Skip to main content

Advertisement

Log in

Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present a local convergence analysis of the method of multipliers for equality-constrained variational problems (in the special case of optimization, also called the augmented Lagrangian method) under the sole assumption that the dual starting point is close to a noncritical Lagrange multiplier (which is weaker than second-order sufficiency). Local \(Q\)-superlinear convergence is established under the appropriate control of the penalty parameter values. For optimization problems, we demonstrate in addition local \(Q\)-linear convergence for sufficiently large fixed penalty parameters. Both exact and inexact versions of the method are considered. Contributions with respect to previous state-of-the-art analyses for equality-constrained problems consist in the extension to the variational setting, in using the weaker noncriticality assumption instead of the usual second-order sufficient optimality condition (SOSC), and in relaxing the smoothness requirements on the problem data. In the context of optimization problems, this gives the first local convergence results for the augmented Lagrangian method under the assumptions that do not include any constraint qualifications and are weaker than the SOSC. We also show that the analysis under the noncriticality assumption cannot be extended to the case with inequality constraints, unless the strict complementarity condition is added (this, however, still gives a new result).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ALGENCAN: http://www.ime.usp.br/egbirgin/tango/

  2. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18, 1286–1309 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian methods under the constant positive linear dependence constraint qualification. Math. Program. 111, 5–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andreani, R., Haeser, G., Schuverdt, M.L.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1–2), 255–273 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Academic Press, New York (1982)

    MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and nonsmooth analysis. John Wiley & Sons, New York, USA (1983)

    MATH  Google Scholar 

  7. Conn, A., Gould, N., Sartenaer, A., Toint, P.: A globally convergent augmented Lagrangian algorithm for optimization with general constarints and simple bounds. SIAM J. Numer. Anal. 28, 545–572 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conn, A., Gould, N., Sartenaer, A., Toint, P.: Convergence properties of an augmented Lagrangian algorithm for optimization with a combination of general equality and linear constraints. SIAM J. Optim. 6(3), 674–703 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems. Springer-Verlag, New York (2003)

    Google Scholar 

  10. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. 125(1), 47–73 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fernández, D., Solodov, M.V.: Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition. SIAM J. Optim. 22, 384–407 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  14. Izmailov, A.F.: On the analytical and numerical stability of critical Lagrange multipliers. Comput. Math. Math. Phys. 45(6), 930–946 (2005)

    MathSciNet  Google Scholar 

  15. Izmailov, A.F., Kurennoy, A.S.: On regularity conditions for complementarity problems. Comput. Optim. Appl. 1–18 (2013). doi:10.1007/s10589-013-9604-1

  16. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: The Josephy-Newton method for semismooth generalized equations and semismooth SQP for optimization. Set-Valued Var. Anal. 21, 17–45 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: A note on upper Lipschitz stability, error bounds, and critical multipliers for Lipschitz-continuous KKT systems. Math. Program. 142, 591–604 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Izmailov, A.F., Pogosyan, A.L., Solodov, M.V.: Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints. Comput. Optim. Appl. 51(1), 199–221 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Izmailov, A.F., Solodov, M.V.: The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions. Math. Oper. Res. 27(3), 614–635 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Izmailov, A.F., Solodov, M.V.: Examples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints. Comput. Optim. Appl. 42(2), 231–264 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Izmailov, A.F., Solodov, M.V.: On attraction of Newton-type iterates to multipliers violating second-order sufficiency conditions. Math. Program. 117(1–2), 271–304 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Izmailov, A.F., Solodov, M.V.: On attraction of linearly constrained Lagrangian methods and of stabilized and quasi-Newton SQP methods to critical multipliers. Math. Program. 126(2), 231–257 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 133, 93–120 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Newton-type methods for optimization and variational problems. Springer International Publishing Switzerland, Springer Series in Operations Research and Financial Engineering, Switzerland (2014)

    Book  MATH  Google Scholar 

  25. Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22(4), 1579–1606 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Klatte, D., Kummer, B.: Nonsmooth equations in optimization: regularity, calculus, methods and applications. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  27. Klatte, D., Tammer, K.: On the second order sufficient conditions to perturbed \(\text{ C }^{1,\, 1}\) optimization problems. Optimization 19, 169–180 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. LANCELOT: http://www.cse.scitech.ac.uk/nag/lancelot/lancelot.shtml

