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Abstract

In this paper we address the numerical solution of minimal norm residuals of nonlinear equa-
tions in finite dimensions. We take particularly inspiration from the problem of finding a sparse
vector solution of phase retrieval problems by using greedy algorithms based on iterative residual
minimizations in the ℓp-norm, for 1 ≤ p ≤ 2. Due to the mild smoothness of the problem, es-
pecially for p → 1, we develop and analyze a generalized version of Iteratively Reweighted Least
Squares (IRLS). This simple and efficient algorithm performs the solution of optimization prob-
lems involving non-quadratic possibly non-convex and non-smooth cost functions, which can be
transformed into a sequence of common least squares problems, to be tackled eventually by more
efficient numerical optimization methods. While its analysis has been by now developed in many
different contexts (e.g., for sparse vector, low-rank matrix optimization, and for the solution of
PDE involving p-Laplacians) when the model equation is linear, no results are up to now provided
in case of nonlinear ones. We address here precisely the convergence and the rate of error decay
of IRLS for such nonlinear problems. The analysis of the convergence of the algorithm is based
on its reformulation as an alternating minimization of an energy functional, whose main variables
are the competitors to solutions of the intermediate reweighted least squares problems and their
weights. Under a specific condition of coercivity often verified in practice and assumptions of
local convexity, we are able to show convergence of IRLS to minimizers of the nonlinear resid-
ual problem. For the case where we are lacking the local convexity, we propose an appropriate
convexification by quadratic perturbations. Eventually we are able to show convergence of this
modified procedure to at least a very good approximation of stationary points of the original
problem. In order to illustrate the theoretical results we conclude the paper with several numer-
ical experiments. We compare IRLS with standard Matlab optimization functions for a simple
and easily presentable example and furthermore numerically validate our theoretical results in
the more complicated framework of phase retrieval problems, which are our main motivation.
Finally we examine the recovery capability of the algorithm in the context of data corrupted by
impulsive noise where the sparsification of the residual is desired.

Keywords: minimal norm residual of nonlinear equations, iteratively reweighted least squares,
phase retrieval
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1 Introduction

1.1 Iteratively Reweighted Least Squares

In this paper we are addressing the numerical solution of nonlinear equations A(x) = y where A is
a nonlinear mapping from R

k to R
m for m ≥ k, and y ∈ R

m is a given datum. If y /∈ Ran(A) the
equation A(x) = y has no solution, but nevertheless often an approximate one with minimal residual
in a certain norm is desired. A common choice for such a norm, especially in statistical and data
analytical applications, is an ℓp-norm for 1 ≤ p ≤ 2, depending on the preferred type of residual error
[3] modeling different kinds of noise e.g. Gaussian, Poisson, impulsive etc. and mixed types. This
leads to the ℓp-norm minimization of the residual of the equation in the Euclidean space R

k,

min
x∈Rk

‖A(x)− y‖pℓmp . (1)

As a motivation of this paper, the model (1) appears naturally as an intermediate step used in greedy
algorithms for the solution of nonlinear equations with sparse solutions [16]. One typical example is
the quadratic map A(x) = (|〈x, ai〉|

2)i=1,...,m encoding the amplitudes of the scalar products of a vec-
tor x with respect to a given family of vectors {a1, . . . , am}. In this case, the solution to the equation
A(x) = y eventually boils down to the recovery of the unknown signs of the scalar products, as a proto-
type of the more complex phase retrieval problem occurring in X-ray crystallography [15, 17, 21]. (We
shall use this particular application as a nontrivial test case for numerical experiments in Section 5.2.2)

For A smooth and 1 ≪ p ≤ 2, the objective residual function in (1) is also smooth enough for
the employment of a standard Newton method. However, these algorithms are usually guaranteed
to converge only locally and for nonsmooth maps A or p ≈ 1 (or even p = 1) one may have to
use less efficient versions, such as the semi-smooth Newton method [37]. As the objective function
involves an ℓp-norm, one can consider also other methods, which might better and more directly
exploit the structure of the problem. In particular Iteratively Reweighted Least Squares (IRLS) is a
popular minimization strategy for optimization problems involving non-quadratic possibly non-convex
and non-smooth cost functions, which can be transformed into a sequence of common least squares
problems, which can eventually be tackled by more efficient numerical optimization methods.
In our setting, the method is realized by substituting (1) with a sequence of weighted quadratic
problems

xn+1 = arg min
x∈Rk

‖A(x) − y‖2ℓ2(wn) , (2)

where ‖ξ‖ℓ2(wn) =
(
∑m

i=1 |ξi|
2wn

i

)1/2
is a weighted ℓ2-norm, with a weight sequence wn

i ≈ |(A(x∗) −
y)i|

p−2, i = 1, . . . ,m. Here x∗ is the expected minimal solution of (1), which is of course not at hand.
Therefore, one uses the practical iterative update rule wn

i = |(A(xn) − y)i|p−2, i = 1, . . . ,m, hoping
for the realization of a contraction principle, which may eventually allow for the convergence of the
iterates xn → x∗ for n → ∞. Notice now that, for A smooth enough, the sequence of problems (2)
can be addressed by efficient and standard Newton methods, despite the fact that we are targeting a
nonsmooth problem, for instance for p = 1.

The simplicity, adaptability, and its straightforward implementation make IRLS a very popular
choice for beginners and first numerical test experiments. Besides it turns out to be extremely efficient
in several contexts (sparse vector [12], low-rank matrix [18], bounded variation function [6] solutions
of minimal problems) and it can exhibit superlinear convergence also for nonsmooth optimization
problems, see [11]. However, most of the known results of convergence of this algorithm are limited to
the case where A is a linear map. Let us now make a short account of the known results concerning the
analysis of IRLS for the case where linear maps A are involved as in (1) or as a linear constraint in (3).
The first studies on iteratively reweighted least squares can be documented already in the 1960s. One
of the first appearances can be found in the approximation practice in the doctoral thesis of Lawson
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in 1961 [25], in the form of an algorithm for solving uniform approximation problems, in particular by
Chebyshev polynomials, by means of limits of weighted ℓp-norm solutions. This iterative algorithm is
now well-known in classical approximation theory as Lawson’s algorithm. In [10] it is proved that this
algorithm has in principle a linear convergence rate. In the 1970s extensions of Lawson’s algorithm for
ℓp-minimization, and in particular ℓ1-minimization, were proposed. Perhaps the most comprehensive
mathematical analysis of the performance of IRLS for ℓp-minimization for 1 < p < 3 was given in
the work of Osborne [31]. For quite a while, no significant developments have been reported, until
the growing interest in the minimization of total variation regularized functionals in image processing
introduced by [34] moved back IRLS into the focus of the community in the early 1990s. Beside its very
simple application to total variation minimization and its intuitive implementation, as presented in
[6], IRLS allowed also for very efficient preconditioning strategies [39] and showed to be more efficient
than more generic optimization algorithms such as interior point methods. In the late 90s IRLS
appeared as a method for the reconstruction of sparse signals in the papers [23] and [9], long before
compressed sensing started to grow in popularity, after the pioneering work by Candes, Romberg, Tao
and Donoho [5, 14]. In several papers [32, 7, 8, 12] a rigorous analysis of the behaviour of IRLS was
carried out, for the situation where it is applied on the ℓp-norm minimization problem with linear
constraints of the form

min
Ax=y

‖x‖ℓp (3)

where 0 < p ≤ 1, A ∈ R
m×N is a given matrix, and y ∈ R

m a given measurement vector. In [18]
a further extension of IRLS to the problem of low-rank matrix recovery from a minimal number of
linear measurements has been developed and analyzed. Inspired by the approach in [6] for the solution
of the total variation minimization problem, IRLS appears again in [20] under the name of Kačanov
iteration, for the solution of quasi-linear elliptic equations.

Especially since the beginning of this decade we witness a booming research on variations on the
theme around IRLS, with new applications in statistics and signal processing, and it becomes hard to
give a complete overview beyond the aforementioned milestones of the development up to present1.
We may want to refer the reader to the paper [30] and the reference therein, for an overview of the
most recent literature.

1.2 The contribution of this paper

Often models of physical measurements in the applied sciences and engineering, however, are not
linear but in practice linear models are assumed for simplicity and nonlinearities are neglected. Un-
fortunately linearization is not appropriate in many applications and the assumed model does not
represent reality in a satisfactory way. A typical example is the phase retrieval problem mentioned
above, which we shall use later as a test case for numerical experiments.
Therefore it is of utmost interest to investigate to which extent the analysis of convergence of IRLS
where linear models are involved can be generalized to nonlinear ones, in particular we shall deduce
conditions for its applicability and we state its limitations as well. More precisely our aim is to
study the numerical approximation via IRLS of a solution of the ℓp-norm-minimization problem (1),
where A might be nonlinear and mildly smooth, and 1 ≤ p < 2 (the case p = 2 is just a least squares
and there is no need of further iterations). Notice that we are not afraid here to include the case p = 1.

As already shown explicitly in (2), the extension of the IRLS to this type of problems from an
implementation point of view is simply straightforward. Hence, for practical issues, there are no
additional difficulties beyond the application of standard recipes (including possible preconditioning

1On Google Scholar the appearance of the phrase ’Iteratively Reweighted Least Squares’ was counted 3360 times in

papers published since 2010, and more than 112 in their title since 1970, half of them after 2003.



4

etc.). Nevertheless, to our knowledge, a rigorous theoretical analysis of the convergence of IRLS for
nonlinear residual minimizations as in (1) has not been done yet, especially for the cases where A is
mildly smooth and p ≈ 1. It is the subject of the present paper.

In [6, 12, 18] the analysis of convergence of IRLS has been based on its variational formulation,
involving an energy functional where both the unknown and the weights appear as minimizing vari-
ables, and the algorithm is re-interpreted as an alternating minimization over them. For the problems
in [12, 18] a certain coercivity condition was additionally required, namely the Restricted Isometry
Property (RIP), which is a near-identity spectral property of small submatrices of the linear model A.
We shall extend the analysis done in the aforementioned papers, especially we take inspiration from
[12], and analyze the generalized version of IRLS for ℓp-norm minimization of the residual as in (1),
by requiring a relaxed version of the RIP as already introduced in our previous paper [16]. First of all
we start by introducing a similar energy functional as the ones proposed in [6, 12, 18], more precisely
of the form

J (x,w, ǫ) :=
p

2

[

m
∑

i=1

wi(Ai(x) − yi)
2 +

m
∑

i=1

(

ǫ2wi +
2− p

p
w

p/(p−2)
i

)

]

, x ∈ R
k (4)

with ǫ > 0, and weight vector w ∈ R
m, with positive entries wi > 0, i = 1, . . . ,m and 1 ≤ p < 2.

