Skip to main content
Log in

An exterior point polynomial-time algorithm for convex quadratic programming

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper an exterior point polynomial time algorithm for convex quadratic programming problems is proposed. We convert a convex quadratic program into an unconstrained convex program problem with a self-concordant objective function. We show that, only with duality, the Path-following method is valid. The computational complexity analysis of the algorithm is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karmarkar, N.K.: A new polynomial time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kapoor, S., Vaidya, P.M.: Fast algorithms for convex quadratic programming and multicommodity flows, In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing, California, pp. 147–159 (1986)

  3. Ye, Y., Tse, E.: An extension of Karmarkar’s projective algorithm for convex quadratic programming. Math. Program. 44, 157–179 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldfarb, D., Liu, S.: An \(O(n^3L)\) primal interior point algorithm for convex quadratic programming. Math. Program. 49, 325–346 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldfarb, D., Liu, S.: An \(O(n^3L)\) primal-dual potential reduction algorithm for solving convex quadratic programs. Math. Program. 61, 161–170 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Monteiro, R.C., Adler, I.: Interior path following primal-dual algorithms. Part II: convex quadratic programming. Math. Program. 44, 42–66 (1989)

    Google Scholar 

  7. Gonzaga, C.C.: An algorithm for solving linear programming problems in \(O(n^3L)\) operations. In: N. Megiddo (ed.), Chapter 1, advances in mathematical programming—interior point and related methods. Springer, Berlin (1989)

  8. Monteiro, R.C., Adler, I.: Interior path following primal-dual algorithms. Part I: linear programming. Math. Program. 44, 27–41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mehrotra, S., Sun, J.: An algorithm for convex quadratic programming that requires \(O(n^{3.5}L)\) arithmetic operations. Math. Oper. Res. 15, 342–363 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jarre, F.: On the convergence of the method of analytic centers when applied to convex quadratic programs. Math. Program. 49, 341–358 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Renegar, J.: A polynomial-time algorithm based on Newton’s method for linear programming. Math. Program. 40, 59–93 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldfarb, D., Liu, S., Achache, M.: A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25(1), 97–110 (2006)

    MathSciNet  Google Scholar 

  13. Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D., Toraldo, G.: Convergence analysis of an inexact potential reduction method for convex quadratic programming. J. Optim. Theory Appl. 135, 355–366 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yang, Y.: A polynomial arc-search interior-point algorithm for convex quadratic programming. Eur. J. Oper. Res. 215, 25–38 (2011)

    Article  MATH  Google Scholar 

  15. Liu, Z., Chen, Y., Sun, W., Wei, Z.: A predictor-corrector algorithm with multiple corrections for convex quadratic programming. Comput. Optim. Appl. 52, 373–391 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jung, J.H., O’Leary, D.P., Tits, A.L.: Adaptive constraint reduction for convex quadratic programming. Comput. Optim. Appl. 51, 125–157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic. Optimization 11(1–4), 275–302 (1999)

    MathSciNet  Google Scholar 

  18. Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex quadratic programming. Math. Prog. Comp. 4, 71–107 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tian, D.G.: An entire space polynomial time algorithm for linear programming. J. Glob. Optim. 58(1), 109–135 (2014). doi:10.1007/s10898-013-0048-z

    Article  MATH  Google Scholar 

  20. Fang, S.C., Tsao, H.S.J.: An unconstrained convex programming approach to solving convex quadratic programming problems. Optimization 27, 235–243 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fang, S.C., Tsao, H.S.J.: Perturbing the dual feasible region for solving convex quadratic programs. J. Optim. Theory Appl. 94(1), 73–85 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Al-Sultan, K.S., Murty, K.G.: Exterior point algorithms for nearest points and convex quadratic programs. Math. Program. 57, 145–161 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ben-Daya, M., Al-Sultan, K.S.: A new penalty function algorithm for convex quadratic programming. Eur. J. Oper. Res. 101, 155–163 (1997)

    Article  MATH  Google Scholar 

  24. Yamashita, H., Tanabe, T.: A primal-dual exterior point method for nonlinear optimization. SIAM J. Optim. 20(6), 3335–3363 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yassini, K.E., Ben Ali, S.E.H.: An interiorCexterior approach for convex quadratic programming. Appl. Numer. Math. 62(9), 1139–1155 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Coleman, T.F., Hulbert, L.A.: A globally and superlinearly convergent algorithm for convex quadratic programming with simple bounds. SIAM J. Optim. 3, 298–321 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Friedlander, A., Martinez, J.M., Raydan, M.: A new method for large-scale box constrained convex quadratic minimization problems. Optim. Methods Softw. 5(1), 57–74 (1995)

