Skip to main content
Log in

Perfectly competitive capacity expansion games with risk-averse participants

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents Nash equilibrium models of perfectly competitive capacity expansion involving risk-averse participants in the presence of state uncertainty and pricing mechanisms. Existence of solutions to such models is established based on the nonlinear complementarity formulations of the models to which a general existence result is applicable. This study extends two recent papers (Fan et al. in J Environ Econ Manag 60:193–208, 2010; Zhao et al. in Oper Res 58:529–548, 2010) pertaining to special cases of our models, complements the extensive work on games with strategic players, and provides an extended treatment of games with price-taking players whose feasible sets may be unbounded. The latter aspect generalizes much of the classical analysis of such models for which price boundedness and feasible region compactness are essential assumptions needed for a fixed-point existence proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Progr. A 106, 433–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bautista, G., Anjos, M.F., Vannelli, A.: Formulation of oligopolistic competition in AC power networks: an NLP approach. IEEE Trans. Power Syst. 22, 105–115 (2006)

    Article  Google Scholar 

  4. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  5. Britz, W., Ferris, M.C., Kuhn, A.: Modeling water allocating institutions based on multiple optimization problems with equilibrium constraints. Environ. Model. Softw. 46, 196–207 (2013)

    Article  Google Scholar 

  6. California Independent System Operator: Flexible Capacity Procurement Phase 1: Risk of Retirement, Market and Infrastructure Policy, Second Revised Draft Final Proposal (2012)

  7. Cardell, J., Hitt, C.C., Hogan, W.W.: Market power and strategic interaction in electricity networks. Resour. Energy Econ. 19, 109–137 (1997)

    Article  Google Scholar 

  8. Centeno, E., Reneses, J., Barquin, J.: Strategic analysis of electricity markets under uncertainty: a conjectured-price-response approach. IEEE Trans. Power Syst. 22, 423–432 (2007)

    Article  Google Scholar 

  9. Chen, Y., Liu, A.L., Hobbs, B.F.: Economic and emissions implications of load-based, source-based, and first-seller emissions trading programs under California AB32. Oper. Res. 59, 696–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Sijm, J., Hobbs, B.F., Lise, W.: Implications of \(\text{ CO }_{2}\) emissions trading for short-run electricity market outcomes in northwest Europe. J. Regul. Econ. 34, 251–281 (2008)

    Article  Google Scholar 

  11. Cunningham, L., Baldick, R., Baughman, M.: An empirical study of applied game theory: transmission constrained Cournot behavior. IEEE Trans. Power Syst. 17, 166–172 (2002)

    Article  Google Scholar 

  12. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  13. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. USA 38, 886–893 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dempster, M.A.H.: On stochastic programming I: static linear programming under risk. J. Math. Anal. Appl. 21, 304–343 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dempster, M.A.H.: On stochastic programming II: dynamic problems under risk. Stochastics 25, 15–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ehrenmann, A., Smeers, Y.: Generation capacity expansion in a risky environment: a stochastic equilibrium analysis. Oper. Res. 59, 1332–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  18. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. 4OR 5, 173–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Facchinei, F., Pang, J.S.: Nash equilibria: the variational approach. In: Eldar, Y., Palomar, D. (eds.) Convex Optimization in Signal Processing and Communications, pp. 443–493. Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  20. Facchinei, F., Pang, J.S., Scutari, G., Lampariello, L.: VI-constrained hemivariational inequalities: Distributed algorithms and power control in ad-hoc networks. Math. Progr. A 145, 59–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, L., Hobbs, B.F., Norman, C.S.: Risk aversion and \(\text{ CO }_{2}\) regulatory uncertainty in power generation investment: Policy and modeling implications. J. Environ. Econ. Manag. 60, 193–208 (2010)

    Article  MATH  Google Scholar 

  22. Ferris, M.C., Wets, R.J.B.: MOPEC: multiple optimization problems with equilibrium constraints. http://www.cs.wisc.edu/~ferris/talks/chicago-mar (2013)

  23. Fukushima, M.: Restricted generalized Nash equilibria and controlled penalty algorithm. Comput. Manag. Sci. 8, 201–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hobbs, B.F., Metzler, C.B., Pang, J.S.: Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Trans. Power Syst. 15, 638–645 (2000)

    Article  Google Scholar 

  25. Hobbs, B.F., Hu, M.C., Inon, J., Bhavaraju, M.: A dynamic analysis of a demand curve-based capacity market proposal: the PJM reliability pricing model. IEEE Trans. Power Syst. 22, 3–11 (2007)