  29. Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  30. Powell, M.J.D.: A method for nonlinear constraints in minimization problems, pp. 283–298. Academic Press, London and New York (1969)

    Google Scholar 

  31. Qi, L.: LC\(^1\) functions and LC\(^1\) optimization problems. Technical report AMR 91/21, School of Mathematics, The University of New South Wales, Sydney (1991)

  32. Qi, L.: Superlinearly convergent approximate Newton methods for LC\(^1\) optimization problems. Math. Program. 64, 277–294 (1994)

    Article  MATH  Google Scholar 

  33. Rockafellar, R.T.: Computational schemes for large-scale problems in extended linear-quadratic programming. Math. Program. 48(1–3), 447–474 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.B.: Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time. SIAM J. Control Optim. 28(4), 810–822 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ruszczyński, A.P.: Nonlinear optimization. Princeton university press, Princeton (2006)

    MATH  Google Scholar 

  36. Serre, D.: Matrices: Theory and applications, vol. 216, 2nd edn. Springer (2010)

  37. Solodov, M.V.: Constraint qualifications. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufen, J.P., Smith, J.C. (eds.) Wiley encyclopedia of operations research and management science. John Wiley & Sons, Inc., Hoboken (2010)

    Google Scholar 

  38. Stein, O.: Lifting mathematical programs with complementarity constraints. Math. Program. 131(1–2), 71–94 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank E. I. Uskov for a useful discussion on the relations between results obtained in this work and other existing local convergence theories for multiplier methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Solodov.

Additional information

Research of the first two authors is supported by the Russian Foundation for Basic Research Grant 14-01-00113. The third author is supported in part by CNPq Grant 302637/2011-7, by PRONEX–Optimization, and by FAPERJ.

Appendix

Appendix

This appendix contains lemmas concerning nonsingularity of matrices of certain structure, used in the analysis above. The first one is a refined version of [23, Lemma 1].

Lemma 3

Let \(H\) be an \(n\times n\)-matrix, \(B\) be an \(l\times n\)-matrix, and assume that

$$\begin{aligned} H\xi \not \in \mathrm{im}\, B^{\mathrm{T}}\quad \forall \,\xi \in \ker B\setminus \{0\}. \end{aligned}$$
(64)

Then for any \(M > 0\) there exists \(\gamma >0\) such that

$$\begin{aligned} \left\| \left( \tilde{H} + t(B+\varOmega )^{\mathrm{T}}\tilde{B}\right) \xi \right\| \ge \gamma \Vert \xi \Vert \quad \forall \,\xi \in \mathrm{I\! \mathrm R}^n\end{aligned}$$

for every \(n\times n\)-matrix \(\tilde{H}\) close enough to \(H\), every \(l\times n\)-matrix \(\tilde{B}\) close enough to \(B\), every \(t\in \mathrm{I\! \mathrm R}\) such that \(|t|\) is sufficiently large, and for every \(l\times n\)-matrix \(\varOmega \) satisfying \(\Vert \varOmega \Vert \le M/|t|\).

Proof

Suppose the contrary, i.e., that for some \(M>0\) there exist sequences \(\{H_k\}\) of \(n\times n\)-matrices, \(\{B_k\}\) and \(\{\varOmega _k\}\) of \(l\times n\)-matrices, \(\{t_k\}\subset \mathrm{I\! \mathrm R}\), and \(\{\xi ^k\}\subset \mathrm{I\! \mathrm R}^n\setminus \{0\}\), such that \(\{H_k\}\rightarrow H, \{B_k\}\rightarrow B, |t_k|\rightarrow \infty , \Vert \varOmega _k\Vert \le M/|t_k|\) for all \(k\), and

$$\begin{aligned} H_k\xi ^k + t_k(B+\varOmega _k)^{\mathrm{T}}B_k\xi ^k=o(\Vert \xi ^k\Vert ) \end{aligned}$$
(65)

as \(k\rightarrow \infty \). Without loss of generality we may assume that \(\Vert \xi ^k\Vert =1\) for all \(k\) and that \(\{\xi ^k\}\rightarrow \xi \ne 0\). Then (65) means the existence of a sequence \(\{ w^k\} \subset \mathrm{I\! \mathrm R}^n\) such that \(\{ w_k\} \rightarrow 0\) and