    Article  Google Scholar 

  28. Madsen, K., Nielsen, H.B., Pinar, M.C.: A finite continuation algorithm for bound constrained quadratic programming. Siam J. Optim. 9(1), 62–83 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Coleman, T.F., Liu, J.: An exterior newton method for strictly convex quadratic programming. Comput. Optim. Appl. 15(1), 5–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu, S.: A non-interior path following method for convex quadratic programming problems with bound constraints. Comput. Optim. Appl. 27(3), 285–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27, 1–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gill, P., Murray, W., Saunders, M., Wright, M.: A Schur complement method for sparse quadratic programming, In Reliable Numerical Computation, pp. 113–138. Oxford University Press, Oxford (1990)

  33. Bartlett, R.A., Biegler, L.T.: QPSchur: a dual, active-set, Schur-complement method for large-scale and structured convex quadratic programming. Optim. Eng. 7, 5–32 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Curtis, F.E., Han, Z., Robinson, D.P.: A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization. Comput. Optim. Appl. (2014). doi:10.1007/s10589-014-9681-9

  35. Burke, J., Xu, S.: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem. Math. Program. 87(1), 113–130 (2000)

    MATH  MathSciNet  Google Scholar 

  36. Zhao, Y.B., Li, D.: A globally and locally superlinear convergent non-interior-point algorithm for \(P_{0}\) LCPS. SIAM J. Optim. 13(4), 1195–1221 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hotta, K., Yoshise, A.: Global convergence of a class of non-interior-point algorithms using Chen–Harker–Kanzow functions for nonlinear complementarity problems. Math. Program. 86, 105–133 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tseng, P.: Analysis of a non-interior continuation method based on Chen–Mangasarian smoothing functions for complementarity problems. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 381–404. Kluwer Academic Publishers, Philip Drive Norwell, MA (1998)

    Chapter  Google Scholar 

  39. Xu, S.: The global linear convergence of an infeasible non-interior path-following algorithm for complementarity problems with uniform P-functions. Math. Program. 87, 501–517 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen, B., Chen, X.: A global and local super-linear continuation method for \(P_0 + R_0\) and monotone NCP. SIAM J. Optim. 9, 605–623 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Chen, B., Chen, X.: A global linear and local quadratic continuation method for variational inequalities with box constraints. Comput. Optim. Appl. 17, 131–158 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  42. Chen, B., Xiu, N.: A global linear and local quadratic non-interior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions. SIAM J. Optim. 9, 605–623 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Burke, J., Xu, S.: Complexity of a noninterior path-following method for the linear complementarity problem. J. Optim. Theory Appl. 112(1), 53–76 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Huber, P.: Robust Statistics. John Wiley, New York (1981)

    MATH  Google Scholar 

  45. Hotta, H., Inaba, M., Yoshise, A.: A complexity analysis of a smoothing method using chks-functions for monotone linear complementarity problems. Comput. Optim. Appl. 17(2–3), 183–201 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Necoara, I., Suykens, J.: Applications of a smoothing technique to decomposition in convex optimization. IEEE Trans. Autom. Control 53(11), 2674–2679 (2008)

    Article  MathSciNet  Google Scholar 

  47. Necoara, I., Suykens, J.: Interior-point Lagrangian decomposition method for separable convex optimization. J. Optim. Theory Appl. 143, 567–588 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Quoc, D.Q., Necoara, I., Savorgnan, I., Diehl, M.: An inexact perturbed path-following method for lagrangian decomposition in large-scale separable convex optimization. SIAM J. Optim. 23(1), 95–125 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Quoc, D.Q., Necoara, I., Diehl, M.: Path-following gradient-based decomposition algorithms for separable convex optimization. J. Global Optim. 59(1), 59–80 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  50. Polyak, R.: Nonlinear rescaling vs. smoothing technique in convex optimization. Math. Program. Ser. A 92, 197–235 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Fiacco, A.V., McCormick, G.E.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York (1968)

    MATH  Google Scholar 

  52. Fischer, A.: A special newton-type optimization method. Optimization 24, 269–284 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  53. Kort, B.W. , Bertsekas, D.P.: A new penalty function method for constrained minimization. In: Proceedings of the IEEE Conference on Decision and Control (New Orleans, 1972), pp. 162–166 (1972)

