈ L2(0, T ;V ) a.e. in [0, T ]. Then, the mixed control-state constraints
have the form

uai(t) ≤ εui(t) +

∫

Ω

πi(x)y(t,x) dx ≤ ubi(t) a.e. in [0, T ]

for (y, u) ∈ X and i ∈ 1, . . . ,m with uai, ubi ∈ L2(0, T ). Notice that I is even
a bounded operator from L2(0, T ;H) to U .

The adjoint operators B⋆ : L2(0, T ;V ) → U and I⋆ : U → L2(0, T ;V ′)
have the explicit representations

(B⋆i p)(t) =

∫

Ω

χi(x)p(t,x) dx (1 ≤ i ≤ m), (I⋆λ)(t,x) =
m
∑

i=1

λi(t)πi(x)

for (t,x) ∈ Q a.e., p ∈ L2(0, T ;V ) and λ ∈ U . In particular, if χi = πi holds
for 1 ≤ i ≤ m, then we have B⋆ = I as well as I = B⋆.
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Let us discuss condition (2.11). For ϕ ∈ W (0, T ) we have (BIϕ)(t) ∈ H
for t ∈ [0, T ] a.e. Using (2.1) with CV = 1 we obtain

‖(BIϕ)(t)‖V ′ ≤
m
∑

i=1

∣

∣〈πi, ϕ(t)〉H
∣

∣ ‖χi‖H ≤ c1 ‖ϕ(t)‖
1/2
H ‖ϕ(t)‖

1/2
V ,

where we set c1 =
∑m
i=1 ‖πi‖H‖χi‖H . Now (2.11) follows directly from Young’s

inequality (A.1) with a = 2‖ϕ(t)‖
1/2
V and b = c1‖ϕ(t)‖

1/2
N /2. In particular, we

find Cǫ = c21/(8ǫ) for every ǫ > 0.

3 A-posteriori error analysis

The goal of this section is to derive an a-posteriori error estimate for (P̂).
For that purpose we utilize the technique in [21, Section 3] for the control
constrained problem (P̃).

3.1 Derivation of the a-posteriori error estimate

Suppose that F has a bounded inverse and that up is an arbitrary control in
Uad. Our goal is to estimate the norm ‖ū − up‖U without the knowledge of
the optimal solution ū = F−1v̄. We set vp = Fup, i.e., vp = εup + I(yp − ŷ)
with yp = ŷ+Sup. If up 6= ū holds, then vp 6= v̄. Thus, vp does not satisfy the
necessary (and by convexity sufficient) optimality condition (2.13c). However,
there exists a function ζ ∈ U such that

〈σF−⋆F−1vp −F−⋆B⋆qp + ζ, v − vp〉U ≥ 0 ∀v ∈ Vad, (3.1)

with qp = q̂ + Aup. Therefore, vp satisfies the optimality condition of a per-
turbed parabolic optimal control problem with “perturbation” ζ. The smaller
ζ is, the closer vp is to v̄.

Next we estimate ‖ū− up‖U in terms of ‖ζ‖U . By Lemma 2.2 we have

B⋆
(

q̄ − q̄p
)

= B⋆A⋆
1

(

ū− ūp
)

= B⋆S⋆ΘS
(

up − ū
)

= B⋆S⋆Θ
(

yp − ȳ
)

, (3.2)

with ȳ = ŷ + Sū. Choosing v = vp in (2.13c), v = v̄ in (3.1) and using (3.2)
we obtain

0 ≤ 〈−σF−⋆(ū− up) + F−⋆B⋆(q̄ − qp) + ζ,F(ū− up)〉U

= −σ ‖ū− up‖
2
U − 〈B⋆S⋆Θ(ȳ − yp), ū− up〉U + 〈ζ,F(ū− up)〉U

= −σ ‖ū− up‖
2
U − 〈Θ(ȳ − yp), ȳ − yp〉W (0,T )′,W (0,T ) + 〈F⋆ζ, ū− up〉U

= −σ ‖ū− up‖
2
U + 〈F⋆ζ, ū− up〉U ≤ −σ ‖ū− up‖

2
U + ‖F⋆ζ‖U‖ū− up‖U .

Hence, we get the a-posteriori error estimation

‖ū− up‖U ≤
1

σ
‖F⋆ζ‖U (3.3)
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If the evaluation of F⋆ is much more expensive compared to the calculation
of ζ, it may be advisable to deduce a-priori estimates for the operator norm
of F⋆ by the application of energy estimates for the state equations. However,
these bounds are not rigorous in general, i.e. the true value of ‖F⋆ζ‖U might
be overestimated significantly.

3.2 Computation of a perturbation ζ

Now we want to determine an appropriate perturbation ζ ∈ U satisfying (3.1).
Suppose that the suboptimal control up = F−1vp ∈ U is known, we derive from
(3.1) the variational inequality

〈ξ + ζ, v − vp〉U ≥ 0 ∀v ∈ Vad, (3.4)

where we set ξ = F−⋆(σup − B⋆qp) ∈ U . Hence, the element ξ solves

(

ε+ S⋆I⋆
)

ξ = σup − B⋆qp in U. (3.5)

To determine an appropriate perturbation ζ we have to compute ξ. This is
formulated in the next theorem. Its proof follows from Proposition 3.2 in [21].

