Skip to main content
Log in

Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider parameter optimization problems which are subject to constraints given by parametrized partial differential equations. Discretizing this problem may lead to a large-scale optimization problem which can hardly be solved rapidly. In order to accelerate the process of parameter optimization we will use a reduced basis surrogate model for numerical optimization. For many optimization methods sensitivity information about the functional is needed. In the following we will show that this derivative information can be calculated efficiently in the reduced basis framework in the case of a general linear output functional and parametrized evolution problems with linear parameter separable operators. By calculating the sensitivity information directly instead of applying the more widely used adjoint approach we can rapidly optimize different cost functionals using the same reduced basis model. Furthermore, we will derive rigorous a-posteriori error estimators for the solution, the gradient and the optimal parameters, which can all be computed online. The method will be applied to two parameter optimization problems with an underlying advection-diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amsallem, D., Deolalikar, S., Gurrola, F., Farhat, C.: Model predictive control under coupled fluid-structure constraints using a database of reduced-order models on a tablet. In: AIAA Fluid Dynamics and Co-located Conferences and Exhibit (2013)

  2. Antil, H., Heinkenschloss, M., Hoppe, R., Sorensen, D.: Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Vis. Sci. 13, 249–264 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antoulas, A.: An overview of approximation methods for large-scale dynamical systems. Annu. Rev. Control 29, 181–190 (2005)

    Article  Google Scholar 

  4. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris Ser. I 339, 667–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biegler, L.: Large-Scale PDE-Constrained Optimization. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  6. Borggaard, J., Burns, J.: A PDE sensitivity equation method for optimal aerodynamic design. J. Comput. Phys. 136, 366–384 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borggaard, J., Burns, J., Surana, A., Zietsman, L.: Control, estimation and optimization of energy efficient buildings. In: American Control Conference (2009)

  8. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008). doi:10.1137/070694855

    Article  MATH  MathSciNet  Google Scholar 

  9. Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. Techiques of Scientific Computing (Part 2), vol. V. Elsevier, Amsterdam (1997)

    Google Scholar 

  10. Cea, J.: Conception optimale ou identification de formes calcul rapide de la derive directionelle de la fonction cout. Math. Model. Numer. Anal. 20(3), 371–402 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Dede, L.: Reduced basis method and a posteriori error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50(2), 287–305 (2011)

    Article  MathSciNet  Google Scholar 

  12. Dihlmann, M.: Adaptive Reduced Basis Method for Evolution Problems with Application in Parameter Optimization and State Estimation. Ph.D. thesis, University of Stuttgart (2014) (in preparation)

  13. Dihlmann, M., Drohmann, M., Haasdonk, B.: Model reduction of parametrized evolution problems using the reduced basis method with adaptive time-partitioning. In: Proceedings of ADMOS 2011 (2011)

  14. Dihlmann, M., Haasdonk, B.: Certified nonlinear parameter optimization with reduced basis surrogate models. Technical report, University of Stuttgart (Accepted by PAMM) (2013)

  15. Geiger, C., Kanzow, C.: Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

  17. Grepl, M.: Reduced-basis approximations and a posteriori error estimation for parabolic partial differential equations. Ph.D. thesis, Massachusetts Institute of Technology (2005)

  18. Grepl, M., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci. Paris Ser. 1 349, 873–877 (2011)

    Article  MATH  Google Scholar 

  19. Grepl, M., Patera, A.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Math. Model. Numer. Anal. 39(1), 157–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Griesse, R., Vexler, B.: Numerical sensitivity analysis for the quantity of interest in PDE-constrained optimization. SIAM J. Sci. Comput. 29(1), 22–48 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Haasdonk, B.: Convergence rates of the POD-Greedy method. Math. Model. Numer. Anal. 47, 859–873 (2013). doi:10.1051/m2an/2012045

    Article  MATH  MathSciNet  Google Scholar 

  22. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple basis generation approach for parametrized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. 17, 423–442 (2012)