  54. Fang, S.C., Tsao, H.S.J.: On the entropic perturbation and exponential penalty methods for linear programming. J. Optim. Theory Appl. 89(2), 461–466 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  55. Alvarez, F., Cominetti, R.: Primal and dual convergence of a proximal point exponential penalty method for linear programming. Math. Program. Ser. A 93, 87–96 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. Polyak, R.: Modified barrier functions. Math. Program. 54, 177–222 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tseng, P., Bertsekas, D.: On the convergence of the exponential multipliers method for convex programming. Math. Program. 60, 1C19 (1993)

    Article  MathSciNet  Google Scholar 

  58. Polyak, R., Teboulle, M.: Nonlinear rescaling and proximal-like methods in convex optimization. Math. Program. 76, 265–284 (1997)

    MATH  MathSciNet  Google Scholar 

  59. Polyak, R., Griva, I.: Primal-dual nonlinear rescaling method for Convex Optimization. Journal of optimization theory and applications 122(1), 111–156 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  60. Polyak, R.: Primal-dual exterior point method for convex optimization. Optim. Methods Softw. 23(1), 141–160 (2007)

    Article  MathSciNet  Google Scholar 

  61. Griva, I., Polyak, R.: 1.5-Q-superlinear convergence of an exterior-point method for constrained optimization. J. Global Optim. 40(4), 679–695 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  62. Griva, I., Polyak, R.: Primal-dual nonlinear rescaling method with dynamic scaling parameter update. Math. Program. Ser. A 106, 237–259 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  63. Melman, A., Polyak, R.: The Newton modified barrier method for QP probems. Ann. Oper. Res. 62, 465–519 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  64. Gould, N.I.M., Toint, P.L.: A quadratic programming page, http://www.numerical.rl.ac.uk/qp/qp.html

  65. Gould, N.I.M., Toint, P.L.: A quadratic programming bibliography, Internal Report 2000–1, Rutherford Appleton Laboratory (2012)

  66. Martin, A.D.: Mathematical programming of portfolio selections. Manag. Sci. 1(2), 152–166 (1955)

    Article  Google Scholar 

  67. Best, M.J., Kale, J.: Quadratic programming for large-scale portfolio optimization. In: Keyes, J. (ed.) Financial Services Information Systems, pp. 513–529. CRC Press, Boca Raton (2000)

    Chapter  Google Scholar 

  68. Whalen, T., Wang, G.: Optimizing ordinal utility using quadratic programming and psychophysical theory, In: Proceedings fot the PeachFuzz 2000 19th International Conference of the North American Fuzzy Information Processing Society, IEEE, Piscataway , pp. 307–310 (2000)

  69. Anstreicher, K.M., Brixius, N.W.: A new bound for the quadratic assignment problembased on convex quadratic programming. Math. Program. 89(3), 341–357 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  70. Bhowmik, S., Goswami, S.K., Bhattacherjee, P.K.: Distribution system planning through combined heuristic and quadratic programming approach. Electr. Mach. Power Syst. 28(1), 87–103 (2000)

    Article  Google Scholar 

  71. Liu, X., Sun, Y., Wang, W.: Stabilizing control of robustness for systems with maximum uncertain parameters-a quadratic programming approach. Control Theory Appl. 16(5), 729–732 (1999)

    MATH  MathSciNet  Google Scholar 

  72. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit solution of model predictive control via multiparametric quadratic programming. In: Proceedings of the 2000 American Control Conference, Danvers, MA, vol. 2, pp. 872–876 (2000)

  73. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Methods in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia (1994)

  74. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

  75. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  76. Khachiyan, L.G.: A Polynomial Algorithm in Linear Programming. Doklady Akademiia Nauk SSSR, vol. 244, pp. 1093–1096 (1979). (English translation: Soviet Mathematics Doklady, 20(1)), 191–194 (1979)

  77. Gács, P., Lovász, L.: Khachian’s algorithm for linear programming. Math. Program. Study 14, 61–68 (1981)

    Article  MATH  Google Scholar 

  78. Clark, F.E.: Remark on the constraint sets in linear programming. Am. Math. Mon. 68, 351–352 (1961)

    Article  MATH  Google Scholar 

  79. Maros, I., Meszaros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11 & 12, 671–681 (1999). http://www.doc.ic.ac.uk/im/

  80. Vanderbei, R.J.: Symmetric quasidefinite matrices. SIAM J. Optim. 5, 100–113 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank the referee very much for close scrutiny and for many helpful comments that improved the presentation of this paper. The research was supported in part by Shanghai First-class Academic Discipline Project S1201YLXK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Gang Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D.G. An exterior point polynomial-time algorithm for convex quadratic programming. Comput Optim Appl 61, 51–78 (2015). https://doi.org/10.1007/s10589-014-9710-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9710-8

Keywords

Navigation