Under the mentioned coercivity assumption we prove the convergence and corresponding error
decay rates of the IRLS type algorithm based on the alternating minimization of J (x,w, ǫ), whenever
x → J (x,w, ǫ) is locally convex. For the case where we are lacking the local convexity, we propose
an appropriate convexification by quadratic perturbations. Let us remark that this strategy of con-
vexification is rather standard and well-known in the nonlinear optimization literature, for instance
in sequential quadratic programming [3]. The innovation here is in addressing problems with severe
nonsmoothness due to the possible choice of p = 1, as already considered, e.g., in [2]. Eventually
we are able to show convergence of this modified procedure to at least a very good approximation of
stationary points of the original problem.

In order to explain and better illustrate our theoretical results we conclude the paper with sev-
eral numerical experiments. Comparisons with standard Matlab methods applied to the original
ℓp-minimization problem for a simple easily presentable example reveals that IRLS possibly converges
to different local minimizers than standard methods when starting computations from the same initial
point. Furthermore we numerically validate our theoretical results for the more complex task of find-
ing a sparse solution of phase retrieval problems, and we check success via the correct reconstruction
of sparse vectors. As we will see in this more sophisticated application, IRLS significantly outperforms
standard methods. Finally we examine the recovery capability of the algorithm in the context of data
corrupted by impulsive noise where the sparsification of the residual is desired.

1.3 Outline of the paper

The paper is organized as follows: In Section 2, we introduce definitions and notations, show the
reformulation of the ℓp-minimization into a reweighted ℓ2-least squares problem and give a short re-
view of popular numerical methods for its solution. Finally we present the IRLS method tailored to
problems of the type (1) and in Section 3 its detailed analysis of the convergence and rate of conver-
gence follow. Thereafter in Section 4 the method is extended to cases where we can not guarantee
local convexity and convergence is deduced for the modified algorithm. This work is concluded by
numerical experiments in Section 5.
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2 Nonlinear Residual Minimization via Iteratively Reweighted

Least Squares

In this section, we introduce the main terms and notations used in this paper and point out how the
problem stated in (1) can be recast as an approximating nonlinear weighted least squares problem.
In addition, we shortly review the basics around nonlinear weighted least squares minimization and
give a very short overview over practical, efficient algorithms.

Definition 2.1 (Weighted ℓp-spaces)
Define the Banach space ℓmp (w) := (Rm, ‖ · ‖ℓmp (w)) endowed with the weighted norm

‖x‖ℓmp (w) :=

(

m
∑

i=1

wi|xi|
p

)
1
p

.

When the dimension m is understood, we omit it in the symbol of the space ℓp = ℓmp . Furthermore
we define the (unweighted) ℓp-spaces by setting ℓp(w) := ℓp(1), where 1 here is the weight with entries
identically set to 1.
For a nonlinear map A : ℓkp → ℓmq , we define the norm

‖A‖ℓkp→ℓmq
:= sup

‖x‖
ℓkp

≤1

‖A(x)‖ℓmq

and for the particular case of p = q = 2, ‖A‖ := ‖A‖ℓkp→ℓmq
is the standard operator norm.

The unit balls are indicated by Bℓp :=
{

x ∈ R
m : ‖x‖ℓp ≤ 1

}

. More generally, the shifted balls

centered around x̄ ∈ R
m with radius R are denoted by Bℓp(x̄, R) :=

{

x ∈ R
m : ‖x− x̄‖ℓp ≤ R

}

. In

cases where the space is clear we simplify the notation and use B(x̄, R).

Furthermore we will consider the range of a map A : ℓkp → ℓmq and denote it by Ran(A).

The space of n-times continuously differentiable functions from a certain Euclidean space E1 to
another Euclidean space E2 will be denoted by Cn(E1, E2). By I : E1 → E1 we express the identity
operator on E1. (The spaces E1, E2 will be clear from the context.)

Positive, independent constants are in general named C, C̃, Ĉ, C̄, C∗, C1, C2 . . .

2.1 Problem Setting and Characterization of ℓp- and reweighted ℓ2-minimizers

Now we are well equipped to formulate the problem setting.
Let A : Rk → R

m be a nonlinear continuous map with k ≥ m and y ∈ R
m. In the following we fix

y and consider the nonlinear equation system

A(x) = y,

which is an overdetermined system that has no solution if y /∈ Ran(A). Nevertheless often an approx-
imate solution with minimal residual in a certain norm, commonly an ℓp-norm, is desired.
Our aim is to find a best approximating x∗, given the measured data y as the solution to the ℓp-norm-
minimization problem

‖A(x∗)− y‖pp = min
x∈Rk

‖A(x)− y‖pp , (5)

where 1 ≤ p ≤ 2.
We next consider the minimization in a weighted ℓ2(w)-norm. We suppose that the weight vector
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w = (w1, · · · , wm) is strictly positive, meaning that wi > 0 for all i ∈ {1, . . . ,m}.

We formally observe now that

‖A(x)− y‖pℓp =

m
∑

i=1

(Ai(x) − yi)
p =

m
∑

i=1

(Ai(x) − yi)
2

(Ai(x) − yi)2−p
.

and setting wi = |Ai(x) − yi|p−2 we can formally write

‖A(x) − y‖pℓp = ‖A(x) − y‖2ℓ2(w) .

The minimizer with respect to this weighted norm will be denoted as

xw = argmin
x∈Rk

‖A(x)− y‖2ℓ2(w).

In the next subsection we will shortly summarize common techniques for solving problems of this
type concentrating in particular on Newton type methods with approximations to the Hessian.

2.2 Weighted Nonlinear Least Squares Fitting

Nonlinear unconstrained optimization
min
x∈Rk

f(x)

is a very common problem, which we specify here for f(x) =
m
∑

i=1

wifi(x)i and fi(x) = (Ai(x)− yi)
2.

For solving such a problem a broad variety of standard tools is available. On the one hand we can
resort to algorithms based only on function evaluation values such as the Nelder-Mead algorithm
[29] or pattern search [36] that do not require smoothness or methods involving information on the
gradient or Hessian of the objective function such as gradient descent methods or Newton’s method
(depending on the smoothness of A).
On the other hand we are dealing with a very specific type of unconstrained problem, whose specific
structure, in particular the special structure of the Hessian matrix for the least-squares objective
function, can be exploited in more specialized algorithms tailored to this type of regression problem
assuming A is smooth enough.
In this case the Hessian can be split in two terms where one represents the linearized part of the
problem and the other bringing in the nonlinearity, which is the critical one:

∇2f(x) =
m
∑

i=1

wi

[

∇fi(x)∇fi(x)
T + fi(x)∇

2fi(x)
]

=
m
∑

i=1

wi

[

∇Ai(x)∇Ai(x)
T + (Ai(x) − yi)∇

2Ai(x)
]

.

The first term involves the gradients of the functions only and therefore computations are easier to
perform, while the second contains computationally expensive second order derivatives, but is very
small if the data fit is already good and the residual is close to zero. Many methods specialized on
nonlinear least squares are based on the idea of computing the first term of the Hessian exactly while
the second is only approximated using first derivatives.

The simplest realization of this idea is the Gauss-Newton method, which iteratively computes the
search direction d via the formula for Newton’s method

∇2f(x)d = −∇f(x)

and approximates the second order derivative ∇2f(x) by only the first term, resulting in the system

∇A(x)W∇A(x)T d = −∇A(x)WA(x),
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where W is the diagonal matrix with the weights wi on its diagonal.
Once the search direction is computed one produces an updated approximation by setting

x → x+ d

and so on.
If at the solution vector x∗ obtained thereby it holds f(x∗) = 0 and ∇A(x∗) is of full rank, the Gauss-
Newton method behaves like Newton’s method close to the solution without investing the effort of
computing second order derivatives. A more detailed analysis can be found in [24].
A great number of related methods for nonlinear least-squares can be seen as improvements of the
Gauss-Newton algorithm because they involve a kind of approximation to the second term in the
formula for the Hessian matrix

m
∑

i=1

fi(x)∇
2fi(x) =

m
∑

i=1

(Ai(x) − yi)∇
2Ai(x).

The most well-known is also one of the simplest, referred to as the Levenberg-Marquardt algorithm,
appearing first in the papers of Levenberg [26] and Marquardt [27]. This strategy uses the approxi-
mation

m
∑

i=1

wifi(x)∇
2fi(x) =

m
∑

i=1

wi(Ai(x) − yi)∇
2Ai(x) ≈ λW,

where λ ≥ 0 is some scalar. Then the search direction is obtained by solving the linear system

[

∇A(x)W∇A(x)T + λW
]

d = −∇A(x)WA(x).

For the implementation of the Levenberg-Marquardt it is possible to use a trust-region strategy as
described in [28]. Other approximations to the Hessian of f(x) are also possible, for example, a quasi-
Newton approximation to the second term of the Hessian but we will close the excursion on this type
of methods here and refer to related, standard literature [35, 22, 13, 40].

Remark 2.2 If this approximation of the Hessian in the methods mentioned above is not accurate
enough these strategies have rate of convergence that can not compete with Newton’s method. More
precisely the convergence rate will be at most linear. Hence, the life becomes difficult with these
methods if, for any reason, the problem is not smooth enough!

Besides these methods approximating the Hessian other classes of methods exist e.g. based on or-
thogonal decomposition of the Jacobian that shall not be covered here and for further information we
refer to the literature [19] .

Remark 2.3 At this point we note that the methods mentioned above only converge to stationary
points or at best local minimizers in the context of nonconvex least squares problems! Global optimiza-
tion in the nonconvex case is in general a challenging task. Nevertheless under certain smoothness
conditions, [41] suggests a method involving a line-search strategy that guarantees to find the global
minimizer.