Theorem 3.1 (A-posteriori error estimate for (P̂)) Suppose that up is
an arbitrary control in Uad and qp = q̂+A1up. Moreover, the function ξ solves
(3.5). Define ζ ∈ U as follows:

ζi(t) =











−min(0, ξi(t)) a.e. in A
p
ai =

{

t ∈ [0, T ] |vpi(t) = vai(t)
}

,

−max(0, ξi(t)) a.e. in A
p
bi =

{

t ∈ [0, T ] |vpi(t) = vbi(t)
}

,

− ξi(t) a.e. in [0, T ] \
(

A
p
ai ∪A

p
bi

)

(3.6)

for 1 ≤ i ≤ m. Then, we have

‖ū− up‖U ≤ ǫape (3.7)

with the a-posteriori error estimator ǫape = ‖F⋆ζ‖U/σ.

We call (3.7) an a-posteriori error estimate, since, in the next section, we
will apply it to suboptimal controls up that have already been computed from
a POD model.

4 Galerkin approximation for (P) and (P̃)

The goal of this section is to apply the a-posteriori error analysis for a subop-
timal control up = ūℓ, which is computed by a POD Galerkin scheme for (P̂).
In particular, we prove that the a-posteriori error estimator tends to zero if
the number of POD ansatz functions tends to infinity. Let us mention that we
avoid a discretization of the control space U ; see also [9].
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4.1 Proper orthogonal decomposition (POD)

Suppose that w1, . . . , wk ∈ L2(0, T ;V) are k ≥ 1 given trajectories. Moreover,
we introduce the linear subspace

V = span
{

wk(t) | t ∈ [0, T ] and k ∈ {1, . . . , k}
}

with dimension d ≤ ∞. The method of POD consists in choosing an orthonor-
mal basis in V such that for every ℓ ∈ {1, . . . , d} the mean square error between
the elements wk(t), t ∈ [0, T ] and 1 ≤ k ≤ k, and the corresponding ℓ-th partial
sum is minimized on average:















min
ψ̃1,...,ψ̃ℓ∈V

k
∑

k=1

∥

∥

∥
wk −

ℓ
∑

i=1

〈wk, ψ̃i〉V ψ̃i

∥

∥

∥

2

L2(0,T ;V )

s.t. 〈ψ̃i, ψ̃j〉V = δij , 1 ≤ i, j ≤ ℓ

(4.1)

with

∥

∥

∥
wk −

ℓ
∑

i=1

〈wk, ψ̃i〉V ψ̃i

∥

∥

∥

2

L2(0,T ;V )
=

∫ T

0

∥

∥

∥
wk(t)−

ℓ
∑

i=1

〈wk(t), ψ̃i〉V ψ̃i

∥

∥

∥

2

V
dt.

A solution to (4.1) is called a POD basis of rank ℓ. We introduce the linear,
bounded, nonnegative operator R : V → V by

Rψ =
k

∑

k=1

∫ T

0

〈wk(t), ψ〉V wk(t) dt for ψ ∈ V.

The solution of (4.1) can be found in [11,22], for instance.

Proposition 4.1 For w1, . . . , wk ∈ L2(0, T ;V ) the linear operator R is non-
negative, self-adjoint and compact. Let {λi}i∈N and {ψi}i∈N denote the non-
negative eigenvalues and associated orthonormal eigenfunctions of R satisfying

Rψi = λiψi, λ1 ≥ λ2 ≥ . . . , and λi → 0 as i→ ∞.

Then a POD basis of rank ℓ ≤ d is given by {ψi}
ℓ
i=1, and we have

k
∑

k=1

∥

∥

∥wk −
ℓ

∑

i=1

〈wk, ψi〉V ψi

∥

∥

∥

2

L2(0,T ;V )
=

∞
∑

i=ℓ+1

λi. (4.2)

Remark 4.1 From the Hilbert-Schmidt theorem [18, p. 203] it follows that
{ψi}i∈N form a complete orthonormal basis for the separable space V . ♦
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4.2 The POD Galerkin approximation

In this subsection we introduce the POD schemes for the first-order optimality
system using a POD Galerkin approximation for the primal and dual variables.
Moreover, we study the convergence of the POD discretizations, where we
make use of the analysis in [10,14,21]. We make use of the following hypothesis.

Assumption 1 Let u, λ ∈ U be chosen such that the functions Su, A1u and
A2λ are nonzero and belong to H1(0, T ;V ). In the context of Section 4.1 we
choose k = 6, w1 = Su, w2 = (Su)t, w3 = A1u, w4 = (A1u)t, w5 = A2λ and
w6 = (A2λ)t.