$$\begin{aligned} H_k\xi ^k + t_k(B+\varOmega _k)^{\mathrm{T}}B_k\xi ^k =w_k \end{aligned}$$
(66)

for all \(k\). Therefore, it must hold that \(B^{\mathrm{T}}B\xi =0\), since

$$\begin{aligned} B^{\mathrm{T}}B_k\xi ^k = -\frac{1}{t_k}H_k\xi ^k - \varOmega _k^{\mathrm{T}}B_k\xi ^k +\frac{1}{t_k} w^k \end{aligned}$$

tends to \(0\) as \(k\rightarrow \infty \). Consequently, \(\xi \in \ker B\).

On the other hand, (66) implies that

$$\begin{aligned} H_k\xi ^k + t_k\varOmega _k^{\mathrm{T}}B_k\xi ^k - w^k = -t_k B^{\mathrm{T}}B_k\xi ^k \in \mathop {\hbox {im}}B^{\mathrm{T}}\end{aligned}$$

for all \(k\), where the second term in the left-hand side tends to zero as \(k\rightarrow \infty \) because \(\{t_k\varOmega _k\}\) is bounded and \(\{B_k\xi ^k\}\rightarrow B\xi =0\). Hence, \(H\xi \in \mathop {\hbox {im}}B^{\mathrm{T}}\) by the closedness of \(\mathop {\hbox {im}}B^{\mathrm{T}}\). This completes a contradiction with (64). \(\square \)

Lemma 4

Under the assumptions of Lemma 3, for any \(M>0\) and any \(\varepsilon >0\) it holds that for every \(n\times n\)-matrix \(\tilde{H}\) close enough to \(H\), every \(l\times n\)-matrix \(\tilde{B}\) close enough to \(B\), every real \(t\) such that \(|t|\) is sufficiently large, and for all \(l\times n\)-matrices \(\varOmega \) satisfying \(\Vert \varOmega \Vert \le M/|t|\), the matrix \(\tilde{H} + t(B+\varOmega )^{\mathrm{T}}\tilde{B}\) is nonsingular and

$$\begin{aligned} \left\| \left( \tilde{H} + t(B+\varOmega )^{\mathrm{T}}\tilde{B}\right) ^{-1} (B+\varOmega )^{\mathrm{T}}\right\| \le \varepsilon . \end{aligned}$$
(67)

Proof

Fix arbitrary \(M>0\) and \(\varepsilon >0\). The assertion regarding nonsingularity of the matrix \(\tilde{H} + t(B+\varOmega )^{\mathrm{T}}\tilde{B}\) follows directly from Lemma 3. Therefore, we only have to prove that (possibly by making \(\tilde{H}\) closer to \(H, \tilde{B}\) closer to \(B\), and \(|t|\) larger) one can additionally ensure (67).

By contradiction, suppose first that there exist sequences \(\{H_k\}\) of \(n\times n\)-matrices, \(\{B_k\}\) and \(\{\varOmega _k\}\) of \(l\times n\)-matrices, \(\{t_k\}\) of reals, and \(\{\eta ^k\}\subset \mathrm{I\! \mathrm R}^n\), such that \(\{H_k\}\rightarrow H, \{B_k\}\rightarrow B, |t_k|\rightarrow \infty , \Vert \varOmega _k\Vert \le M/|t_k|, \Vert \eta ^k\Vert =1\) and \(\det (H_k + t_k(B+\varOmega _k)^{\mathrm{T}}B_k)\ne 0\) for all \(k\), and for

$$\begin{aligned} \xi ^k=(H_k + t_k(B+\varOmega _k)^{\mathrm{T}}B_k)^{-1}(B+\varOmega _k)^{\mathrm{T}}\eta ^k \end{aligned}$$
(68)

it holds that

$$\begin{aligned} \Vert \xi ^k\Vert > \varepsilon \end{aligned}$$
(69)

for all \(k\). By (68) we have that

$$\begin{aligned} (B+\varOmega _k)^{\mathrm{T}}\eta ^k = H_k\xi ^k + t_k(B+\varOmega _k)^{\mathrm{T}}B_k\xi ^k. \end{aligned}$$
(70)