2.3 Auxiliary Functional and Nonlinear Residual Iteratively Reweighted

Least Squares Algorithm

At this point we would like to introduce a helpful tool for the formulation and theoretical analysis of
an iteratively reweighted least squares algorithm for problems of type (1) in the form of the following
functional:
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Definition 2.4 Given a real number ǫ > 0, x ∈ R
m, and a weight vector w ∈ R

m, with positive
entries wi > 0, i = 1, . . . ,m and 1 ≤ p < 2 we define

J (x,w, ǫ) :=

[

m
∑

i=1

wi(Ai(x)− yi)
2 +

m
∑

i=1

(

ǫ2wi +
2− p

p
w

p/(p−2)
i

)

]

, x ∈ R
m. (6)

A very similar auxiliary functional is appearing in [6, 12, 18] as well, but the one defined above is a
version adapted to the setting of ℓp-minimization of residuals.

IRLS actually performs an alternating minimization of the functional J .

Algorithm 1: Nonlinear residual iteratively reweighted least squares (NR-IRLS):
Input: A : Rk → R

m, y ∈ R
m

We initialize by taking w0 := (1, · · · , 1). We also set ǫ0 = 1.
We then recursively define for n = 0, 1, . . .

xn+1 = argmin
x∈Rk

J (x,wn, ǫn) = argmin
x∈Rk

‖A(x)− y‖2ℓ2(wn)

and the auxiliary variables

Nn+1 = min
i
(|Ai(x

n+1)− yi)|) and Mn+1 = max
i

(|Ai(x
n+1)− yi|),

to define
ǫn+1 = min

(

max(Nn+1, ǫ̃), ǫn,M
n+1
)

where ǫ̃ > 0 is a fixed small constant. Then we define

wn+1 = argmin
w∈Rk

+

J (xn+1, w, ǫn+1) =

(

(

(A(xn+1)i − yi)
2 + ǫ2n+1)

)

p−2

2

)m

i=1

.

Output: x(1), x(2), . . .

We stop the algorithm if ǫn = 0. In this case we define xj := xn for j > n. However, in general,
the algorithm will generate an infinite sequence (xn)n∈N of distinct vectors and it is convenient to
stop as soon as ǫ falls below an appropriately chosen threshold.

Remark 2.5 1. For ǫ, w fixed the functional J (·, w, ǫ) is not necessarily convex in the variable x
if A is a nonlinear map.
In the case that A is indeed linear and has full rank the functional J (·, w, ǫ) is strictly convex
in the variable x which implies that every stationary point is a global minimizer and this opti-
mization problem can be solved efficiently.
In contrary nonlinearity of the map A turns minimizing the functional J (·, w, ǫ) into a noncon-
vex k-dimensional minimization problem where several local minimizers and stationary points
can occur and solving the problem becomes a harder task see Remark 2.3.
The reader is referred to the Appendix for further considerations on convexity for the linear case
as well as nonlinear perturbations of linear random maps as in the numerical experiments in
Section 5.

2. Each step of the algorithm requires the solution of a k-dimensional nonlinear weighted least
squares problem, which can be solved numerically by the popular strategies mentioned above but
we emphasize once more that in the general case those methods only find critical points, and this
an intrinsic limitation of NR-IRLS!



9

3 Theoretical Analysis and Convergence Results for the NR-

IRLS

In the following section we will have a closer look at Algorithm 1 and point out some of its properties,
in particular the boundedness of the iterates (xn)n∈N and the fact that these are getting arbitrarily
close as n → ∞. These results will be useful to finally develop the proof of convergence and to
estimate the rate of convergence of Algorithm 1 under conditions determined along the way.

First of all our relevant domain for the search for the minimizer of (5) shall be a suitably chosen,
sufficiently large closed set D ∈ R

k containing x∗ and 0. We require that the first iterate vector x1 is
contained in D.

Remark 3.1 We stress again that without further assumptions on the nonlinear map A, nonconvexity
of the functional J (·, w0, ǫ0) can not be excluded and therefore several critical points are expected.
Hence a different choice of the starting vector x0 for your iterative method for solving the nonlinear
least squares problem in the very first step will influence the behavior of the algorithm in the following
iterations and hence the final solution of Algorithm 1 as well!

At this point we want to state some essential assumptions on the measurement map A. We require
A ∈ C0(Rk,Rm) and that A is bounded on D. Additionally we introduce the following property, which
we call boundedness and coercivity condition (BCC)

Definition 3.2 Let A : Rk → R
m be a nonlinear continuous map. We say that A fulfills the bound-

edness and coercivity condition (BCC) at x∗ ∈ D if there exist α, β > 0 such that

α‖x∗ − z‖ℓ2 ≤ ‖A(x∗)−A(z)‖ℓp ≤ β‖x∗ − z‖ℓ2

for all z ∈ D.

Remark 3.3 The lower bound in the BCC imposes that the level set of x∗ is a singleton only con-
taining x∗ itself. This is necessary to conclude the identifiability from the nonlinear measurements
A(x∗) without any further assumptions on x∗ itself. The upper bound on the other hand is the request
of Lipschitz continuity at x∗.

Now we want to return back to the functional in Definition 2.4 and our first quite straightforward
observation is that after the n-th step we obtain

J (xn+1, wn+1, ǫn+1) =

m
∑

i=1

[(A(xn+1)i − yi)
2 + ǫ2n+1]

p/2.

Moreover due to the minimization properties resulting from Algorithm 1, the following monotonic-
ity property holds.

Lemma 3.4 The inequalities

J (xn+1, wn+1, ǫn+1) ≤ J (xn+1, wn, ǫn+1) ≤ J (xn+1, wn, ǫn) ≤ J (xn, wn, ǫn)

hold for all n ≥ 0.

Proof: Here the first inequality follows from the minimization property that defines wn+1, the second
inequality from ǫn+1 ≤ ǫn, and the last inequality from the minimization property that defines xn+1.�

Due to Lemma 3.4 we can state that J (xn, wn, ǫn) ≤ J (x1, w0, ǫ0), where the right hand side is
a constant and this will help to obtain the boundedness of the iterates (xn)n∈N:
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Lemma 3.5 Let A : Rk → R
m be a nonlinear continuous map fulfilling the boundedness and coercivity

condition (BCC) at x∗ ∈ D and y ∈ R
m be given. Then the sequence of iterates (xn)n defined by

Algorithm 1 is bounded and hence lies in the ball B(0, R∗), where R∗ = 1
αJ (x0, w0, ǫ0)

1/p+ 1
α‖A(x

∗)−
y‖ℓp + ‖x∗‖ℓ2 .

Proof: For all n ∈ N

‖xn‖ℓ2 ≤ ‖xn − x∗‖ℓ2 + ‖x∗‖ℓ2 ≤
1

α
‖A(xn)−A(x∗)‖ℓp + ‖x∗‖ℓ2

≤
1

α

(

m
∑

i=1

[(A(xn)i − yi)
2 + ǫ2n]

p/2

)1/p

+
1

α
‖A(x∗)− y‖ℓp + ‖x∗‖ℓ2

≤
1

α
J (xn, wn, ǫn)

1/p +
1

α
‖A(x∗)− y‖ℓp + ‖x∗‖ℓ2 .

By the monotonicity property in Lemma 3.4 we obtain

‖xn‖ℓ2 ≤
1

α
J (x1, w0, ǫ0)

1/p +
1

α
‖A(x∗)− y‖ℓp + ‖x∗‖ℓ2 = R∗,

where all terms composing on the right hand side are bounded.�

Remark 3.6 Hence the iterates are contained in a ball of radius R∗ and although the minimization
in the first step of the algorithm is a global minimization it actually turns out to be local on this
specific ball B(0, R∗). Nevertheless this ball can be quite large especially when we have a very small
BCC constant α.

As R∗ > 0 is depending on the unknown solution x∗ we would also like to have an estimate only
depending on values given to us already or that are fixed in advance. On the way towards such a
sovereign upper bound on R∗, we observe that due to the assumed minimality of x∗

‖A(x∗)− y‖ℓp ≤ ‖A(0)− y‖ℓp .

Moreover

‖x∗‖ℓ2 = ‖x∗ − 0‖ℓ2 ≤
1

α
‖A(x∗)−A(0)‖ℓp

≤
1

α

(

‖A(x∗)− y‖ℓp + ‖A(0)− y‖ℓp
)

≤
2

α
‖A(0)− y‖ℓp

Hence we obtain the upper bound R̂

R∗ ≤ R̂ :=
1

α

(

J (x0, w0, ǫ0)
1/p + 3‖A(0)− y‖ℓp

)

.

As already indicated in Remark 2.5 the possible nonconvexity of functional J (·, w, ǫ) can severely
impede the optimization process in the first step of Algorithm 1 and is more problematic for a
theoretical study of the overall behavior of the algorithm as well.

For a complete analysis of the convergence we will consider the case where the functional J (·, w, ǫ)
is locally convex case first and then continue with the introduction of appropriate adjustments of the
algorithm in the subsequent section, for the case where the local convexity fails.

At this point we recall the concept of strong convexity of a function as in [1]

Definition 3.7 A continuous function f : Rk → R is called C-strongly convex at a point x̃ in a set
S ∈ R

k if

f(tx+ (1− t)x̃) ≤ tf(x) + (1− t)f(x̃)− Ct(1 − t)‖x− x̃‖2ℓ2 for 0 ≤ t ≤ 1, C > 0 for all x ∈ S. (7)
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Remark 3.8 (i) If the function f is continuously differentiable, the condition in Definition 3.7
above can be formulated as follows

f(x)− f(x̃) ≥ ∇f(x̃)T (x− x̃) + C‖x− x̃‖2ℓ2 for 0 ≤ t ≤ 1, C > 0 for all x ∈ S.

(ii) If the function f is twice continuously differentiable, the condition in Definition 3.7 above can
be deduced via Taylor’s formula and the mean value theorem

f(x) = f(x̃) +∇f(x̃)T (x− x̃) +
1

2
(x − x̃)T∇2f(z)(x− x̃)

for a certain z ∈ {tx̃ + (1 − t)x : t ∈ [0, 1]}. The matrix appearing in the last term can be
characterized by an integral as follows

∇2f(z) =

∫ 1

0

(1− t)∇2f(x̂(t))dt with x̂(t) = tx+ (1− t)x̃.

Then the strong convexity constant C equals the smallest eigenvalue of ∇2f(z) as soon as it is
strictly positive definite.

From strong convexity of a function at a minimizer we obtain the following result:

Theorem 3.9 Let f : Rk → R be a C0 nonlinear map and x∗ a minimizer. If f is C-strongly convex
at x∗ in the set S, then the following lower bound holds

f(x)− f(x∗) ≥ C‖x− x∗‖2ℓ2 (8)

where x ∈ S, C > 0.