For ℓ ≥ 1 we denote by {ψi}
ℓ
i=1 a POD basis of rank ℓ and set V ℓ =

span {ψ1, . . . , ψℓ}. Let us define the linear and bounded projection operator

Pℓψ =

ℓ
∑

i=1

〈ψ,ψi〉V ψi ∈ V ℓ for ψ ∈ V.

Suppose that (ȳ, ū) ∈ X is the solution to (P̃) and (p̄, λ̄) the associated
unique Lagrange mulitplier pair. Analogous to the operator S introduced in
Remark 2.1 we define the operator Sℓ : U → W0(0, T ) as follows: for u ∈ U
the function yℓ = Sℓu is the unique solution to

d

dt
〈yℓ(t), ψ〉H + a(t; yℓ(t), ψ) = 〈(Bu)(t), ψ〉V ′,V ∀ψ ∈ V ℓ a.e.

Notice that for any u ∈ U the element Sℓu belongs even to H1(0, T ;V ℓ) which
is continuously embedded into W (0, T ).

Similar to Remark 2.2 we introduce the linear and bounded operators
Aℓ

1, A
ℓ
2 : U → W (0, T ): for given u ∈ U the function pℓ = Aℓ

1u uniquely
solves

−
d

dt
〈pℓ(t), ψ〉H + a(t; pℓ(t), ψ) = −σQ 〈(Sℓu)(t), ψ〉V ′,V ∀ψ ∈ V ℓ a.e.,

pℓ(T ) = −σΩ(S
ℓu)(T ) in H

and for given λ ∈ U the function pℓ = A2λ is the unique solution to

−
d

dt
〈pℓ(t), ψ〉H + a(t; pℓ(t), ψ) = −〈(I⋆λ)(t), ψ〉V ′,V ∀ψ ∈ V ℓ a.e.,

pℓ(T ) = 0 in H.

Now, the POD Galerkin scheme for (2.9) is given by

yℓ = ŷ +
1

σ
Sℓ

(

B⋆pℓ − εN (yℓ, pℓ)
)

,

pℓ = p̂+
1

σ
Aℓ

1

(

B⋆pℓ − εN (yℓ, pℓ)
)

+Aℓ
2N (yℓ, pℓ).

(4.3a)
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Then we set

λℓ = N (yℓ, pℓ), uℓ =
(

B⋆pℓ − ελℓ)
)

/σ in U. (4.3b)

For a proof of the following proposition we refer the reader to [6, Theorems 3.1
and 3.2].

Proposition 4.2 Let Assumption 1 hold. If Sũ even belongs to H1(0, T ;V )
for every ũ ∈ U , then we have

lim
ℓ→∞

‖S − Sℓ‖
L(U,W (0,T )) = lim

ℓ→∞
‖A1 −Aℓ

1‖L(U,W (0,T )) = 0,

where L(U,W (0, T )) stands for the Banach space of all linear and bounded
operators from U to W (0, T ) equipped with its natural operator norm.

To introduce a POD Galerkin scheme for (2.13) let us introduce the POD
aproximation Fℓ : U → U of the operator F by Fℓ = ε + ISℓ : U → U . The
proof of the following proposition is given in the Appendix.

Proposition 4.3 Suppose that Assumption 1 is valid. Then, we have:

1) Fℓ is linear, bounded (uniformly with respect to ℓ), lim
ℓ→0

‖F − Fℓ‖
L(U) = 0.

2) Suppose that F has a bounded inverse. Then, Fℓ has a bounded inverse as
well. We write Fℓ,−1 = (Fℓ)−1. If L ∈ N be chosen arbitrarily large so that
‖F−1‖L(U)‖F − Fℓ‖L(U) < 1 holds for all ℓ > L, we obtain

‖Fℓ,−1‖
L(U) ≤

‖F−1‖
L(U)

1− ‖F−1‖
L(U)‖F − Fℓ‖

L(U)

for all ℓ ≥ L.

3) We have limℓ→∞ ‖1−FFℓ,−1‖
L(U) = 0, limℓ→∞ ‖1−Fℓ,−1F‖

L(U) = 0

and limℓ→∞ ‖1−F⋆Fℓ,−⋆‖
L(U) = 0, where Fℓ,−⋆ denotes the adjoint op-

erator of Fℓ,−1.

Let us formulate a discrete version of the primal-dual active set method
which is utilized in our numerical tests to solve (4.3a) and (4.3b). For given it-
erates (yℓk, pℓk) ∈W (0, T )×W (0, T ), k ≥ 0, and for i = 1, . . . ,m we introduce
the active and inactive sets

A
ℓk
ai =

{

t ∈ [0, T ]
∣

∣

∣ (εσ−1B⋆pℓk + Iyℓk)i(t) < uai(t)

}

, Aℓki = A
ℓk
ai ∪A

ℓk
bi ,

A
ℓk
bi =

{

t ∈ [0, T ]
∣

∣

∣
(εσ−1B⋆pℓk + Iyℓk)i(t) > ubi(t)

}

, I
ℓk
i = [0, T ]\Aℓki ;

(4.4)

compare (2.10). In Algorithm 2 we state the semismooth Newton method for
the POD discretized problem.
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Algorithm 2 (POD discretized primal-dual active set strategy)

Require: POD basis ψℓ, starting value (yℓ0, pℓ0) and maximal iteration number kmax.
1: Set k = 0, determine the active and inactive sets according to (4.4).
2: repeat

3: Determine the solution (yℓ,k+1, pℓ,k+1) to (4.3a) and set k = k + 1.
4: Compute the active and inactive sets according to (4.4).

