Skip to main content
Log in

Differential evolution using a superior–inferior crossover scheme

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Differential evolution (DE) is a new population-based stochastic optimization, which has difficulties in solving large-scale and multimodal optimization problems. The reason is that the population diversity decreases rapidly, which leads to the failure of the clustered individuals to reproduce better individuals. In order to improve the population diversity of DE, this paper aims to present a superior–inferior (SI) crossover scheme based on DE. Specifically, when population diversity degree is small, the SI crossover is performed to improve the search space of population. Otherwise, the superior–superior crossover is used to enhance its exploitation ability. In order to test the effectiveness of our SI scheme, we combine the SI with adaptive differential evolution (JADE), which is a recently developed DE variant for numerical optimization. In addition, the theoretical analysis of SI scheme is provided to show how the population’s diversity can be improved. In order to make the selection of parameters in our scheme more intelligently, a self-adaptive SI crossover scheme is proposed. Finally, comparative comprehensive experiments are given to illustrate the advantages of our proposed method over various DEs on a suite of 24 numerical optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer-Verlag, New York (1996)

    Book  MATH  Google Scholar 

  2. Tang, Y., Wang, Z., Gao, H., Swift, S., Kurth, J.: A constrained evolutionary computation method for detecting controlling regions of cortical networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(6), 1569–1581 (2012)

    Article  Google Scholar 

  3. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–369 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Tang, Y., Gao, H., Kurths, J.: Multiobjective identification of controlling areas in neuronal networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(3), 708–720 (2013)

    Article  Google Scholar 

  5. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

  6. Chiou, J.P., Wang, F.S.: A hybrid method of differential evolution with application to optimal control problems of a bioprocess system. In: Proceedings of the IEEE World Congress on Computational Intelligence, pp. 627–631 (1998)

  7. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2011)

    Article  Google Scholar 

  8. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evolution for limited memory optimization problems. Inf. Sci. 181, 2469–2487 (2011)

    Article  MathSciNet  Google Scholar 

  9. Rahnamayan, S., Tizhoosh, H., Salama, M.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2009)

    Article  Google Scholar 

  10. Gong, W., Cai, Z.: An improved multiobjective differential evolution based on Pareto-adaptive-dominance and orthogonal design. Eur. J. Oper. Res. 198, 576–601 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. Eur. J. Oper. Res. 12(1), 107–125 (2010)

    Google Scholar 

  12. Tang, Y., Wang, Z., Fang, J.: Feekback learning particle swarm optimization. Appl. Soft Comput. 11, 4713–4725 (2011)

    Article  Google Scholar 

  13. Gong, W., Cai, Z., Ling, C.X.: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput. 15, 645–665 (2011)

    Article  Google Scholar 

  14. Jia, D., Zheng, G., Khan, M.K.: An effective memetic differential evolution algorithm based on chaotic local search. Inf. Sci. 181(15), 3175–3187 (2011)

    Article  Google Scholar 

  15. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evolution for limited memory optimization problems. Inf. Sci. 181(12), 2469–2487 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kaelo, P., Ali, M.M.: Differential evolution algorithms using hybrid mutation. Comput. Optim. Appl. 37(2), 231–246 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sun, J., Zhang, Q., Tsang, E.: DE/EDA: a new evolutionary algorithm for global optimization. Inf. Sci. 169(3), 249–262 (2005)

    Article  MathSciNet  Google Scholar 

  18. Ou, Y., Wang, G.: A hybrid ODE-based method for unconstrained optimization problems. Comput. Optim. Appl. 53(1), 249–270 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ali, M.M., Zhu, W.: A penalty function-based differential evolution algorithm for constrained global optimization. Comput. Optim. Appl. 54(3), 707–739 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution. Soft Comput. 9, 448–462 (2005)

    Article  MATH  Google Scholar 

  21. Qin A., Suganthan, P.: Self-adaptive differential evolution for numerical optimization. In: Proceedings of CEC 2005, vol. 1. IEEE Computer Press, pp. 630-636 (2005)

  22. Brest, J., Boskovic, B., Greiner, S., Zumer, V., Maucec, M.S.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput. 11(7), 617–629 (2007)

    Article  MATH  Google Scholar 

  23. Mallipeddi, R., Suganthana, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011)

    Article  Google Scholar 

  24. Zhang, J.Q., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

    Article  Google Scholar 

  25. Gong, W., Cai, Z., Ling, C.X., Li, H.: Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans. Syst. Man. Cybern. B Cybern. 41(2), 397–413 (2011)