Proof: By Definition 3.7 we have that

f(tx+ (1− t)x∗) ≤ tf(x) + (1− t)f(x∗)− Ct(1 − t)‖x− x∗‖2ℓ2 ,

holds if and only if

f(tx+ (1− t)x∗)− f(x∗)

t
+ C(1− t)‖x− x∗‖2ℓ2 ≤ f(x)− f(x∗).

As this condition has to hold for all t ∈ [0, 1], letting t → 0+ yields

f(x)− f(x∗) ≥ C̃ + C‖x− x∗‖2ℓ2 ,

where C̃ = lim inft→0+
f(tx+(1−t)x∗)−f(x∗)

t . Due to the optimality of x∗ the term C̃ is always nonneg-
ative, and

f(x)− f(x∗) ≥ C‖x− x∗‖2ℓ2 .

From now on we shall assume that the functional J (·, wn, ǫn) is strongly convex as in Definition 3.7
locally at xn+1 for all n ≥ 0 and we describe a uniform property as follows.

Definition 3.10 Let A : Rk → R
m be a nonlinear map in C0 and J (x,wn, ǫn) for w

n, ǫn as generated
by Algorithm 1 for all n ≥ 0, with the corresponding minimizer xn+1. We say that the first uniform
strong convexity condition (USCC-1) is fulfilled if there exists a uniform constant C > 0 such that
for all n ≥ 0 the following condition holds

J (xn, wn, ǫn)− J (xn+1, wn, ǫn) = ‖A(xn)− y‖2ℓ2(wn)
− ‖A(xn+1)− y‖2ℓ2(wn)

≥ C‖xn − xn+1‖2ℓ2 (9)
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Remark 3.11 The USCC-1 is of course fulfilled if the functional J (·, wn, ǫn) for w
n, ǫn fixed in each

step n is strongly convex at xn+1 in the set B(0, R∗) with a constant C > 0 independent of n.

Moreover we want to point out that a further desirable property of the map A is the strong
convexity of the function x → ‖A(x)− y‖2ℓp at its minimizer x∗.

Definition 3.12 Let A : Rk → R
m be a nonlinear map in C0 and x∗ a minimizer of ‖A(x)−y‖2ℓp We

say that the second uniform strong convexity condition (USCC-2) is fulfilled if there exists a uniform
constant Ĉ > 0 such that for all n ≥ 0 the following condition holds

‖A(xn)− y‖2ℓp − ‖A(x∗)− y‖2ℓp ≥ Ĉ‖xn − x∗‖2ℓ2 . (10)

Remark 3.13 (i) In the case A(x∗) = y the condition (10) is equivalent to the lower bound of the
BCC with Ĉ = α2.

(ii) Notice that condition (10) is fulfilled as soon as the function ‖A(·) − y‖2ℓp is totally convex at

x∗ according to the definition of total convexity in [4]. Furthermore it follows from results in [4]
that in this case the function ‖A(·)− y‖2ℓp is also strictly convex in B(0, 2R∗).

Now we are prepared with all necessary tools to formulate preliminary results on the convergence
or NR-IRLS.

3.1 Preliminary Results

In this section we formulate several Lemmata that will be fundamental ingredients for the proof of
convergence of Algorithm 1.
As a first result we would like to state that from the sequence J (xn, wn, ǫn) being convergent it follows
that the iterates x0, · · · , xn, xn+1, · · · ∈ R

k of Algorithm 1 are getting arbitrarily close for n → ∞
assuming that the USCC-1 is fulfilled.

Lemma 3.14 Let A : Rk → R
m be a nonlinear map in C0 and given y ∈ R

m, if the USCC-1 property
as in Definition 3.10 is fulfilled with constant C, for the iterates of Algorithms 1 it holds

lim
n→∞

‖xn − xn+1‖2ℓ2 = 0.

Proof: For each n = 1, 2, ... we have

[

J (xn, wn, ǫn)− J (xn+1, wn+1, ǫn+1)
]

≥
[

J (xn, wn, ǫn)− J (xn+1, wn, ǫn)
]

≥ C
∥

∥xn+1 − xn
∥

∥

2

ℓ2

From the monotonicity as in Lemma 3.4 and the boundedness of the sequence (J (xn, wn, ǫn))n∈N

we know that
lim
n→∞

(J (xn, wn, ǫn)− J (xn+1, wn+1, ǫn+1)) = 0,

hence also
lim
n→∞

‖xn − xn+1‖2ℓ2 = 0. �

From the monotonicity of ǫn, we know that ǫ := limn→∞ ǫn exists and is non-negative. The
following functional will play a role in our proof of convergence, especially for ǫ > 0.



13

Definition 3.15 (ǫ-perturbed ℓp-norm residual) Let A : Rk → R
m be a nonlinear map and given

y ∈ R
m we define the ǫ-perturbed ℓp-norm residual to be the following functional

fǫ(x) :=

m
∑

i=1

((A(x)i − yi)
2 + ǫ2)p/2.

Notice that, if we knew that xn converged to a point x̄ then, having in mind that

J (xn, wn, ǫn) =

m
∑

i=1

((A(xn)− y)2i + ǫ2n)
p/2, (11)

the ǫ-perturbed ℓp-norm residual in x̄, fǫ(x̄) would be the limit of J (xn, wn, ǫn) for n → ∞. We
denote a minimizer in dependence of ǫ with

xǫ ∈ argmin
x

fǫ(x), (12)

where we consider a global minimizer as we did for the minimization in the first step of Algorithm 1
as well. Such minimizers are characterized by the following criterion.

Lemma 3.16 Let ǫ > 0 and define w(z, ǫ) = ((A(z)− y)2i + ǫ2)(p−2)/2)mi=1. If

‖A(z)− y‖2ℓ2(w(z,ǫ)) ≤ ‖A(z̃)− y‖2ℓ2(w(z,ǫ)) for all z̃,

then it follows that z = xǫ ∈ argmin
x

fǫ(x).

Proof: We want to prove that if

‖A(z)− y‖2ℓ2(w(z,ǫ)) ≤ ‖A(z̃)− y‖2ℓ2(w(z,ǫ)) for all z̃.

then fǫ(z) ≤ fǫ(z̃) for all z̃.
We start with the given inequality

‖A(z)− y‖2ℓ2(w(z,ǫ)) =
∑

i

(Ai(z)− yi)
2

[(Ai(z)− yi)2 + ǫ2](2−p)/2
≤
∑

i

(Ai(z̃)− yi)
2

[(Ai(z)− yi)2 + ǫ2](2−p)/2
= ‖A(z̃)− y‖2ℓ2(w(z,ǫ))

As a first step we add ǫ2 to the numerator of each term of the sum and take the square root
(monotone!) of the expressions. We obtain the inequality

(

∑

i

[(Ai(z)− yi)
2 + ǫ2]

[(Ai(z)− yi)2 + ǫ2](2−p)/2

)1/2

≤

(

∑

i

[(Ai(z̃)− yi)
2 + ǫ2]

[(Ai(z)− yi)2 + ǫ2](2−p)/2

)1/2

.

The left-hand-side can already be expressed as fǫ(z) and we use the 1
2 - triangle inequality for the

square root.

(fǫ(z))
1/2 ≤

(

∑

i

[(Ai(z̃)− yi)
2 + ǫ2]

[(Ai(z)− yi)2 + ǫ2](2−p)/2

)1/2

≤
∑

i

[(Ai(z̃)− yi)
2 + ǫ2]1/2

[(Ai(z)− yi)2 + ǫ2](2−p)/4
.

Now we apply Hölder’s inequality and obtain

(fǫ(z))
1/2 ≤

(

∑

i

((Ai(z̃)− yi)
2 + ǫ2)p/2

)1/p

·

(

∑

i

((Ai(z)− yi)
2 + ǫ2)(p−2)/4·p/(p−1)

)2(p−1)/2p

= (fǫ(z̃))
1/p ·





(

∑

i

((Ai(z)− yi)
2 + ǫ2)(p−2)/4·p/(p−1)

)2(p−1)/(p−2)




(p−2)/2p

.
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We note now that 1
(a+b)τ ≤ 1

aτ + 1
bτ for a, b, τ > 0. Hence as 2(p− 1)/(p− 2) is negative, using this

factor on each summand gives the estimate

(fǫ(z))
1/2 ≤ (fǫ(z̃))

1/p ·

[(

∑

i

((Ai(z)− yi)
2 + ǫ2)p/2

)](p−2)/2p

= (fǫ(z̃))
1/p · (fǫ(z))

(p−2)/2p.

We rearrange and find
(fǫ(z))

1/2−(p−2)/2p = (fǫ(z))
1/p ≤ (fǫ(z̃))

1/p.

As the p-th square root is monotone, we have

fǫ(z) ≤ fǫ(z̃).

Thus we have established the result.�

3.2 Convergence and Error Decay Rates for Algorithm 1

Finally we can state convergence results for Algorithm 1 with the help of the tools and conditions
already mentioned above, more precisely Definition 3.2 and Definition 3.10. Furthermore if ‖A(·)−y‖2ℓp
is Ĉ-strongly convex at x∗ certain requirements on the constant Ĉ in (13) will lead us to an error
decay rate, which is linear in the case that y ∈ Ran(A), but one will have an additional error term
scaling in the ineliminable discrepancy ‖A(x∗)− y‖ℓp otherwise.

Theorem 3.17 Fix y ∈ R
mand let A : Rk → R

m be a nonlinear map in C0 and the functionals
J (x,wn, ǫn) for w

n, ǫn as generated by Algorithm 1 for all n ≥ 0, for which we consider the conditions

(a) the boundedness and coercivity condition (BCC), i.e., there exist α, β > 0 such that, for all
z ∈ B(0, R∗):

α‖x∗ − z‖ℓ2 ≤ ‖A(x∗)−A(z)‖ℓp ≤ β‖x∗ − z‖ℓ2;

(b) and the first uniform strong convexity condition (USCC-1), i.e., there exists a uniform constant
C > 0 such that for all n ≥ 0 the following conditions holds

J (xn, wn, ǫn)− J (xn+1, wn, ǫn) = ‖A(xn)− y‖2ℓ2(wn)
− ‖A(xn+1)− y‖2ℓ2(wn)

≥ C‖xn − xn+1‖2ℓ2 .