5: until (Aℓk
ai = A

ℓ,k−1
ai and Aℓk

bi
= A

ℓ,k−1
bi

) or k = kmax.

6: Set uℓ = (B⋆pℓk − ελℓk)/σ.

Utilizing the operator Fℓ we introduce the POD Galerkin scheme for (2.13)
as follows

ȳℓ = ŷ + SℓFℓ,−1v̄ℓ, (4.5a)

q̄ℓ = p̂+Aℓ
1F

ℓ,−1v̄ℓ (4.5b)

〈σFℓ,−⋆Fℓ,−1v̄ −Fℓ,−⋆B⋆q̄ℓ, v − v̄ℓ〉U ≥ 0 ∀v ∈ Vad, (4.5c)

In contrast to the error analysis in [10,21] the discretized variational inequality
involves the operators Fℓ. This reflects the fact that the POD discretization

U ℓad =
{

u ∈ U
∣

∣ua ≤ εu+ I
(

ŷ + Sℓu
)

≤ ub in R
m a.e. in [0, T ]

}

of the admissible set Uad depends on the POD Galerkin scheme, whereas in [10,
21] the admissible set for the controls is independent of the POD discretization.
On the other hand, Vad is independent of ℓ. In particular, we have v̄ℓ = Fℓūℓ.
The proof of the next theorem is given in the Appendix.

Theorem 4.1 Suppose that Assumption 1 holds.

1) For q̄ and q̄ℓ we have limℓ→∞ ‖q̄ − q̄ℓ‖W (0,T ) = 0

2) Let v̄ and v̄ℓ be the solutions to (2.13c) and (4.5c), respectively. Then,
lim
ℓ→∞

‖v̄ − v̄ℓ‖U = 0.

3) If ū and ūℓ are the solutions to (2.7) and (4.3), respectively, we obtain
lim
ℓ→∞

‖ū− ūℓ‖U = 0.

4) Define, according to (3.6), the function ζℓ ∈ U by

ζℓi (t) =











−min(0, ξℓi (t)) a.e. in A
ℓ
ai =

{

t ∈ [0, T ] |v̄ℓi (t) = vai(t)
}

,

−max(0, ξℓi (t)) a.e. in A
ℓ
bi =

{

t ∈ [0, T ] |vℓi (t) = vbi(t)
}

,

− ξℓi (t) a.e. in [0, T ] \
(

A
ℓ
ai ∪A

ℓ
bi

)

,

where ξℓ ∈ U solves F⋆ξℓ = σūℓ − B⋆q̄ℓ in U ; compare (3.5). Then,

‖ū− ūℓ‖U ≤ ǫape with ǫape =
‖F⋆ζℓ‖U

σ
(4.6)

and lim
ℓ→∞

∥

∥ζℓ
∥

∥

U
= 0.
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Remark 4.2 1) In addition to the a-posteriori error analysis in [21], we have
to solve the linear system F⋆ξℓ = σūℓ − B⋆q̄ℓ.

2) Part 3) of Theorem 4.1 shows that ‖ζℓ‖U can be expected smaller than any
ǫ > 0 provided that ℓ is taken sufficiently large. Motivated by this result
we set up Algorithm 3. ♦

Algorithm 3 (POD reduced-order method with a-posteriori estimator)

Require: Initial control u0ℓ ∈ U , initial number ℓ for the POD ansatz functions, a maximal
number ℓmax > ℓ of POD ansatz functions, and a stopping tolerance ǫ > 0.

1: Determine ŷ, q̂, w1 = Su0ℓ, w2 = Au0ℓ.
2: Compute a POD basis {ψi}

ℓmax
i=1 choosing w1 and w2. Set ℓ = 1.

3: repeat

4: Establish the POD Galerkin discretization using {ψi}
ℓ
i=1.

5: Call Algorithm 2 to compute suboptimal control ūℓ.
6: Determine ǫape from (4.6).
7: if ǫape < ǫ or ℓ = ℓmax then

8: Return ℓ and suboptimal control ūℓ and STOP.
9: end if

10: Set ℓ = ℓ+ 1.
11: until ℓ > ℓmax

5 Numerical experiments

In this section we carry out numerical test examples for the presented theo-
retical findings.

