Skip to main content
Log in

Lagrangian heuristics for the Quadratic Knapsack Problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper investigates two Lagrangian heuristics for the Quadratic Knapsack Problem. They originate from distinct linear reformulations of the problem and follow the traditional approach of generating Lagrangian dual bounds and then using their corresponding solutions as an input to a primal heuristic. One Lagrangian heuristic, in particular, is a Non-Delayed Relax-and-Cut algorithm. Accordingly, it differs from the other heuristic in that it dualizes valid inequalities on-the-fly, as they become necessary. The algorithms are computationally compared here with two additional heuristics, taken from the literature. Comparisons being carried out over problem instances up to twice as large as those previously used. Three out of the four algorithms, including the Lagrangian heuristics, are CPU time intensive and typically return very good quality feasible solutions. A certificate of that being given by the equally good Lagrangian dual bounds we generate. Finally, this paper is intended as a contribution towards the investigation of more elaborated heuristics to the problem, an area that has been barely investigated so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beasley, J.: Lagrangian relaxation. In: Reeves, C. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 243–303. Wiley, New York (1993)

    Google Scholar 

  2. Belloni, A., Lucena, A.: Lagrangian heuristic for the linear ordering problem. In: Resende, M.G.C., de Sousa, J.P. (eds.) Metaheuristics: Computer Decision-Making. Kluwer Academic Publishers (2004)

  3. Billionnet, A., Calmels, F.: Linear programming for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 92, 310–325 (1996)

    Article  MATH  Google Scholar 

  4. Billionnet, A., Soutif, E.: An exact method based on lagrangian decomposition for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 157(3), 565–575 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Billionnet, A., Faye, A., Soutif, E.: A new upper bound for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 112(3), 664–672 (1999)

    Article  MATH  Google Scholar 

  6. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11, 125–137 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cavalcante, V., Souza, C.C., Lucena, A.: A relax-and-cut algorithm to the set partitioning problem. Comput. Oper. Res. 35, 1963–1981 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chaillou, P., Hansen, P., Mahieu, Y.: Best network flow bound for the quadratic knapsack problem. Combinatorial Optimization, Lecture Notes in Mathematics, vol. 1403, pp. 225–235 (1989)

  9. Cunha, A.S., Lucena, A.: Lower and upper bounds for the degree-constrained minimum spanning tree problem. Networks 50, 55–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cunha, A.S., Lucena, A., Maculan, N., Resende, M.G.C.: A relax-and-cut algorithm for the prize-collecting steiner problem in graphs. Discret. Appl. Math. 157, 1198–1217 (2009)

    Article  MATH  Google Scholar 

  11. da Cunha, A.S., Bahiense, L., Lucena, A., de Souza, C.C.: A new lagrangian based branch and bound algorithm for the 0–1 knapsack problem. Electron. Notes Discret. Math. 36, 623–630 (2010)

    Article  Google Scholar 

  12. Dantzig, G.: Discrete variables extremum problems. Oper. Res. 5, 266–277 (1957)

    Article  MathSciNet  Google Scholar 

  13. Escudero, L., Guignard, M., Malik, K.: A lagrangean relax and cut approach for the sequential ordering with precedence constraints. Ann. Oper. Res. 50, 219–237 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ferreira, C., Martin, A., Souza, C., Weismantel, R., Wolsey, L.: Formulations and valid inequalities for node capacitated graph partitioning. Math. Program. 74, 247–266 (1996)

    MATH  Google Scholar 

  15. Fomeni, F., Letchford, A.: A dynamic programming heuristic for the quadratic knapsack problem. INFORMS J. Comput. 26, 173–182 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)

    MATH  MathSciNet  Google Scholar 

  17. Gendreau, M., Potvin, J.: Handbook of Metaheuristics, International Series in Operations Research & Management, vol. 146. Science (2010)

  18. Held, M., Karp, R.M.: The travelling salesman problem and minimum spanning trees: part II. Math. Program. 1(1), 6–25 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  19. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6(1), 62–88 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Helmberg, C., Rendl, F., Weismantel, R.: Quadratic knapsack relaxations using cutting planes and semidefinite programming. In: Proceedings of the Fifth IPCO Conference, Lecture Notes in Computer Science, vol. 1084, pp. 175–189 (1996)

  21. Helmberg, C., Rendl, F., Weismantel, R.: A semidefinite programming approach to the quadratic knapsack problem. J. Combin. Optim. 4, 197–215 (1996)

    Article  MathSciNet  Google Scholar 

  22. Johnson, E., Mehrotra, A., Nemhauser, G.: Min-cut clustering. Math. Program. 62, 133–151 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  24. Lucena, A.: Steiner problem in graphs: Lagrangean relaxation and cutting-planes. COAL Bulletin, Mathematical Programming Society, vol. 21 (1992)

  25. Lucena, A.: Tight bounds for the steiner problem in graphs. In: Proceedings of NET-FLOW93, pp. 147–154 (1993)

  26. Lucena, A.: Non delayed relax-and-cut algorithms. Ann. Oper. Res. 140(1), 375–410 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lucena, A.: Lagrangian relax-and-cut algorithms. In: Resende, M., Pardalos, P. (eds.) Handbook of Optimization in Telecommunications, pp. 129–145. Springer, New York (2006)

    Chapter  Google Scholar 

  28. Maniezzo, V., Stützle, T., Voß, S. (eds.): Matheuristics—Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems, vol. 10. Springer (2010)

  29. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)

    MATH  Google Scholar 

  30. Michelon, P., Veilleux, L.: Lagrangean methods for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res 92, 326–341 (1996)

    Article  MATH  Google Scholar 

  31. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 139–172 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Palmeira, M.: Um algoritmo relax-and-cut para o problema quadrtico da mochila binria. Master’s thesis, PUC, Rio de Janeiro, RJ, Brasil (1999)

  33. Pisinger, D.: The quadratic knapsack problem—a survey. Discret. Appl. Math. 623–648 (2007)

  34. Pisinger, D., Toth, P.: Knapsack problems. In: Du, D., Pardalos, P. (eds.) Handbook of Combinatorial Optimization. Kluwer Academic Publishers (1998)

  35. Rhys, J.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17, 200–207 (1970)

    Article  MATH  Google Scholar 

  36. Rodrigues, C.D., Quadri, Q., Michelon, P., Gueye, S.: 0–1 quadratic knapsack problems: an exact approach based on t-linearization. SIAM J. Optim. 22, 14491468 (2012)

    Article  MathSciNet  Google Scholar 

  37. Witzgall, C.: Mathematical methods of site selection for electronic message system (ems). Technical Report, NBS Internal Report (1975)

  38. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David Pisinger for making his KP e QKP codes available at http://www.diku.dk/~pisinger/codes.html. Thanks are also due to Franklin Fomeni and Adam Letchford for making their Dynamic Programming Heuristic code available to us. This research was partially funded by the following CNPq Grants: 141118/2009-1 for J. O. Cunha, 304793/2011-6 for L. Simonetti and 307026/2013-2 for A. Lucena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abilio Lucena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, J.O., Simonetti, L. & Lucena, A. Lagrangian heuristics for the Quadratic Knapsack Problem. Comput Optim Appl 63, 97–120 (2016). https://doi.org/10.1007/s10589-015-9763-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9763-3

Keywords

Navigation