(13)

Then the sequence (xn)n∈N generated by Algorithm 1 converges to a vector x̄.

(i) if ǫ = lim
n→∞

ǫn = 0, and condition (a) holds, then x̄ = x∗ is the solution to the ℓp-minimization

problem (5). Moreover y ∈ Ran(A) and y = A(x∗).

(ii) if ǫ = lim
n→∞

ǫn > 0, and both conditions (a) and (b) hold, then x̄ = xǫ as defined in (12) and

xǫ ∈ B(0, R∗). For simplicity here we assume that xǫ is actually the unique global minimizer of
fǫ.

(c) Let the error at the n-th step be denoted as En and the unavoidable error E∗ = ‖A(x∗)− y‖2ℓp.

If condition (a) is fulfilled as well as the the second uniform convexity condition(USCC-2) i.e
there exists a uniform constant Ĉ > 0 such that for all n ≥ 0, the following conditions hold

‖A(xn)− y‖2ℓp − ‖A(x∗)− y‖2ℓp ≥ Ĉ‖xn − x∗‖2ℓ2

for all n ≥ 0, where Ĉ > 0 is such that µ := 21+2/p(m2+1)β2

Ĉ
< 1 and ν = 21+2/p(m2+1−2−2/p)

Ĉ
, we

can additionally infer the following property:
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(iii) the error decay rate can be characterized in terms of the just defined errors En and E∗ as follows:

En+1 ≤ µEn + νE∗ (14)

or

En+1 ≤ µnE0 +

n
∑

r=1

µrνE∗. (15)

Taking the limits for n → ∞ gives an asymptotic error of the order of E∗

Ē := ‖A(x̄)− y‖2ℓp ≤
ν

1− µ
E∗. (16)

Proof: (i) In this case we want to prove that xn converges, and that its limit is the solution to the ℓp-
minimization problem (5). Suppose that ǫn0

= 0 for some n0. Then by the definition of the algorithm,
we know that the iteration is stopped at n = n0, and xn = xn0 , n ≥ n0. Therefore x̄ = xn0 .
From the definition of ǫn, it then also follows that maxi((Ai(x

n+1)−yi))
2 = 0, hence ‖A(x̄)− y‖pℓp = 0

and, in view of (a) we have x̄ = x∗.

Suppose now that ǫn > 0 for all n. Since ǫn → 0, there is an increasing sequence of indices (nl) such
that ǫnl

< ǫnl−1 for all l.
Note that xn is a bounded sequence according to Lemma 3.5 and there exists a subsequence (ts)s∈N

of (nl)l∈N such that (xts)s∈N converges to a limit point x̃. We observe that by the definition of ǫts
∑

i

((A(xts)− yi)
2
i + ǫ2ts)

p/2 <
∑

i

2p/2max
j

|A(xts )j − yj |
p.

In fact, by the definition of (ǫn)n∈N
we know that if ǫts falls below ǫ̃, then ǫts = maxj |A(xts )j−yj| < ǫ̃

and hence ǫts → 0 implies that maxj |A(xts)j − yj | → 0. Using the continuity of A it follows that

0 ≤
∑

i

|A(x̃)i − yi|
p = lim

s→∞

∑

i

((A(xts )i − yi)
2 + ǫ2ts)

p/2 ≤ lim
s→∞

2p/2mǫpts = 0.

We must still show that xn → x∗. Since xts → x∗ and ǫts → 0, it holds that J (xts , wts , ǫts) → 0 =
∑

i |A(x
∗)i − yi|p. By the monotonicity property of J , we get J (xn, wn, ǫn) → 0 =

∑

i |A(x
∗)i − yi|p.

Since (11) implies J (xn, wn, ǫn)−mǫpn ≤
∑

i |Ai(x
n)− yi|p ≤ J (xn, wn, ǫn), we obtain

lim
n→∞

∑

i

|Ai(x
n)− yi|

p =
∑

i

|Ai(x
∗)− yi|

p = 0.

By using the BCC we obtain

0 ≤ lim sup
n→∞

‖xn − x∗‖2 < lim sup
n→∞





1

α

(

∑

i

|Ai(x
n)− yi|

p

)1/p

+
1

α

(

∑

i

|Ai(x
∗)− yi|

p

)1/p




=
2

α
lim
n→∞

(

∑

i

|Ai(x
n)− yi|

p

)1/p

= 0.

This statement completes the proof that xn → x∗ in this case.

(ii) We shall first show that xn → xǫ, n → ∞ with xǫ ∈ argmin
x

fǫ(x). We already observed that

(xn)n∈N0
is a bounded sequence in B(0, R∗) and hence this sequence has accumulation points. Let
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(xnl)l∈N0
be any convergent subsequence of (xn)n∈N0

and let x̄ be its limit. We want to show that
x̄ = xǫ.
By continuity of A it follows that lim

l→∞
wnl

i = [(A(x̄)i− yi)
2+ ǫ2](p−2)/2 = w(x̄, ǫ)i := w̄i, i = 1, · · · ,m.

On the other hand, by invoking Lemma 3.14 , we obtain also that xnl+1 → x̄, i → ∞.
From the minimality properties we know that for all nl

∥

∥A(xnl+1)− y
∥

∥

ℓ2(wnl)
≤ ‖A(z)− y‖ℓ2(wnl ) , for all z ∈ R

k. (17)

By passing to the limit for nl → ∞ for z fixed, we obtain also

‖A(x̄)− y‖ℓ2(w̄) ≤ ‖A(z)− y‖ℓ2(w̄) .

Now Lemma 3.16 implies that x̄ = xǫ. As we assumed that xǫ is the unique minimizer of fǫ, it is the
unique accumulation point of (xn)n∈N and is also its limit. This establishes (ii).

(iii) We would like to get an error bound at the (n+1)-th iteration from the chain of estimates as
developed in the following. We start with the error

‖xn − x∗‖2ℓ2 ≥
1

β2
‖A(xn)− A(x∗)‖2ℓp ≥

1

β2

(

1

2
‖A(xn)− y‖2ℓp − ‖A(x∗)− y‖2ℓp

)

, (18)

where we used the BCC.
We now need to pass to our functional J , because we only have monotonicity of it along the

iterations thanks to Lemma 3.4. Let ‖ǫn‖ℓ2(wn) := ‖ǫn · (1, . . . , 1)T ‖ℓ2(wn). We observe that

‖A(xn)− y‖2ℓp =

(

m
∑

i=1

|Ai(x
n)− yi|

p

)
2
p

≥

(

m
∑

i=1

(Ai(x
n)− yi)

2 + ǫ2n − ǫ2n
((Ai(xn)− yi)2 + ǫ2n)

(2−p)/2

)
2
p

≥ 21−2/pJ (xn, wn, ǫn)
2
p − ‖ǫn‖

4
p

ℓ2(wn)
≥ 21−2/pJ (xn+1, wn+1, ǫn+1)

2
p − ‖ǫn‖

4
p

ℓ2(wn)

≥ 21−2/p‖A(xn+1)− y‖2ℓp − ‖ǫn‖
4
p

ℓ2(wn)
.

From (18) and the latter estimate we obtain

‖xn − x∗‖2ℓ2 ≥
1

2β2

[

21−2/p‖A(xn+1)− y‖2ℓp − ‖ǫn‖
4
p

ℓ2(wn)
− 2‖A(x∗)− y‖2ℓp

]

.

We add and subtract the term 1−2−2/p

β2 ‖A(x∗)− y‖2ℓp and rearrange

‖xn−x∗‖2ℓ2 +
1− 2−2/p

β2
‖A(x∗)− y‖2ℓp +

1

2β2
‖ǫn‖

4
p

ℓ2(wn)
≥

1

22/pβ2

(

‖A(xn+1)− y‖2ℓp − ‖A(x∗)− y‖2ℓp

)

We rearrange again and use Definition 3.12 to obtain

‖xn − x∗‖2ℓ2 +
1− 2−2/p

β2
‖A(x∗)− y‖2ℓp +

1

2β2
‖ǫn‖

4
p

ℓ2(wn)

≥
Ĉ

21+2/pβ2
‖xn+1 − x∗‖2ℓ2 .

We examine the expression ‖ǫn‖
4
p

ℓ2(wn)
a bit closer and estimate it from above
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‖ǫn‖
4
p

ℓ2(wn)
=

(

m
∑

i=1

ǫ2n
[(Ai(xn)− yi)2 + ǫ2n]

(2−p)/2

)
2
p

≤

(

m
∑

i=1

ǫpn

)
2
p

≤ m2‖A(xn)− y‖2ℓp ≤ 2m2‖A(xn)−A(x∗)‖2ℓp + 2m2‖A(x∗)− y‖2ℓp

≤ 2β2m2‖xn − x∗‖2ℓ2 + 2m2‖A(x∗)− y‖2ℓp ,

where we used the definition of ǫn and the fact that the maximum absolute value of a single entry of
a vector is smaller than the norm of the vector. Hence we combine the results above to obtain (14)

En = ‖xn+1 − x∗‖2ℓ2 ≤
21+2/p(m2 + 1)β2

Ĉ
‖xn − x∗‖2ℓ2 +

21+2/p(m2 + 1− 2−2/p)

Ĉ
‖A(x∗)− y‖2ℓp = µEn+1 + νE∗.

By recurrently substituting En by its predecessors we obtain (15)

En+1 ≤ µnE0 +
n
∑

r=1

µrνE∗.

Taking the limit n → ∞ gives (16). �

Remark 3.18 1. Notice that for x̄ = x∗ (16) is trivial while for x̄ = xǫ (16) gives information on
xǫ as a quasi-minimizer.

2. Requiring the inequality in Lemma 3.16 to be valid for all z̃ and not only for z ∈ B(0, 2R∗) is
due to the global minimization of J (x,wnl , ǫnl

) w.r.t. x. This minimization gives us xnl+1, that
is the global minimizer that is compared to all other z in (17) in step (ii).

3. The values of µ and ν represent the worst upper bounds up to the point where ǫn = Mn in

Algorithm 1. In cases where ǫn = Nn, we could choose µ̃ = 22+2/pβ2

Ĉ
, ν̃ = 22+2/p−2

Ĉ
instead of

µ, ν for these steps, hence better constants.

