Skip to main content
Log in

Revisiting several problems and algorithms in continuous location with \(\ell _\tau \) norms

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the general continuous single facility location problems in finite dimension spaces under possibly different \(\ell _\tau \) norms, \(\tau \ge 1\), in the demand points. We analyze the difficulty of this family of problems and revisit convergence properties of some well-known algorithms. The ultimate goal is to provide a common approach to solve the family of continuous \(\ell _\tau \) ordered median location problems Nickel and Puerto (Facility location: a unified approach, 2005) in dimension \(d\) (including of course the \(\ell _\tau \) minisum or Fermat-Weber location problem for any \(\tau \ge 1\)). We prove that this approach has a polynomial worst case complexity for monotone lambda weights and can be also applied to constrained and even non-convex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. Theory, algorithms, and applications. Prentice Hall Inc, Englewood Cliffs, NJ. xvi+846 pp. ISBN: 0-13-617549-X (1993)

  2. Blanco, V., Ben-Ali, S., Puerto, J.: Minimizing ordered weighted averaging of rational functions with applications to continuous location. Comput. Oper. Res. 40(5), 1448–1460 (2013)

    Google Scholar 

  3. Boland, N., Domínguez-Marín, P., Nickel, S., Puerto, J.: Exact procedures for solving the discrete ordered median problem. Comput. Oper. Res. 33, 3270–3300 (2006)

    Article  MATH  Google Scholar 

  4. Brimberg, J., Love, R.F.: Local convergence in a generalized Fermat–Weber problem. Ann. Oper. Res. 40, 33–65 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brimberg, J., Love, R.F.: Global convergence of a generalized iterative procedure for the minisum location problem with \(l_p\) distances. Oper. Res. 41(6), 1153–1163 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brimberg, J.: The Fermat–Weber location problem revisited. Math. Program. 71, 71–76 (1995)

    MATH  MathSciNet  Google Scholar 

  7. Brimberg, J., Wesolowsky, G.O.: Minisum location with closest Euclidean distances. Ann. Oper. Res. 111, 151–165 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brimberg, J.: Further notes on convergence of the Weiszfeld algorithm. Yugosl. J. Oper. Res. 13(2), 199–206 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brimberg, J., Chen, R.: A note on convergence in the single facility minisum location problem. Comput. Math. Appl. 35(9), 25–31 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brimberg, J., Chen, R., Chen, D.: Accelerating convergence in the Fermat–Weber location problem. Oper. Res. Lett. 22, 151–157 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Canovas, L., Cañavate, R., Marin, A.: On the convergence of the Weiszfeld algorithm. Math. Program. 93, 327–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chandrasekaran, R., Tamir, A.: Open questions concerning Weiszfeld’s algorithm for the Fermat–Weber location problem. Math. Program. 44(3), 293–295 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, R.: Optimal location of a single facility with circular demand areas. Comput. Math. Appl. 41, 1049–1061 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, R.: Solution of location problems with radial cost functions. Comput. Math. Appl. 10, 87–94 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, R.: Location problems with costs being sums of powers of Euclidean distances. Comput. Oper. Res. 11, 285–294 (1984)

    Article  MATH  Google Scholar 

  16. Cooper, L.: An extension of the generalized Weber problem. J. Reg. Sci. 8(2), 181–197 (1968)

    Article  Google Scholar 

  17. Drezner, Z.: A note on the Weber location problem. Ann. Oper. Res. 40, 153–161 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drezner, Z.: A note on accelerating the Weiszfeld procedure. Locat. Sci. 3(4), 275–279 (1995)

    Article  MATH  Google Scholar 

  19. Drezner, Z.: A general global optimization approach for solving location problems in the plane. J. Global Optim. 37(2), 305–319 (2007)

    Google Scholar 

  20. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, New York (2002)

    Google Scholar 

  21. Drezner, Z., Nickel, S.: Solving the ordered one-median problem in the plane. Eur. J. Oper. Res. 195(1), 46–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Drezner, Z., Nickel, S.: Constructing a DC decomposition for ordered median problems. J. Global Optim. 195(2), 187–201 (2009)

    Article  MathSciNet  Google Scholar 

  23. Eckhardt, U.: Weber’s problem and Weiszfeld’s algorithm in general spaces. Math. Program. 18, 186–196 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Espejo, I., Rodriguez-Chia, A.M., Valero, C.: Convex ordered median problem with \(\ell _p\)-norms. Comput. Oper. Res. 36, 2250–2262 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Harris, B.: Speeding up iterative algorithms-the generalized Weber problem. J. Reg. Sci. 16(3), 411–413 (1976)

    Article  Google Scholar 

  26. Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1), 21–64 (2010)

