Skip to main content
Log in

An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Recently, a walk-and-round heuristic was proposed by Huang and Mehrotra (Comput Optim Appl, 2012) for generating high quality feasible solutions of mixed integer linear programs. This approach uses geometric random walks on a polyhedral set to sample points in this set. It subsequently rounds these random points using a heuristic, such as the feasibility pump. In this paper, the walk-and-round heuristic is further developed for the mixed integer convex programs (MICPs). Specifically, an outer approximation relaxation step is incorporated. The resulting approach is called a walk-relax-round heuristic. Computational results on problems from the CMU-IBM library show that the points generated from the random walk steps bring additional value. Specifically, the walk-relax-round heuristic using a long step Dikin walk found an optimal solution for 51 out of the 58 MICP test problems. In comparison, the feasibility pump heuristic starting at a continuous relaxation optimum found an optimal solution for 45 test problems. Computational comparisons with a commercial software Cplex 12.1 on mixed integer convex quadratic programs are also given. Our results show that the walk-relax-round heuristic is promising. This may be because the random walk points provide an improved outer approximation of the convex region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.: Feasibility Pump Heuristics for Mixed Integer Nonlinear Programs. Unpublished working paper (2008)

  2. Achterberg, T., Berthold, T.: Improving the feasibility pump. Discret. Optim. 4(1), 77–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. AMPL: A modeling language for mathematical programming. www.ampl.com

  4. Andersen, E., Ye, Y.: A computational study of the homogeneous algorithm for large-scale convex optimization. Comput. Optim. Appl. 10(3), 243–269 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Andersen, E., Ye, Y.: On a homogeneous algorithm for the monotone complementarity problem. Math. Program. 84, 375–399 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baena, D., Castro, J.: Using the analytic center in the feasibility pump. Oper. Res. Lett. 39(5), 310–317 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Balas, E., Ceria, S., Dawande, M., Margot, F., Pataki, G.: Octane: a new heuristic for pure 0–1 programs. Oper. Res. 49(2), 207–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baumert, S., Ghate, A., Kiatsupaibul, S., Shen, Y., Smith, R.L., Zabinsky, Z.B.: Discrete hit-and-run for sampling points from arbitrary distributions over subsets of integer hyper-rectangles. Oper. Res. 57, 727–739 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems. Discret. Optim. 4(1), 63–76 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM 51(4), 540–556 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonami, P., Gonçalves, J.: Heuristics for convex mixed integer nonlinear programs. Comput. Optim. Appl. 51(2), 729–747 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex MINLP. Discret. Optim. 5, 186–204 (2008)

    Article  MATH  Google Scholar 

  13. Bonami, P., Cornuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119, 331–352 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. CMU-IBM open source MINLP project. http://egon.cheme.cmu.edu/ibm/page.htm

  15. COIN-OR Ipopt. http://www.coin-or.org/ipopt/

  16. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: Experiments with a Feasibility Pump Approach for Nonconvex MINLPs. Lecture Notes in Computer Science, vol. 6049, pp. 350–360 (2010)

  17. D’Ambrosio, C., Frangioni, A., Liberti, L., Lodi, A.: A storm of feasibility pumps for nonconvex minlp. Math. Program. 136(2), 375–402 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Danna, E., Rothberg, E., Pape, C.: Exploring relaxation induced neighborhoods to improve MIP solutions. Math. Program. 102(1), 71–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1), 23–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Math. Program. Comput. 1, 201–222 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hans D. Mittelmann’s MIQP test problems. http://plato.asu.edu/ftp/miqp.html

  24. Huang, K.-L., Mehrotra, S.: An empirical evaluation of walk-and-round heuristics for mixed integer linear programs. Comput. Optim. Appl. 55(3), 545–570 (2013)

  25. Huang, K.-L., Mehrotra, S.: Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method. http://www.optimization-online.org/DB_HTML/2012/04/3431.html (2012)

  26. IBM Cplex optimizer. http://www.ibm.com/

  27. Kannan, R., Narayanan, H.: Random walks on polytopes and an affine interior point method for linear programming. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 561–570 (2009)

  28. Kannan, R., Vempala, S.: Sampling lattice points. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 696–700 (1997)

  29. Lovász, L.: Hit-and-run mixes fast. Math. Program. 86(3), 443–461 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lovász, L., Vempala, S.: Hit-and-run from a corner. SIAM J. Comput. 35(4), 985–1005 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mehrotra, S., Huang, K.-L.: Computational experience with a modified potential reduction algorithm for linear programming. Optim. Methods Softw. 27(4–5), 865–891 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Naoum-Sawaya, J.: Recursive central rounding heuristic for mixed integer programs. Comput. Oper. Res. 43, 191–200 (2014)

    Article  MathSciNet  Google Scholar 

  34. Narayanan, H.: Randomized Interior Point Methods for Sampling and Optimization. http://arxiv.org/abs/arXiv:0911.3950 (2009)

  35. Smith, R.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Oper. Res. 32(6), 1296–1308 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vempala, S.: Geometric random walks: a survey. Comb. Comput. Geom. 52, 573–612 (2005)

    MathSciNet  Google Scholar 

  37. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  38. Zabinsky, Z., Smith, R., McDonald, J., Romeijn, H., Kaufman, D.: Improving hit-and-run for global optimization. J. Glob. Optim. 3(2), 171–192 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of both authors was partially supported by Grant ONR N00014-09-10518, N00014-210051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Mehrotra.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KL., Mehrotra, S. An empirical evaluation of a walk-relax-round heuristic for mixed integer convex programs. Comput Optim Appl 60, 559–585 (2015). https://doi.org/10.1007/s10589-014-9693-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9693-5

Keywords

Navigation