4 Local Convexification of the Auxiliary Functional

In the case where we can not fulfill the uniform strong convexity condition of Definition 3.10 one is
in the unpleasant situation of facing a not even locally convex optimization problem. In this case
convergence of the NR-IRLS as defined above can not be guaranteed as we did. For this harder case
we suggest a strategy of adaptive adjustment of the algorithm towards local convexification around
the current iterate, which can ensure again convergence of the generalized IRLS to at least a critical
point.

4.1 Starting points for the convexified algorithm

In the algorithm as stated above, for the first iteration of the generalized IRLS, where w0 = (1, . . . , 1)T ,
just a usual nonlinear ℓ2-least squares step is executed to obtain the minimizer of the functional
J (x,w0, ǫ0). Already at this point in the locally nonconvex case one might possibly encounter several
local minimizers and which one is set to be the next iterate x1 depends on the particular starting
point x0 of the optimization strategy used in as already pointed out in Remark 3.1.

As the convexification that we have in mind is locally around the current iterate it is important to
think about the influence of the first iterate and therefore also the choice of x0 for the optimization
process in the first step. The overall result of the algorithm might vary strongly for different choices!
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At this point one can take a little excursion to complex analysis to infer that if A(x) is of analytic
meaning that A(x) = (π1(x), . . . , πi(x), . . . , πm(x)), where the πi(x) are analytic, then we only have
isolated zeros of ∇‖A(x) − y‖pℓp for p > 1 and only a finite number of them on any compact set.
Our suggestion is now to invest the computational effort of finding several or even all critical points
occurring in the first iteration. Our hope motivating this is that the location of critical points of the
functional ‖A(x) − y‖pℓp does not change strongly with varying p and that a global minimizer for p

might be not too far from a local ℓ2-minimizer (or critical point). For finding these local minimizers
one can use the methods described in the beginning of the paper for instance a Levenberg-Marquardt
type algorithm with different (maybe randomly chosen) starting points. The stationary points found
will be denoted as x∗1

ℓ2
, x∗2

ℓ2
, . . . , x∗L

ℓ2
. For each of them we would suggest to use them as starting points

for an adjusted version of NR-IRLS that we will introduce in the following. After having executed
this adjusted version of the generalized IRLS for all x∗1

2 , x∗2

2 , . . . , x∗L
2 and having obtained L possible

solutions x∗1 , x∗2 , . . . , x∗L for the ℓp-minimization problem, we chose the x∗s giving the lowest value
of ‖A(x∗s)− y‖ℓp as our best candidate for the desired ℓp-minimizer.

4.2 Convexification of the Auxiliary Functional and Convexified Algo-

rithm

To overcome the disadvantage of not fulfilling the condition in Definition 3.10, we want to introduce
another way to ensure uniform local convexity and want to gain convergence by a convexifying adap-
tion of Algorithm 1.
Let us now consider the case where w, ǫ are fixed. Our idea is now to construct a convexification of
our original functional J as follows

Jω,u(x,w, ǫ) = J (x,w, ǫ) + ω‖x− u‖2ℓ2, (19)

for a parameter ω > 0 and u ∈ R
k. This kind of regularization of a functional is also called Moreau

envelope in nonsmooth convex optimization [33].
We want to embed this type of straightforward convexification (19) into the first step of the

Nonlinear Residual IRLS algorithm and perform a minimization of a regularized problem instead of a
minimization as performed in the original formulation of NR-IRLS to obtain a corresponding sequence
of minimizers xn.
To incorporate (19) into the original formulation of the algorithm we have to make an appropriate
choice for the newly introduced parameters u and ω. We decide to fix ω > 0 generously large enough
and constant for all iterations and set u = xn at the n-th step. Thereby we obtain our next iterate
as follows

xn+1 = argmin
x

Jω,xn(x,wn, ǫn), (20)

Remark 4.1 (a) For the solution of the convex minimization problem appearing here a great variety
of well-understood convex optimization methods is available see Section 2.2.

(b) Explanations why this choice for the adaption of the algorithm will resolve our lack of local
convexity and recommendations for the concrete choice of ω will follow later in the theoretical
analysis section.

Now we can turn towards the formulation of an adapted NR-IRLS algorithm:

For initialization we set x1 = x∗l

ℓ2
and define as usual

N 1 = min
i
(|Ai(x

1)− yi)|) and M1 = max
i

(|Ai(x
1)− yi|),
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to obtain
ǫ1 = min

(

max(N 1, ǫ̃), ǫ0,M
1
)

where ǫ̃ is a small number and

w1 =
[

(A(x1)− y).2 + ǫ21
](p−2)/2

.

Now we will adapt the functional J as in (20)

Jω1,x1(x,w1, ǫ1) =
p

2

[

m
∑

i=1

[

w1
i (Ai(x)− yi)

2
]

+
m
∑

i=1

(ǫ21w
1
i +

2− p

p
(w1

i )
p/(p−2))

]

+ ω‖x− x1‖2ℓ2 . (21)

We obtain the next candidate for a minimizer by performing the step

x2 = argmin
x

Jω,x1(x,w1, ǫ1). (22)

Continuing in this fashion results in the following adapted algorithm

Algorithm 2: Convexified nonlinear residual iteratively reweighted least squares:
Input: A : Rk → R

m, y ∈ R
m

We initialize by taking ǫ1 = min
i
(Ai(x

∗l
2 )− yi)

2 and w1 =
[

(A(x∗l
2 )− y).2 + ǫ21

](p−2)/2
.

We fix x1 = x∗l

ℓ2
for the first step. We then recursively define for n = 1, 2, 3, . . .

Jωn,xn(x,wn, ǫn) =
p

2

[

m
∑

i=1

[

wn
i (Ai(x)− yi)

2
]

+
m
∑

i=1

(ǫ2nw
n
i +

2− p

p
(wn

i )
p/(p−2))

]

+ ω‖x− xn‖2ℓ2 .

We obtain the next iterate by performing a step

xn+1 = argmin
x

Jω,xn(x,wn, ǫn). (23)

We redefine

Nn+1 = min
i
(|Ai(x

n+1)− yi)|) and Mn+1 = max
i

(|Ai(x
n+1)− yi|),

giving us
ǫn+1 = min

(

max(Nn+1, ǫ̃), ǫn,M
n+1
)

,

where ǫ̃ is a small constant and

wn+1 =
[

(A(xn+1)− y).2 + ǫ2n+1

](p−2)/2
.

Output: x2, x3, . . .

4.3 Convergence Analysis for the Convexified Algorithm

In the following section we examine Algorithm 2 and its behavior mostly analogous to the original
version of NR-IRLS. We again discuss some preliminary properties and facts already familiar from
Section 3 for the adapted algorithm now that will be useful to show its convergence later on. Having
obtained these results we shall develop the proof of convergence of Algorithm 2 in several lemma.

A first important note is that we also have a type of monotonicity property for the adjusted
functionals:
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Lemma 4.2 The inequalities

J (xn, wn, ǫn) = Jω,xn(xn, wn, ǫn) ≥ Jω,xn(xn+1, wn, ǫn) (24)

≥ Jω,xn(xn+1, wn, ǫn+1) ≥ Jω,xn(xn+1, wn+1, ǫn+1) (25)

≥ Jω,xn+1(xn+1, wn+1, ǫn+1) = J (xn+1, wn+1, ǫn+1) (26)

hold for all n ≥ 0.

Proof: Here the first and inequality follows from the minimization property defined via the first step
of Algorithm 2, the second inequality from ǫn+1 ≤ ǫn, and the second last inequality from the min-
imization property that defines wn+1. The last inequality results from the fact that the norm of a
difference of different vectors is greater than 0.�

From the monotonicity property of the sequence (J (xn, wn, ǫn))n∈N and its boundedness from
below we know that this sequence is convergent.

Moreover note that also in the convexified case the sequence (x
n
)n∈N resulting as the output of

Algorithm 2 is bounded, as it can be shown analogously to Lemma 3.5 and hence (x
n
)n∈N ∈ B(0, R∗).

At this point we want to explain further why we chose the formulation in (20) to adapt the
functional J . The introduction of the regularization term is the key to regain the USCC-1 for the
adapted functional (19) as we can guarantee the existence of a positive USCC-1 constant C̃ with an
appropriate choice of ω.

Lemma 4.3 Let A : Rk → R
m be a nonlinear map in C0 and J (x,w, ǫ) as defined in Definition 2.4

and Jω,u(x,w, ǫ) as defined in (19). We additionally assume that

∣

∣

∣t[‖A(txn + (1− t)xn+1)− y‖2ℓ2(wn) − ‖A(xn)− y‖2ℓ2(wn)] (27)

+(1− t)[‖A(txn + (1 − t)xn+1)− y‖2ℓ2(wn) − ‖A(xn+1)− y‖2ℓ2(wn)]
∣

∣

∣

≤ Lt(t− 1)‖xn − xn+1‖2ℓ2 .

for some L > 0 indepedent of n ∈ N and for all t ∈ [0, 1]. Let (xn)n∈N be the sequence of minimizers
output by Algorithm 2. Then for ω > 0 large enough the USCC-1 is fulfilled for the adapted functional
in (19), i.e., there exists a uniform constant C̃ > 0 such that for all n ≥ 0 holds

Jω,xn(xn, wn, ǫn)− Jω,xn(xn+1, wn, ǫn) ≥ C̃‖xn+1 − xn‖2ℓ2

Remark 4.4 Before starting the proof of this lemma, let us discuss for a moment the validity of
(27). Were A ∈ C2 and ǫn ≥ ǫ for all n ∈ N, then the Hessian

∇2Fwn(x) =

m
∑

i=1

wn
i

[

∇A(x)i∇A(x)Ti + (A(x)i − yi)∇
2A(x)i

]

,

of the map
x → Fwn(x) = ‖A(x)− y‖2ℓ2(wn)

would be actually uniformly bounded on B(0, R∗), say by a constant L′ > 0. By considering two
Taylor expansions around the point x = txn + (1 − t)xn+1 in the following expressions, we actually
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obtain easily a uniform estimate of the type (27):
∣

∣

∣t[‖A(txn + (1− t)xn+1)− y‖2ℓ2(wn) − ‖A(xn)− y‖2ℓ2(wn)]

+(1− t)[‖A(txn + (1 − t)xn+1)− y‖2ℓ2(wn) − ‖A(xn+1)− y‖2ℓ2(wn)]
∣

∣

∣

=
∣

∣−t∇Fwn(txn + (1− t)xn+1)T (xn − txn + (1− t)xn+1)

+−t(xn − txn + (1− t)xn+1)T∇2Fwn(ξnt )(x
n − txn + (1− t)xn+1)

−(1− t)∇Fwn(txn + (1− t)xn+1)T (xn+1 − txn + (1− t)xn+1) +

+−(1− t)(xn+1 − txn + (1− t)xn+1)T∇2Fwn(ηnt )(x
n+1 − txn + (1 − t)xn+1)

∣

∣

Now, we have that

−t∇Fwn(txn+(1− t)xn+1)T (xn− txn+(1− t)xn+1) = −t(1− t)∇Fwn(txn+(1− t)xn+1)T (xn−xn−1)

as well as

−(1−t)∇Fwn(txn+(1−t)xn+1)T (xn+1−txn+(1−t)xn+1) = t(1−t)∇Fwn(txn+(1−t)xn+1)T (xn−xn−1).