    Article  Google Scholar 

  26. Kannan, A., Shanbhag, U.V., Kim, H.M.: Strategic behavior in power markets under uncertainty. Energy Syst. 2, 115–141 (2011)

    Article  Google Scholar 

  27. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)

    MATH  Google Scholar 

  28. Krawczyk, J.B.: Coupled constraint Nash equilibria in environmental games. Resour. Energy Econ. 27, 157–181 (2005)

    Article  Google Scholar 

  29. Krawczyk, J.B.: Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems. Comput. Manag. Sci. 4, 183–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kubota, K., Fukushima, M.: Gap function approach to the generalized Nash equilibrium problem. J. Optim. Theory Appl. 144, 511–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kulkarni, A.A., Shanbhag, U.V.: On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica 48, 45–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kulkarni, A.A., Shanbhag, U.V.: Revisiting generalized Nash games and variational inequalities. J. Optim. Theory Appl. 154, 175–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  34. McKenzie, L.W.: On the existence of general equilibrium for a competitive market. Econometrica 27, 54–71 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  35. Metlzer, C.B., Hobbs, B.F., Pang, J.S.: Nash-Cournot equilibria in power markets on a linearized DC network with arbitrage: formulations and properties. Netw. Spat. Econ. 3, 123–150 (2003)

    Article  Google Scholar 

  36. Murphy, F.H., Smeers, Y.: Generation capacity expansion in imperfectly competitive restructured electricity markets. Oper. Res. 53, 646–661 (2005)

    Article  MATH  Google Scholar 

  37. Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48, 423–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nash Jr, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nash Jr, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  40. Neuhoff, K., De Vries, L.: Insufficient incentives for investment in electricity generations. Util. Policy 12, 253–267 (2004)

    Article  Google Scholar 

  41. Ozdemir, O.: Simulation Modeling and Optimization of Competitive Electricity Markets and Stochastic Fluid Systems, Ph.D. thesis. University of Tilburg, Tilburg (2013)

  42. Pang, J.S., Scutari, G.: Nonconvex games with side constraints. SIAM J. Optim. 21, 1491–1522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Reinelt, P.S., Keith, D.W.: Carbon capture retrofits and the cost of regulatory uncertainty. Energy J. 28, 101–127 (2007)

    Article  Google Scholar 

  44. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33, 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ruszczyński, A., Shapiro, A.: Optimization of convex risk functions. Math. Oper. Res. 31, 433–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schiro, D.A., Pang, J.S., Shanbhag, U.V.: On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke’s method. Math. Progr. A 146, 1–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vázquez, C., Rivier, M., Pérez-Arriaga, I.J.: A market approach to long-term security of supply. IEEE Trans. Power Syst. 17, 349–357 (2002)

    Article  Google Scholar 

  48. Walras, L.: Elements of Pure Economics, translated by W. Jaffé. Taylor & Francis, New York (2010, original 1874)

  49. Wei, J.Y., Smeers, Y.: Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper. Res. 47, 102–112 (1999)

    Article  MATH  Google Scholar 

  50. Wets, R.J.B.: Programming under uncertainty: the equivalent convex program. SIAM J. Appl. Math. 14, 89–105 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wets, R.J.B.: Programming under uncertainty: the solution set. SIAM J. Appl. Math. 14, 1143–1151 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wets, R.J.B.: Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Rev. 16, 309–339 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wogrin, S., Hobbs, B.F., Ralph, D., Centeno, E., Barquin, J.: Open versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic competition. Math. Progr. B 140(2), 295–322 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yao, J., Oren, S.S., Adler, I.: Cournot equilibria in two-settlement electricity markets with system contingencies. Int. J. Crit. Infrastruct. 3, 142–160 (2007)

    Article  Google Scholar 

  55. Zhao, J., Hobbs, B.F., Pang, J.S.: Long-run equilibrium modeling of emissions allowance allocation systems in electric power markets. Oper. Res. 58, 529–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Dane A. Schiro and Jong-Shi Pang was based on research partially supported by the U.S. National Science Foundation Grant CMMI 0969600. The work of Benjamin F. Hobbs was supported by the U.S. National Science Foundation Grants OISE 1243482 and ECCS 1230788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shi Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiro, D.A., Hobbs, B.F. & Pang, JS. Perfectly competitive capacity expansion games with risk-averse participants. Comput Optim Appl 65, 511–539 (2016). https://doi.org/10.1007/s10589-015-9798-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9798-5

Keywords

Navigation