    Article  MathSciNet  Google Scholar 

  23. Haasdonk, B., Ohlberger, M.: Adaptive basis enrichment for the reduced basis method applied to finite volume schemes. In: Proceedings of 5th International Symposium on Finite Volumes for Complex Applications, pp. 471–478 (2008)

  24. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Model. Numer. Anal. 42(2), 277–302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Haasdonk, B., Ohlberger, M., Rozza, G.: A reduced basis method for evolution schemes with parameter-dependent explicit operators. Electron. Trans. Numer. Anal. 32, 145–161 (2008)

    MATH  MathSciNet  Google Scholar 

  26. Hasenauer, J., Löhning, M., Khammash, M., Allgöwer, F.: Dynamical optimization using reduced order models: a method to guarantee performance. J. Process Control 22, 1490–1501 (2012)

    Article  Google Scholar 

  27. Hay, A., Akhtar, I., Borggaard, J.: On the use of sensitivity analysis in model reduction to predict flows for varying inflow conditions. Int. J. Numer. Methods Fluids 68(1), 122–134 (2011)

    Article  MathSciNet  Google Scholar 

  28. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)

    Google Scholar 

  29. Hinze, M., Tröltzsch, F.: Discrete concepts versus error analysis in PDE-constrained optimization. GAMM-Mitteilungen 33, 148–162 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Huynh, D., Rozza, G., Sen, S., Patera, A.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. Acad. Sci. Paris Ser. I 345, 473–478 (2007). doi:10.1016/j.crma.2007.09.019

    Article  MATH  MathSciNet  Google Scholar 

  31. Iapichino, L., Ulbrich, S., Volkwein, S.: Multiobjective PDE-constrained Optimization Using the Reduced-Basis Method. Technical report, University of Konstanz (2013)

  32. Jarre, F., Stoer, J.: Optimierung. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  33. Kantorovich, L.: On Newton’s method. Trudy Matematicheskogo Instituta 28(104), 144 (1949)

    Google Scholar 

  34. Lass, O.: Reduced order modeling and parameter identification for coupled nonlinear PDE systems. Ph.D. thesis, University of Konstanz (2014)

  35. Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199, 1583–1592 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lewis, R., Patera, A., Peraire, J.: A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Finite Elem. Anal. Des. 34, 271–290 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nguyen, N., Rozza, G., Huynh, D., Patera, A.: Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs; Application to Real-time Bayesian Parameter Estimation. Wiley, Hoboken (2010)

    Google Scholar 

  38. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Finaincial Engineering. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  39. Oliveira, I., Patera, A.: Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Eng. 8, 43–65 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Plato, R.: Concise Numerical Mathematics, Graduate Studies in Mathematics, vol. 57. American Matheatical Society, Providence (2003)

    Book  Google Scholar 

  41. Quarteroni, A., Rozza, G., Quaini, A.: Reduced basis methods for optimal control of advection-diffusion problems. In: Advances in Numerical Mathematics, MOX 79, pp. 193–216 (2006)

  42. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Sachs, E., Volkwein, S.: POD-Galerkin approximations in PDE-constrained optimization. GAMM-Mitteilungen 33(2), 194–208 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimation for linear-quadratic optimal control problems. Comput. Optim. Appl. 44(1), 83–115 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of 16th AIAA Computational Fluid Dynamics Conference. Paper 2003-3847 (2003)

  46. Zahr, M., Farhat, C.: Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Technical report, arXiv:1407.7618 (2014)

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for financial support of the Project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart and the Baden-Württemberg Stiftung gGmbH. The authors would also like to thank the reviewers for their very detailed comments helping us to improve the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus A. Dihlmann.