Hence the first order terms in the sum above are one the opposite of the other and they delete each
other. One is therefore left only with the second order terms. By using the boundedness of the Hessians
and by observing that

‖(xn−txn+(1−t)xn+1‖2ℓ2 = (1−t)2‖xn−xn+1‖2ℓ2 , and ‖(xn+1−txn+(1−t)xn+1‖2ℓ2 = t2‖xn−xn+1‖2ℓ2

one obtains
∣

∣

∣t[‖A(txn + (1− t)xn+1)− y‖2ℓ2(wn) − ‖A(xn)− y‖2ℓ2(wn)]

+(1− t)[‖A(txn + (1− t)xn+1)− y‖2ℓ2(wn) − ‖A(xn+1)− y‖2ℓ2(wn)]
∣

∣

∣

≤ L′t(1− t)2‖xn − xn+1‖2ℓ2 + L′t2(1− t)‖xn − xn+1‖2ℓ2 ≤ Lt(t− 1)‖xn − xn+1‖2ℓ2 ,

where in the last inequality we used that t ∈ [0, 1] and L = 2L′. We claim therefore that (27) is a
reasonable assumption also in case where A is not as smooth. But it is here crucial that ǫn ≥ ǫ for
all n ∈ N as it is actually used later in the proof of Theorem 4.6.

Proof: In view of the condition (27), we obtain the following estimates for t ∈ [0, 1]
∣

∣J (txn + (1 − t)xn+1, wn, ǫn)− [tJ (xn, wn, ǫn) + (1− t)J (xn+1, wn, ǫn)]
∣

∣

≤
∣

∣

∣t[‖A(txn + (1 − t)xn+1)− y‖2ℓ2(wn) − ‖A(xn)− y‖2ℓ2(wn)]

+(1− t)[‖A(txn + (1− t)xn+1)− y‖2ℓ2(wn) − ‖A(xn+1)− y‖2ℓ2(wn)]
∣

∣

∣
≤ Lt(t− 1)‖xn − xn+1‖2ℓ2 .

Consequently we can write

J (txn + (1− t)xn+1, wn, ǫn) ≤ tJ (xn, wn, ǫn) + (1− t)J (xn+1, wn, ǫn)− Ct(1− t)‖xn − xn−1‖2ℓ2,

where C = −L is a uniform constant that is not necessarily positive as we do not assume yet that
strong convexity holds for J (·, wn, ǫn) in this case, but certainly C > −∞.
We then add ω‖txn + (1 − t)xn+1 − xn‖2ℓ2 on both sides of the inequality

J (txn + (1− t)xn+1, wn, ǫn) + ω‖txn + (1− t)xn+1 − xn‖2ℓ2

≤ tJ (xn, wn, ǫn) + (1− t)J (xn+1, wn, ǫn)− Ct(1 − t)‖xn − xn−1‖2ℓ2 + ω‖txn + (1− t)xn+1 − xn‖2ℓ2
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and reformulate

Jω,xn(txn + (1 − t)xn+1, wn, ǫn)

≤ tJω,xn(xn, wn, ǫn) + (1− t)J (xn+1, wn, ǫn)− Ct(1 − t)‖xn − xn−1‖2ℓ2 + (1− t)2ω‖xn − xn+1‖2ℓ2 .

We add and subtract the term (1− t)ω‖xn − xn+1‖2ℓ2 and gain as a result

Jω,xn(txn + (1− t)xn+1, wn, ǫn)

≤ tJω,xn(xn, wn, ǫn) + (1− t)Jω,xn(xn+1, wn, ǫn)− (C + ω)t(1− t)‖xn − xn−1‖2ℓ2 .

The last inequality establishes actually the strong convexity condition for Jω,xn(·, wn, ǫn) at xn+1

in the point xn. If we carry out calculations analogous to the ones in the proof of Theorem 3.9 we
obtain

Jω,xn(xn, wn, ǫn)− Jω,xn(xn+1, wn, ǫn) ≥ C̃‖xn+1 − xn‖2ℓ2,

where C̃ = C + ω which is positive if ω is chosen large enough. �
Now we would like to prove again that the iterates are getting arbitrarily close :

Lemma 4.5 Let A : Rk → R
m be a nonlinear map with A ∈ C0 and (xn)n∈N and (wn)n∈N be the

sequences generated by Algorithm 2, so that condition (27) holds. Then, for ω > 0 large enough

∥

∥xn − xn+1
∥

∥

2

ℓ2
→ 0 as n → ∞.

Proof: With the monotonicity property above we obtain

‖J (xn, wn, ǫn)− J (xn+1, wn+1, ǫn+1)‖
2
ℓ2 ≥ ‖Jω,xn(xn, wn, ǫn)− Jω,xn(xn+1, wn, ǫn)‖

2
ℓ2 .

By Lemma 4.3 we get

‖Jω,xn(xn, wn, ǫn)− Jω,xn(xn+1, wn, ǫn)‖
2
ℓ2 ≥ C̃‖xn − xn+1‖2ℓ2

As ‖J (xn, wn, ǫn)− J (xn+1, wn+1, ǫn+1)‖2ℓ2 → 0 as n → ∞ we also get

‖xn − xn+1‖2ℓ2 → 0 as n → ∞.�

We are now ready to present the result of convergence which we concisely summarize as follows:
As xn is a bounded sequence, we obtain either the exact minimizer of ‖A(x) − y‖pℓp or every cluster

point is a critical point of the ǫ-perturbed ℓp-norm residual fǫ(x) at least.

Theorem 4.6 Fix y ∈ R
m, x0 ∈ R

k. Let A : Rk → R
m be a nonlinear map with A ∈ C1 for which

the boundedness and coercivity condition (BCC) holds, i.e., there exist α, β > 0 such that, for all
z ∈ B(0, R∗):

α‖x∗ − z‖ℓ2 ≤ ‖A(x∗)− A(z)‖ℓp ≤ β‖x∗ − z‖ℓ2.

Additionally we require that, for (xn)n∈N and (wn)n∈N sequences generated by Algorithm 2,
∣

∣

∣t[‖A(txn + (1− t)xn+1)− y‖2ℓ2(wn) − ‖A(xn)− y‖2ℓ2(wn)] (28)

+(1− t)[‖A(txn + (1 − t)xn+1)− y‖2ℓ2(wn) − ‖A(xn+1)− y‖2ℓ2(wn)]
∣

∣

∣

≤ Lt(t− 1)‖xn − xn+1‖2ℓ2 .

for some L > 0 indepedent of n ∈ N and for all t ∈ [0, 1]. For ω > 0 large enough (and determined
according to Lemma 4.3) we have the following properties of Algorithm 2:
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(i) If ǫ = lim
n→∞

ǫn = 0, then the sequence (xn)n∈N converges to a vector x̄, which is the solution to

the ℓp-minimization problem (5). Moreover if y ∈ Ran(A) and y = A(x∗) then x∗ is the unique
minimizer, thus x̄ coincides with x∗.

(ii) if ǫ = lim
n→∞

ǫn > 0, then all accumulation points of (xn)n∈N are critical points of the ǫ-perturbed

ℓp-norm residual fǫ as defined in (12) and they all belong to B(0, R∗).

Proof:

(i) the proof of this statement is analogous to the one of Theorem 3.17.

(ii) We already mentioned that (xn)n∈N is a bounded sequence in B(0, R∗) and hence it has accu-
mulation points. Let (xnℓ)ℓ∈N be any convergent subsequence of (xn)n∈N0

and let x̄ be its limit.
We want to show that x̄ is a critical point of (12).
Since wn

i = [(Ai(x
n)− yi)

2+ ǫ2n]
(p−2)/2 ≤ ǫp−2

n ≤ ǫp−2, it follows (up to extracting an additional
subsequence) that lim

ℓ→∞
wnℓ

i = [(Ai(x̄)− yi)
2 + ǫ2](p−2)/2 = w(x̄, ǫ)i := w̄i, i = 1, . . . ,m.

On the other hand, by invoking Lemma 4.5 , we obtain also that xnℓ+1 → x̄, ℓ → ∞. (Notice
that here ǫn ≥ ǫ > 0 and the considerations in Remark 4.4 can be applied in order to justify
the assumption (28).) Analogously wnℓ+1 → w̄ for ℓ → ∞. Since we assume A ∈ C1 then
x → J (·, wn, ǫn) is actually differentiable. We observe that by (20),

0 = ∇xJω,xnℓ (xnℓ+1, wnℓ , ǫnℓ
) = ∇xJ (xnℓ+1, wnℓ , ǫnℓ

) + 2ω(xnℓ+1 − xnℓ)

or
−2ω(xnℓ+1 − xnℓ) = ∇xJ (xnℓ+1, wnℓ , ǫnℓ

).

Using Lemma 4.5 we can conclude that taking the limit ℓ → ∞ gives

0 ∈ ∇xJ (x̄, w̄, ǫ) = ∇fǫ(x̄).�

(Let us emphasize that, due to our assumption A ∈ C1, in all the steps above, the functions we
consider are differentiable. We could consider to lower the smoothness by requiring A ∈ C0 and
ask additional properties of subdifferentials, such as outer semicontinuity etc. However, this
generalization towards nonsmooth analysis brings little truly additional insights and we keep
content with the current formulation.)

Remark 4.7 The error decay result (iii) in Theorem 3.17 stays valid also for Algorithm 2 if condition
(c) in Theorem 3.17 is fulfilled.