Run 5.1 In the context of Section 2.6 we choose d = 1, Ω = (0, 2), Ωi =
2
m [i− 1, i] for 1 ≤ i ≤ m, χi(x) = πi(x) = χΩi

(x) the characteristic functions
on the subdomains Ωi and T = 3. Let σ = 1e-3, σQ = 1, σΩ = 0, ε = 1e-5
and f(t,x) = t − x

3, yQ(t,x) = t(1 − (x − 1)2), yΩ(x) = yQ(T,x), y◦(x) =
(χ[0.4,1.0] − χ[1.0,1.6])(x).
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Fig. 5.1 Run 5.1: The optimal control Bū and the optimal state ȳ for ua = −0.25, ub = 0.25
and m = 10 calculated by solving the full order model.

Notice that for large m and small regularization ε, the mixed control-state
constraints can be interpreted as pointwise state constraints: As one sees in
Figure 5.1, m

2 ua ≤ y ≤ m
2 ub, i.e. −1.25 ≤ y(t, x) ≤ 1.25, holds approxima-

tively.
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Fig. 5.2 Run 5.1: The ROM errors of the control ūℓ for different POD basis ranks ℓ with
initial control guesses u0ℓ ≡ 1 (left) and u0ℓ = ū (right).

In Figure 5.2 we investigate the decay of the ROM errors for increasing
POD basis rank ℓ. For this purpose, we apply Algorithm 2 for the (fixed)
POD bases corresponding to the snapshots Su0ℓ with u0ℓ ≡ 1 and u0ℓ = ū.
One sees that increasing the basis rank of the arbitrarily chosen POD basis
does not lead to a satisfying accuracy of the reduced order model solution
since the state solution Su0ℓ does not cover enough of the dynamics of the
optimal state ȳ, so POD basis updates which exploite the information gained
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from the actual suboptimal control are required to get snapshots which fit to
ū.

Algorithm 4 (POD Primal-dual active set strategy with basis adaptivity)

Require: Initial control guess u0ℓ, tolerance ǫ and maximal iterations kmax.
1: Set k = 0.
2: repeat

3: Compute the solution yk = ŷ + Sukℓ ∈W (0, T ) to the system (2.3).
4: Compute a rank-ℓ POD basis ψℓ ⊆ V by solving (4.1) with w = yk.
5: Execute Algorithm 2 and set ukℓ = ūℓ, k = k + 1.
6: until ǫape(ukℓ) < ǫ or k = kmax.
7: Return ūℓ = ukℓ.

Since in practice we do not have enough knowledge about ū to choose a-
priori an admissible POD basis, we present an adaptive strategy in Algorithm
4 which actualizes the snapshots allocations iteratively with the information
gained from the ROM solutions. Now, one single basis update is sufficient to
achieve the same decay order of the error caused by the model reduction as
we have for the (in general unknown) optimal POD basis.

In contrast to our experiences with pure control constrained optimal control
problems, the a posteriori error bounds are not rigorous, i.e. the true ROM
error has a smaller order than the error estimation. This is due to the fact that
we have chosen the regularization parameter ε of the state constraints very
small which leads to a badly scaled discretization of the differential equations
required to determine the perturbation vector ζ. For larger values of ε, the
error bounds are rigorous if the POD basis rank ℓ is not chosen too small,
see Figure 5.3. In our example, the primal-dual active set strategy does not
converge within the claimed maximal number of active set actualizations if
ℓ < 12.
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Fig. 5.3 Run 5.1: The ROM errors of the control ūℓ for different POD basis ranks ℓ with
adaptive basis selections and regularization parameters ε = 1e-5 (left) and ε = 5e-3 (right).
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Process Time # Total

Assemble full system (2.9) 0.66 sec 9× 5.97 sec
Solve full system (2.9) 22.27 sec 9× 200.43 sec
Total 206.40 sec

Solve full snapshots equations (2.13a) 0.11 sec 2× 0.21 sec
Solve eigenvalue problem (4.1) 0.24 sec 2× 0.84 sec
Assemble ROM system (4.3a) 0.53 sec 17× 9.01 sec
Solve ROM system (4.3a) 0.45 sec 17× 7.72 sec
Evaluate error estimator (4.6) 0.11 sec 2× 0.23 sec
Total 18.01 sec

Table 1 Run 5.1: The calculation times for solving the optimization problem with the
primal-dual active set strategy with and without model reduction. With 25 POD elements,
the reduced-order problem has to be solved two times; solvings of two eigenvalue problems
are required in addition for updating the POD basis. Nevertheless, 91.27% of the calculation
time is spared in total where the true error is 9.07e-05 and the a-posteriori error bound totals
up to 5.68e-4.

We finish the first example with a look at Table 1 where the effort of the model
reduction on the calculation times is illustrated. Since the most expensive part
of the optimization process is the simultaneous solving of the primal and dual
equations, ROM is very effective here even for POD basis ranks which are
chosen so large that the accuracy of the full order model is reached.