    Article  Google Scholar 

  26. Wang, Y., Cai, Z., Zhang, Q.: Diffeential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15, 55–66 (2011)

    Article  Google Scholar 

  27. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Self-adaptive differential evolution incorporating a heuristic mixing of operators. Comput. Optim. Appl. 54(3), 771–790 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu, W., Tang, Y., Fang, J., Zhang, W.: Adaptive population tuning scheme for differential evolution. Inf. Sci. 223, 164–191 (2013)

    Article  Google Scholar 

  29. Zhu, W., Fang, J., Tang, Y.: Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size. PLoS One 7(7), e40549 (2012)

    Article  Google Scholar 

  30. Tirronen, V., Neri, F.: Differnetial evolution with fitness diversity self-adaptation. Nature 19(3), 199–234 (2009)

    Google Scholar 

  31. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differential evolution frameworks. Soft Comput. 13(8), 811–831 (2009)

    Article  Google Scholar 

  32. Caponio, A., Cascella, G., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of PMSM drives. IEEE Trans. Syst. Man. Cybern. B Cybern. 37(1), 28–41 (2007)

    Article  Google Scholar 

  33. Neri, F., Toivanen, J., Makinen, R.: An adaptive evolutionary algorithm with intelligent mutation local searcher for designing multidrug therapies for HIV. Appl. Intell. 27(3), 219–235 (2007)

    Article  Google Scholar 

  34. Neri, F., Toivanen, J., Cascella, G., Ong, Y.: An adaptive multimeme algorithm for designing HIV multidurg therapies. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(2), 264–278 (2007)

    Article  Google Scholar 

  35. Tirronen, V., Neri, F.: A memetic differential evolution in filter design for defect detection in paper production. In: Giacobina, M. (ed.) Evo Workshops 2007. LNCS, vol. 4448, pp. 320–329 (2007)

  36. Deb, K., Partap, A.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  37. Wang, Y., Wu, L., Yuan, X.: Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput. 14, 193–209 (2010)

    Article  Google Scholar 

  38. Minhazul, S., Das, S., Ghosh, S.: A adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man. Cybern. B Cybern. 42(2), 482–500 (2012)

    Article  Google Scholar 

  39. McNulty, J., Neff, L., Karney, B.R.: Beyond initial attraction: physical attractiveness in newlywed marriage. J. Fam. Psychol. 22(1), 135–143 (2008)

    Article  Google Scholar 

  40. Mohamed, A., Sabry, H., Khorshid, M.: An alternative differential evolution algorithm for global optimization. J. Adv. Res. 3, 149–165 (2012)

    Article  Google Scholar 

  41. Iorio, A., Li, X.: Solving rotatedmulti-objective optimization problems using differential evolution[C]. In: Australian Conference on Artificial Intelligence. Springer, Berlin, pp. 861–872 (2004)

  42. Eiben, A., Schoenauer, M.: Evolutionary computing. Inf. Process. Lett. 82, 1–6 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Liang, J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, Pasadena, CA, pp. 68–75 (2005)

  44. Suganthan, P.N., Hansen, N., Liang, J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Nanyang Technological University, Singapore (2005)

    Google Scholar 

  45. Plagianakos, V.P., Vrahatis, M.N.: Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima. In: Proceedings of the IEEE Congress on Evolutionary Computation, 2005, vol. 2, pp. 1847–1854 (2005)

Download references

Acknowledgments

The work was supported by the Education Commission Scientific Research Innovation Key Project of Shanghai under Grant 13ZZ050, the Science and Technology Commission Innovation Plan Basic Research Key Project of Shanghai under Grant 12JC1400400, the Nursery Research Project of Henan University of Traditional Chinese Medicine under Grant MP2013-36, and The National Natural Science Foundation of China under Grant 61304062. The authors are grateful to the Editor-in-Chief, Associate Editor, and anonymous reviewers for their constructive suggestions that helped to improve the content as well as the quality of the paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Xu.

Additional information

Yulong Xu and Jian-an Fang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Fang, Ja., Zhu, W. et al. Differential evolution using a superior–inferior crossover scheme. Comput Optim Appl 61, 243–274 (2015). https://doi.org/10.1007/s10589-014-9701-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9701-9

Keywords

Navigation