Appendix: Matrices for the error estimator of \(\partial _{\mu _i}u_N\)

Appendix: Matrices for the error estimator of \(\partial _{\mu _i}u_N\)

$$\begin{aligned} \left( \varvec{K}_{IIi}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{I}^{k+1} (\psi _{n,i}) , {\fancyscript{L}}_{I}^{k+1} (\psi _{m,i}) \rangle \\ \left( \varvec{K}_{EEi}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{E}^{k} (\psi _{n,i}) , {\fancyscript{L}}_{E}^{k} (\psi _{m,i}) \rangle \\ \left( \varvec{K}_{\partial E\partial Ei}^k \right) _{n,m}&= \langle {(\partial _{\mu _i}{\fancyscript{L}})}_{h,Ex}^{k} (\varphi _n) , {(\partial _{\mu _i}{\fancyscript{L}})}_{h,Ex}^{k}(\varphi _m) \rangle \\ \left( \varvec{K}_{\partial I\partial Ii}^k \right) _{n,m}&= \langle {(\partial _{\mu _i}{\fancyscript{L}})}_{h,Im}^{k+1} (\varphi _n) , {(\partial _{\mu _i}{\fancyscript{L}})}_{h,Im}^{k+1}(\varphi _m) \rangle \\ \left( \varvec{K}_{\partial b\partial bi}^k \right)&= \langle {(\partial _{\mu _i}b)}_{h}^{k} , {(\partial _{\mu _i}b)}_{h}^{k} \rangle \\ \left( \varvec{K}_{IEi}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{I}^{k+1} (\psi _{n,i}) , {\fancyscript{L}}_{E}^{k} (\psi _{m,i}) \rangle \\ \left( \varvec{K}_{I\partial Ei}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{I}^{k+1} (\psi _{n,i}) , (\partial _{\mu _i}{\fancyscript{L}}_{E}^{k}) (\varphi _{m}) \rangle \\ \left( \varvec{K}_{I\partial Ii}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{I}^{k+1} (\psi _{n,i}) , (\partial _{\mu _i}{\fancyscript{L}}_{I}^{k+1}) (\varphi _{m}) \rangle \\ \left( \varvec{K}_{I\partial bi}^k \right) _{n}&= \langle {\fancyscript{L}}_{I}^{k+1} (\psi _{n,i}) , (\partial _{\mu _i}b_{h}^{k}) \rangle \\ \left( \varvec{K}_{E\partial Ei}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{E}^{k} (\psi _{n,i}) , (\partial _{\mu _i}{\fancyscript{L}}_{E}^{k}) (\varphi _{m}) \rangle \\ \left( \varvec{K}_{E\partial Ii}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{E}^{k} (\psi _{n,i}) , (\partial _{\mu _i}{\fancyscript{L}}_{I}^{k+1}) (\varphi _{m}) \rangle \\ \left( \varvec{K}_{E\partial bi}^k \right) _{n,m}&= \langle {\fancyscript{L}}_{E}^{k} (\psi _{n,i}) , (\partial _{\mu _i}b_{h}^{k}) \rangle \\ \left( \varvec{K}_{\partial E\partial Ii}^k \right) _{n,m}&= \langle (\partial _{\mu _i}{\fancyscript{L}}_{E}^{k}) (\varphi _{n}) , (\partial _{\mu _i}{\fancyscript{L}}_{I}^{k+1}) (\varphi _{m}) \rangle \\ \left( \varvec{K}_{\partial E\partial bi}^k \right) _{n}&= \langle (\partial _{\mu _i}{\fancyscript{L}}_{E}^{k}) (\varphi _{n}) , (\partial _{\mu _i}b_{h}^{k}) \rangle \\ \left( \varvec{K}_{\partial I\partial bi}^k \right) _{n}&= \langle (\partial _{\mu _i}{\fancyscript{L}}_{I}^{k+1}) (\varphi _{n}) , (\partial _{\mu _i}b_{h}^{k}) \rangle \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dihlmann, M.A., Haasdonk, B. Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput Optim Appl 60, 753–787 (2015). https://doi.org/10.1007/s10589-014-9697-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9697-1

Keywords

Navigation