Run 5.2 Choosing ε = 1 and I = 0, the techniques presented also cover
the case of pure control constraints. The optimal control and state solutions
induced by the same data functions as we used before for the state constrained
problem are shown in Figure 5.4:

0

1

2

3

0

0.5

1

1.5

2
0.2

0.4

0.6

0.8

1

time t

optimal control

direction x

B
ū
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Fig. 5.4 Run 5.2: The optimal control Bū and the optimal state ȳ for ua = 0.25, ub = 0.75
and m = 10 calculated by solving the full order model.
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In this case, the a-posteriori error bounds are rigorous. Figure 5.5 illustrates
that even the arbitrary POD basis corresponding to the initial control guess
u0ℓ ≡ 1 coveres enough dynamics of ū to decrease the ROM errors below the
FEM accuracy which is of the order 1.0e-04 without basis updates.
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Fig. 5.5 Run 5.2: The ROM errors of the control ūℓ for different POD basis ranks ℓ with
a fixed POD basis (left) and with basis adaptivity (right).

For practical application it does not make sense to enlarge the reduced
order model, i.e. the POD basis rank, as soon as the a-posteriori error estimator
indicates that the exactness of the full order model is reached since the FEM
error is part of the snapshots and hence of the reduced order model anyway.

Process Time # Total

Assemble full system (2.9) 0.79 sec 4× 3.14 sec
Solve full system (2.9) 18.53 sec 4× 74.11 sec
Total 77.25 sec

Solve full snapshots equations (2.13a) 0.10 sec 1× 0.10 sec
Solve eigenvalue problem (4.1) 0.17 sec 1× 0.17 sec
Assemble ROM system (4.3a) 0.40 sec 4× 1.61 sec
Solve ROM system (4.3a) 0.12 sec 4× 0.47 sec
Evaluate error estimator (4.6) 0.13 sec 1× 0.13 sec
Total 2.48 sec

Table 2 Run 5.2: The calculation times for solving the optimization problem with the
primal-dual active set strategy with and without model reduction. With 25 POD elements,
the reduced-order problem has to be solved two times; solvings of two eigenvalue problems
are required in addition to update the POD basis. Nevertheless, 96.79% of the calculation
time is spared in total and both the true error as well as the a-posteriori error bound amount
to 5.26e-6.
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Run 5.3 We consider now a two-dimensional setting: Let Ω = (0, π)× (0, π),
Ωij = π

m [i − 1, i] × [j − 1, j] for 1 ≤ i, j ≤ m, χij(x) = πij(x) = χΩij
(x) be

the characteristic functions on the subdomains Ωij and T = π
2 . Let σ = 1e-3,

σQ = 1, σΩ = 1, ε = 1e-5. We choose f ≡ 0, y◦ ≡ 0 and consistent desired
states yQ(t,x) = sin(t) sin(x1) sin(x2), yΩ = yQ(T, ·). Obviously, y = yQ is an
optimal state solution to the optimization problem without state or control
constraints if σ = 0. Figure 5.6 shows that the state solution which respects
the weakly regularized pointwise state constraints resembles the projection of
yQ on the admissible range.
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ȳ
(T

,
x

1
,
x

2
)

Fig. 5.6 Run 5.3: The optimal control (Bū)(T ) and the optimal state ȳ(T ) for ua,ij =
−0.5|Ωij |, ub,ij = +0.5|Ωij | and m = 400 calculated by solving the full order model.

An arbitrary POD basis is not able to establish the area of the graph where
the upper constraints are active in this case, see Figure 5.7: Basis updates are
required instead to build up an accurate reduced-order model.
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Fig. 5.7 Run 5.3: The ROM errors of the control ūℓ for different POD basis ranks ℓ with
a fixed POD basis (left) and with basis adaptivity (right).

Process Time # Total

Assemble full system (4.3a) 0.25 sec 39× 9.90 sec
Solve full system (4.3a) 32.16 sec 39× 1254.11 sec
Total 1264.01 sec

Solve full snapshots equations (2.13a) 0.21 sec 2× 0.42 sec
Solve eigenvalue problem (4.1) 0.10 sec 2× 0.19 sec
Assemble ROM system (4.3a) 0.12 sec 50× 6.18 sec
Solve ROM system (4.3a) 0.03 sec 50× 1.69 sec
Evaluate error estimator (4.6) 0.54 sec 2× 1.08 sec
Total 9.56 sec

Table 3 Run 5.3: The calculation times for solving the optimization problem with the
primal-dual active set strategy with and without model reduction. With 25 POD elements,
the reduced-order problem has to be solved two times; solvings of two eigenvalue problems
are required in addition to update the POD basis. Nevertheless, 99.24% of the calculation
time is spared in total. The a posteriori error bound is of the same order as the ROM error
which amount to 8.74e-2.

Appendix

Proof of Lemma 2.1

We utilize arguments from the proof of Lemma 4.1 in [16]. First we show that F is injective.
From Fu = 0 we infer (ε+ IS)u = 0 in U . Since ε > 0 holds, we derive u = − 1

ε
ISu in U .