Due to (69), the sequence \(\{\eta ^k/\Vert \xi ^k\Vert \}\) is bounded. Without loss of generality we may assume that the sequence \(\{\xi ^k/\Vert \xi ^k\Vert \}\) converges to some \(\xi \in \mathrm{I\! \mathrm R}^n\) such that \(\Vert \xi \Vert =1\). Then dividing both sides of (70) by \(t_k\Vert \xi ^k\Vert \) and passing onto the limit as \(k\rightarrow \infty \), we obtain that \(B^{\mathrm{T}}B\xi =0\), and hence, \(\xi \in \ker B\).

Furthermore, by (70), it holds that

$$\begin{aligned} H_k\frac{\xi ^k}{\Vert \xi ^k\Vert } -\varOmega _k^{\mathrm{T}}\frac{\eta ^k}{\Vert \xi ^k\Vert }+t_k\varOmega _k^{\mathrm{T}}B_k\frac{\xi ^k}{\Vert \xi ^k\Vert } = \frac{1}{\Vert \xi ^k\Vert }B^{\mathrm{T}}(\eta ^k-t_k B_k\xi ^k)\in \mathop {\hbox {im}}B^{\mathrm{T}}\end{aligned}$$

for all \(k\). The second term in the left-hand side tends to zero because \(\{\Vert \varOmega _k\Vert \}\rightarrow 0\) while the sequence \(\{\eta ^k/\Vert \xi ^k\Vert \}\) is bounded. Moreover, the third term in the left-hand side tends to zero as well, because \(\{t_k\varOmega _k\}\) is bounded while \(\{B_k\xi ^k/\Vert \xi ^k\Vert \}\rightarrow B\xi =0\). Therefore, by closedness of \(\mathop {\hbox {im}}B^{\mathrm{T}}\), it follows that \(H\xi \in \mathop {\hbox {im}}B^{\mathrm{T}}\), which contradicts (64). \(\square \)

Lemma 5

In addition to the assumptions of Lemma 3, let \(H\) be symmetric.

Then for any \(M>0\) and any \(\varepsilon >0\) it holds that for every symmetric \(n\times n\)-matrix \(\tilde{H}\) close enough to \(H\), every real \(t\) such that \(|t|\) is sufficiently large, and for all \(l\times n\)-matrices \(\varOmega \) satisfying \(\Vert \varOmega \Vert \le M/|t|\), the matrix \(\tilde{H} + t(B+\varOmega )^{\mathrm{T}}(B+\varOmega )\) is nonsingular and the following estimate is valid

$$\begin{aligned} \left\| t(B+\varOmega )\left( \tilde{H} + t(B+\varOmega )^{\mathrm{T}}(B+\varOmega )\right) ^{-1}(B+\varOmega )^{\mathrm{T}}\right\| \le 1 + \varepsilon . \end{aligned}$$
(71)

Proof

Again, nonsingularity of \(\tilde{H} + t(B+\varOmega )^{\mathrm{T}}(B+\varOmega )\) is given by Lemma 3. If at the same time the estimate (71) does not hold, there must exist sequences \(\{H_k\}\) of symmetric \(n\times n\)-matrices, \(\{\varOmega _k\}\) of \(l\times n\)-matrices, \(\{t_k\}\) of reals, and \(\{\eta ^k\}\subset \mathrm{I\! \mathrm R}^n\), such that \(\{H_k\}\rightarrow H, |t_k|\rightarrow \infty \), and for all \(k\) it holds that \(\Vert \varOmega _k\Vert \le M/|t_k|, \Vert \eta ^k\Vert =1, \det (H_k + t_k(B+\varOmega _k)^{\mathrm{T}}(B+\varOmega _k))\ne 0\), and

$$\begin{aligned} \left\| t_k(B+\varOmega _k)\left( H_k + t_k(B+\varOmega _k)^{\mathrm{T}}(B+\varOmega _k)\right) ^{-1}(B+\varOmega _k)^{\mathrm{T}}\eta ^k\right\| > 1 + \varepsilon . \end{aligned}$$
(72)

For each \(k\) set

$$\begin{aligned} W_k&= (B+\varOmega _k)\left( H_k + t_k(B+\varOmega _k)^{\mathrm{T}}(B+\varOmega _k)\right) ^{-1}\nonumber \\&= \left( \left( H_k + t_k(B+\varOmega _k)^{\mathrm{T}}(B+\varOmega _k)\right) ^{-1}(B+\varOmega _k)^{\mathrm{T}}\right) ^{\mathrm{T}}, \end{aligned}$$
(73)

where the symmetry of \(H_k\) was taken into account. Due to Lemma 4 we have that \(\{ W_k\} \rightarrow 0\).