    Google Scholar 

  27. Kalcsics, J., Nickel, S., Puerto, J.: Multi-facility ordered median problems: a further analysis. Networks 41(1), 1–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kalcsics, J., Nickel, S., Puerto, J., Tamir, A.: Algorithmic results for ordered median problems defined on networks and the plane. Oper. Res. Lett. 30, 149–158 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)

    Article  MATH  Google Scholar 

  30. Katz, I.N.: Local convergence in Fermat’s problem. Math. Program. 6(89–104), 26 (1974)

    Google Scholar 

  31. Katz, I.N.: On the convergence of a numerical scheme for solving some locational equilibrium problems. SIAM J. Appl. Math. 17(6), 1224–1231 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  32. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: On the implementation and usage of SDPT3—A Matlab software package for semidefinite-quadratic-linear programming, version 4.0. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166, pp. 715–754. Springer (2012)

  33. Koulaei, M.H., Terlaky, T.: On the complexity analysis of a Mehrotra-type primal–dual feasible algorithm for semidefinite optimization. Optim. Method. Softw. 25(3), 467–485 (2010)

    Google Scholar 

  34. Lasserre, J.B.: Moments and sums of squares for polynomial optimization and related problems. J. Global Optim. 45, 39–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  36. Mittelmann, H.D.: The state-of-the-art in conic optimization software. SIAM J. Optim. 166, 671–686 (2012)

    MathSciNet  Google Scholar 

  37. Marín, A., Nickel, S., Puerto, J., Velten, S.: A flexible model and efficient solution strategies for discrete location problems. Discret. Appl. Math. 157(5), 1128–1145 (2009)

    Article  MATH  Google Scholar 

  38. Mehrotra, S.: On the implementation of a (primal–dual) interior point method. SIAM. J. Optim. 2, 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Morris, J.G., Verdini, W.A.: Minisum l p distance location problems solved via a perturbed problem and Weiszfeld’s algorithm. Oper. Res. 27, 1180–1188 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  40. Morris, J.G.: Convergence of the Weiszfeld algorithm for Weber problems using a generalized “distance” function. Oper. Res. 29(1), 37–48 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  41. Nickel, S., Puerto, J.: A unified approach to network location problems. Networks 34, 283–290 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nickel, S., Puerto, J.: Facility Location: A Unified Approach. Springer, New York (2005)

    Google Scholar 

  43. Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26(4), 597–609 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  44. Puerto, J., Fernández, F.R.: Geometrical properties of the symmetric single facility location problem. J. Nonlinear Convex Anal. 1(3), 321–342 (2000)

    MATH  MathSciNet  Google Scholar 

  45. Puerto, J., Rodriguez-Chia, A.M.: Location of a moving service facility. Math. Methods Oper. Res. 49, 373–393 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  46. Puerto, J., Rodriguez-Chia, A.M.: New models for locating a moving service facility. Math. Methods Oper. Res. 63(1), 31–51 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Puerto, J., Tamir, A.: Locating tree-shaped facilities using the ordered median objective. Math. Program. 102(2), 313–338 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J. 42, 969–984 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. Rodríguez-Chía, A.M., Espejo, I., Drezner, Z.: On solving the planar k-centrum problem with Euclidean distances. Eur. J. Oper. Res. 207(3), 1169–1186 (2010)

    Article  MATH  Google Scholar 

  50. Rodríguez-Chía, A.M., Valero, C.: On the global convergence of a generalized iterative procedure for the minisum location problem with \(l_p\) distances for \(p > 2\). Math. Program. 137(1–2), 477–502 (2013)

  51. Sturm, J.F.: Using SeDuMi 1.02 A Matlab toolbox for optimization over symmetric cones. Optim. Method Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  52. Franco, Valero C., Rodriguez-Chia, A.M., Espejo Miranda, I.: The single facility location problem with average-distances. TOP 16(1), 164–194 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  54. Weber, A.: Uber der Standort der Industrien. University of Chicago, Translated as Alfred Weber’s Theory of the Location of Industries (1909).

  55. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donns est minimum. Tohoku Math. J. 43, 355–386 (1937)

    Google Scholar 

  56. Zhang, L.: On the convergence of a modified algorithm for the spherical facility location problem. Oper. Res. Lett. 31, 161–166 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors were partially supported by the Project FQM-5849 (Junta de Andalucía\(\backslash \)FEDER). The first and third author were partially supported by the project MTM2010-19576-C02-01 (MICINN, Spain). The first author was also supported by research group SEJ-534.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justo Puerto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, V., Puerto, J. & El Haj Ben Ali, S. Revisiting several problems and algorithms in continuous location with \(\ell _\tau \) norms. Comput Optim Appl 58, 563–595 (2014). https://doi.org/10.1007/s10589-014-9638-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9638-z

Keywords

Mathematics Subject Classification

Navigation