By Remark 2.1, we conclude that y = Su ∈W (0, T ) satisfies

〈yt(t), ϕ〉V ′,V + a(t; y(t), ϕ) = −
1

ε
〈(BIy)(t), ϕ〉V ′,V , ∀ϕ ∈ V a.e. in [0, T ],

〈y(0), ϕ〉H = 0 ∀ϕ ∈ H.
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Choosing ϕ = y(t) and using (2.2), (2.11) and Young’s inequality [5, p. 622],

|ab| ≤
ǫ̃a2

2
+

b2

2ǫ̃
for all a, b ∈ R, ǫ̃ > 0 (A.1)

with a = ‖y(t)‖V , b = ‖y(t)‖H/(Cǫε), we deduce that

1

2

d

dt
‖y(t)‖2H + α1 ‖y(t)‖

2
V − α2 ‖y(t)‖

2
H ≤

1

2

d

dt
‖y(t)‖2H + a(t; y(t), y(t))

≤
1

ε
‖(B Iy)(t)‖V ′‖y(t)‖V ≤

1

ε
(Cǫ ‖y(t)‖H + ǫ ‖y(t)‖V )‖y(t)‖V

≤

(

ǫ̃

2
+
ǫ

ε

)

‖y(t)‖2V +
1

2ǫ̃

C2
ǫ

ε2
‖y(t)‖2H a.e. in [0, T ].

Taking ǫ = εα1/4 and ǫ̃ = α1/2, we get the a-priori energy estimate

1

2

d

dt
‖y(t)‖2H +

α1

2
‖y(t)‖2V −

(

α2 +
C2

ǫ

ε2α1

)

‖y(t)‖2H ≤ 0 a.e. in [0, T ]. (A.2)

Applying Gronwall’s lemma [5, pp. 624-625] and y(0) = 0 in H, we obtain by standard
arguments for linear evolution problems that y ≡ 0 holds in W (0, T ). Thus, the operator F
is injective. Next we prove that F is surjective. Let v ∈ U be chosen arbitrarily. Then, F is
surjective if there exists an u ∈ U satisfying εu+ ISu = v in U . Deriving again an a-priori
energy estimate analogously to (A.2), we conclude that

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) +

1

ε
〈BIy(t), φ〉V ′,V =

1

ε
〈Bv(t), ϕ〉V ′,V ∀ϕ ∈ V a.e.,

〈y(0), ϕ〉H = 0 ∀ϕ ∈ H

admits a unique solution y ∈ W (0, T ). Defining u = (v − Iy)/ε ∈ U , y = Su holds, i.e.
Fu = (ε + IS)u = v in U which implies the surjectivity of F . Now the claim follows from
the bounded inverse theorem.

Proof of Proposition 4.3

1) Clearly, Fℓ is linearand bounded by a constant which is independent of ℓ. Since

‖F − Fℓ‖
L(U) = ‖I(S − Sℓ)‖

L(U) ≤ ‖I‖
L(L2(0,T ;V ),U)‖S − Sℓ‖

L(U,W (0,T ))

is satisfied, the convergence follows directly from Proposition 4.2.

2) By part 1) there exists a constant L ∈ N so that

‖F − Fℓ‖
L(U) <

1

‖F−1‖
L(U)

for all ℓ ≥ L.

Then, the claim follows from the perturbation lemma [17, p. 45].

3) Using

∥

∥1−FFℓ,−1
∥

∥

L(U)
=

∥

∥(Fℓ −F)Fℓ,−1
∥

∥

L(U)
≤

∥

∥Fℓ −F
∥

∥

L(U)

∥

∥Fℓ,−1
∥

∥

L(U)
,

∥

∥1−Fℓ,−1F
∥

∥

L(U)
=

∥

∥Fℓ,−1(Fℓ −F)
∥

∥

L(U)
≤

∥

∥Fℓ,−1
∥

∥

L(U)

∥

∥Fℓ −F
∥

∥

L(U)

and parts 2), 3) the limits hold.
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Proof of Theorem 4.1

1) The claim follows from [6, Theorem 3.2].
2) Choosing v = v̄ℓ in (2.13c) and v = v̄ in (4.5c) we get the variational inequality

〈

σ
(

F−⋆F−1v̄ −Fℓ,−⋆Fℓ,−1v̄ℓ
)

−Fℓ,−⋆B⋆q̄ℓ + F−⋆B⋆q̄, v̄ℓ − v̄
〉

U
≥ 0. (A.3)

From v̄ℓ ∈ Vad we infer that ‖v̄ℓ‖ is bounded. Thus, there exists a constant C1 > 0
with ‖v̄ℓ‖U ≤ C1. Moreover, ‖Fℓ,−1‖L(U) ≤ 2C2 for ℓ sufficiently large with C2 =

