Skip to main content
Log in

Potential induced random teleportation on finite graphs

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose and analyze a potential induced random walk and its modification called random teleportation on finite graphs. The transition probability is determined by the gaps between potential values of adjacent and teleportation nodes. We show that the steady state of this process has a number of desirable properties. We present a continuous time analogue of the random walk and teleportation, and derive the lower bound on the order of its exponential convergence rate to stationary distribution. The efficiency of proposed random teleportation in search of global potential minimum on graphs and node ranking are demonstrated by numerical tests. Moreover, we discuss the condition of graphs and potential distributions for which the proposed approach may work inefficiently, and introduce the intermittent diffusion strategy to overcome the problem and improve the practical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. An exponential random variable \(T\sim \exp (\alpha )\) for \(\alpha >0\) has probability density function \(p(t)=\alpha e^{-\alpha t}\) for \(t>0\).

References

  1. Abdullah, M., Cooper, C., Frieze, A.: Cover time of a random graph with given degree sequence. Discrete Math. 312(21), 3146–3163 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aggarwal, C.C.: Social Network Data Analytics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  3. Aldous, D.: Applications of random walks on finite graphs. In: Selected Proceedings of the Sheffield Symposium on Applied Probability (Sheffield, 1989), volume 18 of IMS Lecture Notes Monograph Series, pp. 12–26. Institute of Mathematics and Statistics, Hayward, CA, (1991)

  4. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs. Monograph in Preparation (1999). Book in preparation

  5. Berg, B.: Introduction to Markov Chain Monte Carlo Simulations and Their Statistical Analysis (2004). arXiv:cond-mat/0410490

  6. Billera, L., Diaconis, P.: A geometric interpretation of the Metropolis–Hastings algorithm. Stat. Sci. 16(4), 335–339 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bobkov, S., Tetali, P.: Modified logarithmic sobolev inequalities in discrete settings. J. Theor. Probab. 19(2), 289–336 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burioni, R., Cassi, D.: Random walks on graphs: ideas, techniques and results. J. Phys. A Math. Gen. 38(8), R45 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casella, G., George, E.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174 (1992)

    MathSciNet  Google Scholar 

  10. Chandra, A., Raghavan, P., Ruzzo, W., Smolensky, R., Tiwari, P.: The electrical resistance of a graph captures its commute and cover times. Comput. Complex. 6(4), 312–340 (1996)

    Article  MathSciNet  Google Scholar 

  11. Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs and applications to on-line algorithms. J. ACM 40(3), 421–453 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Doyle, P., Snell, L.: Random Walks and Electric Networks (Carus Mathematical Monographs). Mathematical Assn of America, first printing edition (1984)

  13. Doyle, P.G., Snell, J. L.: Random Walks and Electric Networks, 3 (2000).  arXiv:math/0001057

  14. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern. Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  15. Gjoka, M., Kurant, M., Butts, C., Markopoulou, A.: A Walk in Facebook: Uniform Sampling of Users in Online Social Networks (2011). arXiv:0906.0060

  16. Hastings, W.: Monte carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  17. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM, New York (2003)

  18. Klein, D., Palacios, J., Randic, M., Trinajstic, N.: Random walks and chemical graph theory. J. Chem. Inf. Comput. Sci. 44(5), 1521–1525 (2004)

    Article  Google Scholar 

  19. Langville, A., Meyer, C.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton, NJ (2009)

    Google Scholar 

  21. Lawler, G.F., Limic, V.: Random Walk: A Modern Introduction, vol. 123. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  22. Lovász, L.: Random walks on graphs: a survey. Comb. Paul Erdős Eighty 2(1), 1–46 (1993)

    Google Scholar 

  23. Meer, K.: Simulated annealing versus metropolis for a TSP instance. Inf. Process. Lett. 104(6), 216–219 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  25. Nourani, Y., Andresen, B.: A comparison of simulated annealing cooling strategies. J. Phys. A Math. Gen. 31, 8373–8385 (1998)

    Article  MATH  Google Scholar 

  26. Richey, M.: The evolution of Markov chain Monte Carlo methods. Am. Math. Mon. 117(5), 383–413 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rosvall, M., Bergstrom, C.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  28. Sarkar, P., Moore, A.W.: Random walks in social networks and their applications: a survey. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 43–77 (2011). Springer, US

  29. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57(10), 1143–1160 (2006)

    Article  MATH  Google Scholar 

  30. Tetali, P.: Random walks and the effective resistance of networks. J. Theor. Probab. 4(1), 101–109 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. van Kampen, N.: Stochastic Processes in Physics and Chemistry, 3rd edn. North Holland, Amsterdam (2007)

    Google Scholar 

  32. Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization. In: Automata, Languages and Programming, p. 61 (2005)

  33. Weiss, G.: Aspects and Applications of the Random Walk (Random Materials and Processes S.). North-Holland, Amsterdam (1994)

    Google Scholar 

  34. Weinan, E., Li, T., Vanden-Eijnden, E.: Optimal partition and effective dynamics of complex networks. Proc. Natl. Acad. Sci. USA 105(23), 7907–7912 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF Grants Faculty Early Career Development (CAREER) Award DMS-0645266 and DMS-1042998, and ONR Award N000141310408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, SN., Ye, X. & Zhou, H. Potential induced random teleportation on finite graphs. Comput Optim Appl 61, 689–711 (2015). https://doi.org/10.1007/s10589-015-9727-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9727-7

Keywords

Navigation