Furthermore, for each \(k\) the vector \(\eta ^k\) can be decomposed into the sum

$$\begin{aligned} \eta ^k = \eta ^k_1 + \eta ^k_2, \end{aligned}$$

where \(\eta ^k_1\in \ker B^{\mathrm{T}}=(\mathop {\hbox {im}}B)^\bot \) and \(\eta ^k_2\in \mathop {\hbox {im}}B\). Observe that \(t_kW_k(B+\varOmega _k)^{\mathrm{T}}\eta ^k_1=W_k(t_k\varOmega _k^{\mathrm{T}})\times \eta ^k_1\), and since the sequences \(\{\eta ^k_1\}\) and \(\{t_k\varOmega _k\}\) are bounded, and \(\{ W_k\} \rightarrow 0\), we conclude that \(\{ t_kW_k(B+\varOmega _k)^{\mathrm{T}}\eta ^k_1\} \rightarrow 0\). On the other hand, as \(\eta ^k_2\in \mathop {\hbox {im}}B\), there exists \(\xi ^k_2\in \mathrm{I\! \mathrm R}^n\) such that \(B\xi ^k_2=\eta ^k_2\) and the sequence \(\{\xi ^k_2\}\) is bounded. Therefore, employing (73),

$$\begin{aligned} \left\| t_kW_k(B+\varOmega _k)^{\mathrm{T}}\eta ^k_2\right\|&= \left\| W_k(t_k(B+\varOmega _k)^{\mathrm{T}}) B\xi ^k_2\right\| \\&\le \left\| W_k(H_k + t_k(B+\varOmega _k)^{\mathrm{T}}(B+\varOmega _k))\xi ^k_2\right\| \\&+ \left\| W_k(H_k +t_k(B+\varOmega _k)^{\mathrm{T}}\varOmega _k)\xi ^k_2\right\| \\&= \left\| (B+\varOmega _k)\xi ^k_2\right\| + \left\| W_k(H_k +t_k(B+\varOmega _k)^{\mathrm{T}}\varOmega _k)\xi ^k_2\right\| \\&\le \Vert \eta ^k_2\Vert +\Vert \varOmega _k\xi ^k_2\Vert + \left\| W_k(H_k +t_k(B+\varOmega _k)^{\mathrm{T}}\varOmega _k)\xi ^k_2\right\| \\&\le 1 +\Vert \varOmega _k\xi ^k_2\Vert + \left\| W_k(H_k +t_k(B+\varOmega _k)^{\mathrm{T}}\varOmega _k)\xi ^k_2\right\| . \end{aligned}$$

The last two terms in the right-hand side tend to zero because the sequences \(\{\xi ^k_2\}\) and \(\{H_k +t_k(B+\varOmega _k)^{\mathrm{T}}\varOmega _k\}\) are bounded, while \(\{\varOmega _k\} \rightarrow 0\) and \(\{ W_k\} \rightarrow 0\). Therefore,

$$\begin{aligned} \limsup _{k\rightarrow \infty }\left\| t_kW_k(B+\varOmega _k)^{\mathrm{T}}\eta ^k\right\|&\le \lim _{k\rightarrow \infty }\left\| t_kW_k(B+\varOmega _k)^{\mathrm{T}}\eta _1^k\right\| \\&+\,\, \limsup _{k\rightarrow \infty }\left\| t_kW_k(B+\varOmega _k)^{\mathrm{T}}\eta _2^k\right\| \\&\le 1, \end{aligned}$$

which contradicts (72). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izmailov, A.F., Kurennoy, A.S. & Solodov, M.V. Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption. Comput Optim Appl 60, 111–140 (2015). https://doi.org/10.1007/s10589-014-9658-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9658-8

Keywords

Navigation