‖F−1‖L(U). Thus,

σ 〈F−⋆F−1v̄ −Fℓ,−⋆Fℓ,−1v̄ℓ, v̄ℓ − v̄〉U

= σ 〈F−⋆F−1(v̄ − v̄ℓ) + F−⋆F−1v̄ℓ −Fℓ,−⋆Fℓ,−1v̄ℓ, v̄ℓ − v̄〉U

= −σ ‖F−1(v̄ − v̄ℓ)‖
2

U + σ 〈(F−1 −Fℓ,−1)v̄ℓ,F−1(v̄ℓ − v̄)〉U

+ 〈(1−F⋆Fℓ,−⋆)Fℓ,−1v̄ℓ,F−1(v̄ℓ − v̄)〉U

≤ σ
(

−‖F−1(v̄ − v̄ℓ)‖U + C3

(

‖1−FFℓ,−1‖
L(U) + ‖1−F⋆Fℓ,−⋆‖

L(U)

)

)

· ‖F−1(v̄ℓ − v̄)‖U

with C3 = 2C1C2. We set C4 = C1 max(2C2, ‖B⋆A1F−1‖L(U) and C5 = ‖B‖L(U).

Recall that the operator Sℓ is bounded independently of ℓ. Hence, the constant C6 =
2C1C2 ‖Sℓ,⋆ΘSℓ‖L(U) does not depend on ℓ. Moreover, B⋆Aℓ

1 = −Sℓ,⋆ΘSℓ is uniformly
bounded. Hence, there exists a constant C7 > 0 which does not depend on ℓ so that
‖B⋆Aℓ

1‖L(U) ≤ C7. Consequently, Lemma 2.2 implies that

〈

F−⋆B⋆q̄ −Fℓ,−⋆B⋆q̄ℓ, v̄ℓ − v̄
〉

U

=
〈

F−⋆B⋆A1F
−1

(

v̄ − v̄ℓ
)

+ F−⋆B⋆A1

(

F−1 −Fℓ,−1
)

v̄ℓ, v̄ℓ − v̄
〉

U

+
〈

F−⋆B⋆
(

A1 −Aℓ
1

)

Fℓ,−1v̄ℓ +
(

F−⋆ −Fℓ,−⋆B⋆Aℓ
1F

ℓ,−1v̄ℓ, v̄ℓ − v̄
〉

U

≤ −
〈

ΘSF−1
(

v̄ − v̄ℓ
)

,SF−1
(

v̄ℓ − v̄
)

〉

U

+ C4

(

∥

∥1−FFℓ,−1
∥

∥

L(U)
+

∥

∥B⋆(A1 −Aℓ
1)
∥

∥

L(U)

)

∥

∥F−1
(

v̄ − v̄ℓ
)
∥

∥

U

+ C6

∥

∥1−F⋆Fℓ,−⋆
∥

∥

L(U)

∥

∥F−1
(

v̄ − v̄ℓ
)
∥

∥

U

≤ C7

(

∥

∥1−FFℓ,−1
∥

∥

L(U)
+

∥

∥1−F⋆Fℓ,−⋆
∥

∥

L(U)
+

∥

∥B⋆(A1 −Aℓ
1)
∥

∥

L(U)

)

·
∥

∥F−1
(

v̄ − v̄ℓ
)
∥

∥

U

with C7 = max(C4, C6). Hence, we have

‖F−1(v̄ − v̄ℓ)‖U ≤
C8

σ

(

‖1−FFℓ,−1‖
L(U) +

∥

∥1−F⋆Fℓ,−⋆
∥

∥

L(U)

)

+
C8

σ

∥

∥B⋆(A1 −Aℓ
1)
∥

∥

L(U)

with C8 = (C3 + C7). From Proposition 4.2 we infer that

lim
ℓ→∞

∥

∥B⋆(A1 −Aℓ
1)
∥

∥

L(U)
= 0

so that ‖F−1(v̄ − v̄ℓ)‖U → ∞ for ℓ→ ∞. Since F is invertible, we conclude that

lim
ℓ→∞

‖v̄ − v̄ℓ‖U = 0.
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3) From ū = F−1v̄, ūℓ = Fℓ,−1v̄ℓ and Theorem 4.1 we infer that

‖ū− ūℓ‖U = ‖F−1v̄ −Fℓ,−1ūℓ‖U

≤ ‖F−1‖
L(U)

(

‖v̄ − v̄ℓ‖U + ‖1−FFℓ,−1‖
L(U)‖v̄

ℓ‖U

)

ℓ→∞
−→ 0.

4) The first part of the claim follows directly from Theorem 3.1. We infer from part 1)
and part 3) that {B⋆q̄ℓ}ℓ∈N and {ūℓ}ℓ∈N converge to ū respectively B⋆q̄. Hence, {σūℓ−
B⋆q̄ℓ}ℓ∈N tends to σū−B⋆q̄. Since F−⋆ is bounded, we conclude that {ξℓ}ℓ∈N converge
to ξ = F−⋆(σū − B⋆q̄). Now, the proof follows by the same arguments as the proof of
Theorem 4.11, part (2), in [21].
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