5 Numerical Experiments

We want to illustrate our theoretical results by several numerical experiments. In this section we
shall first test the developed algorithms in a simple case to get some intuition of their behavior before
trying to apply them on more involved higher dimensional ℓp-minimization problems, whose optimal
solution as we know is often not so easy to determine. In a first exemplary case that is computationally
easy to handle and visually presentable we study the development of the iterates of NR-IRLS step by
step and compare the algorithm output with standard Matlab optimization routines. Furthermore we
would like to test the validity of our theoretical results also in more complex situations and we check
them via the correct reconstruction of sparse vectors in the context of nonlinear compressed sensing
problems as studied in [16]. We involve the NR-IRLS in both its original and convexified versions
in intermediate steps of a greedy sparse recovery algorithm. If the overall sparse recovery algorithm
gives correct results the intermediate steps must have been performed correctly as well. Finally we
consider the context of data corrupted by impulsive noise, where the sparsification of the residual is
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desired, and observe the recovery success rates for different levels of severity of the impulsive noise
perturbations.

Before we present the results of the numerical tests in more detail, there are some important
numerical issues that should be mentioned in the context of IRLS-type methods:

• Assume that we are in the case where ǫn → 0, and thus |A(xn)i − yi| → 0 for all i ∈ {1, . . . ,m}
for n → ∞ due to the definition of ǫn. Thus in this case it will be unavoidable that (wn)i grows
until reaching the limits of machine representation. On the one hand practically there is the
need of fixing a lower bound ǫ̂ > 0 to go around this issue. On the other hand by introducing
ǫ̂ we limit the capability of our IRLS algorithm: it will only be able to approximate the correct
solution but not to find it exactly, which does not necessarily match the theoretical analysis
of course. In order to obtain sufficient recovery accuracy it is necessary to choose the value ǫ̂
appropriately small. Unfortunately this issue leads to numerical complications again: choosing
e.g. ǫ̂ = 1e−8 and considering approximation residuals |A(xn)i − yi| ≪ 1, then (wn)i is of the
order of 1e+8 and thus multiplication or addition can lead to numerical errors that are not
negligible and will definitely affect the calculation results. As a consequence we have to face
limitations on the recovery accuracy that will most probably not allow results with errors in the
range of machine precision.

• Additionally to the errors resulting from IRLS itself we are using iterative methods for solving
the internal locally convex optimization problem in each step. From that we will have an
approximation error determined by the specific termination tolerance of the chosen method
lowering further the expected accuracy.

All numerical experiments part of this paper were performed on a MacBook Pro 9.1. with a
2.6 GHz Intel Core i7 quad-core-processor and 8GB memory. Computations were run in MATLAB
R2012b version 8.0.0.

5.1 Simple Example for A : R → R
2

As an introductory test example we consider

A : R → R
2, x 7→

(

x
x2

)

and a measurement vector y ∈ [0, 1]2, hence the ℓp-minimizer x∗ := argmin
x

‖A(x) − y‖pℓp will be in

[0, 1] as well.
As a first step we check that in this situation the BCC as in Definition 3.2 is fulfilled for 1 < p < 2.
We verify that a choice for the lower BCC-bound α is just 1:

‖A(x)−A(x∗)‖ℓp = (|x − x∗|p + |x2 − (x∗)2|p)1/p ≥ |x− x∗| ≥ α‖x− x∗‖ℓ2

For the upper bound β we obtain (1 + 2p)1/p:

‖A(x)−A(x∗)‖ℓp = (|x − x∗|p + |x2 − (x∗)2|p)1/p = (|x− x∗|p + |x− x∗|p · |x+ x∗|p)1/p

≤ (|x − x∗|p + |x− x∗|p · 2p)1/p = (1 + 2p)1/p|x− x∗| = β‖x− x∗‖ℓ2

In general we have a nonconvex problem in our situation with multiple local minimizers and want
to analyze the behaviour of our original version of the NR-IRLS, Algorithm 1. We are interested
in the influence of the parameter p . Of course, changing p means also the change of the problem
and a different minimizer as well as the appearing of possible local minimizers. In this context it is
interesting to examine the different minimization results for different p and different starting points.
In the following we observe the behavior of the NR-IRLS applied to ℓp-minimization problem for this
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measurement setting and compare it to the solution obtained with Matlab’s lsqnonlin-function, which
basically implements a trust-region-reflective or Levenberg-Marquardt strategy, applied directly to the
ℓp-minimization problem.

In the following, we start with a more detailed description of the concrete test setting. We con-
sider for measurements y = (0, 0.9)T and observe the recovery results for different values of p ranging
between 1 and 2, more precisely p ∈ {1.1, 1.3, 1.7, 1.9}.
For the specific setting of the algorithm parameters we choose the maximum number of iterations
of NR-IRLS itself to be 50. For the execution of the locally convex minimization in each inner step
we chose the MATLAB built-in function fminunc with default settings and the last iterate as the
starting point.
Moreover we use MATLAB’s default settings as well for running the lsqnonlin-function applied di-
rectly to the ℓp-minimization problem.
For both procedures we try different starting points x0 in the interval [0, 1], namely x0 ∈ {0, 0.25, 0.5, 0.75, 1}
and observe the convergence to different local minimizers.

By means of the graphical analysis, we are able to extract the following observations: Figure 1 and
2 demonstrate the property of NR-IRLS to converge to the local minimizer of the objective function
that is closest to the ℓ2-critical point obtained in the first step of the algorithm for all values of p
depending on the starting point x0 in the first step.
Moreover the influence of the starting point for solving the first nonlinear least squares problem
becomes obvious in Figures 3 and 4. The MATLAB method converges to the minimizer closest to
the starting point while the NR-IRLS converges to the minimizer closest to the results of the ℓ2-
minimization in the first step, which can be different. Hence NR-IRLS is able to find different local
minimizers than standard gradient based methods for the same starting point of the minimization.
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Figure 2:
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Figure 3:
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Figure 4:
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5.2 High Dimensional Examples in a Nonlinear Compressed Sensing Ap-

plication Context

In [16] we introduced a greedy algorithm (Algorithm 1) for recovering sparse vectors from a small
number of nonlinear measurements (we may like to name such class of problems, expecially if the
measurements are generated randomly, nonlinear compressed sensing). One of the crucial operations
of this iterative algorithm is the k-variate nonlinear ℓp-minimization problem (1). Roughly speaking,
the algorithm searches at its k-th step for the vector with at most k nonzero entries which best fits
the data in terms of a minimal norm nonlinear residual problem of the type (1). In the problem class
considered in [16], it was also interesting to consider p ∈ [1, 2] as a norm parameter in a BCC-like
conditions (there named Restricted Isometry Property (RIP)), see, more specifically, formula (3.1)
in [16]. In what follows we consider nonlinear functions A : Rk → R

m taken as restrictions to k-
dimensional index subspaces of two types of maps considered in [16]. The first type are maps which
are Lipschitz perturbations of matrices fulfilling the RIP. The second setting refers to quadratic maps
A relative to phase retrieval models [15, 17, 21]. For both these setting we present the corresponding
numerical recovery results using NR-IRLS Algorithm 1 and its locally convexified version Algorithm
2, and we compare them with standard tools of Matlab.
An implementation of the greedy algorithms for nonlinear compressed sensing is available at http:
//www-m15.ma.tum.de/Allgemeines/SoftwareSite.

5.2.1 Locally Convex Case: Nonlinear Perturbation of Linear RIP-Matrices

In [16, Section 3.2.1] the following result was obtained.

Proposition 5.1 Assume k ≤ m ≤ N and A1 ∈ R
m×N satisfies the δ-RIP of order 2k, i.e.,

(1− δ)‖z‖ℓN
2
≤ ‖A1z‖ℓm

2
≤ (1 + δ)‖z‖ℓN

2
,
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for all z ∈ R
N with at most 2k nonzero entries. If Aρ : RN → R

m is chosen as

Aρ(z) := A1z + ρf(‖z − z◦‖2ℓ2)A2z, (29)

where z◦ ∈ R
N is some reference vector in R

N , f : [0,∞) → R is a bounded Lipschitz continuous
function with f(0) = 0, ρ > 0 is a sufficiently small scaling factor, and A2 ∈ R

m×N arbitrarily fixed,
then there are constants α, β > 0, such that for p = 2

α‖z − z∗‖ℓN
2
≤ ‖Aρ(z)−Aρ(z

∗)‖ℓmp ≤ β‖z − z∗‖ℓN
2

for all z with at most k nonzero entries and z∗ is another fixed vector of at most k nonzero entries.
For other p ∈ [1, 2) these inequalities hold again with different constants α, β, derived, for instance,
by equivalence of norms: for 0 < r < q we have ‖z‖ℓq ≤ ‖z‖ℓr ≤ N1/r−1/q‖z‖ℓq .

From this proposition we deduce that any restriction of Aρ to vectors supported on a certain fixed
set of indexes Λ ⊂ {1, . . . , N} with #Λ = k satisfies the BCC. For the purposes of this paper, without
loss of generality we can simply assume Λ = {1, . . . , k} and we can define

A : Rk × R+ → R
m, (x, ρ) 7→ A(x, ρ) = Aρ(x

Λ),

where z = xΛ is the zero padding extension of x to a vector in R
N .

By Lemma 7.1 in the Appendix we have that the first USCC required in Theorem 3.17 is fulfilled
for the linear case of A(·, 0), i.e., for ρ = 0 and A(x, 0) = (A1)|Λ reduces to a matrix in R

m×k. As
ρ > 0 is small A(·, ρ) is actually just a small nonlinear perturbation of A(·, 0). If we additionally
assume now that f ∈ C2(R+) as appearing in the definition of Aρ, then by a rather straightforward
continuity argument we can easily extend the first USCC to A(·, ρ) on a small ball around x∗. We
omit the explicit, tedious, and perhaps rather clear elaboration of this argument.

The next numerical examples are addressed to the problem of recovering a sparse vector z∗ ∈ R
N

(with at most k nonzero entries, for k ∈ [1, 10]∩N from the given measurements y = Aρ(z
∗). We em-

ploy [16, Algorithm 1], which requires at each step the solution of a minimal norm nonlinear residual.
To perform such optimization we utilize Algorithm 1 of the present paper. Let us describe the precise
setting of the experiments. We fixed the dimension N = 80, the number of measurements m = 30 and
we draw at random RIP matrices A1 having i.i.d. Gaussian entries and we fix A2 as the matrix with
one as an entry everywhere. The function f is chosen to be the squared Euclidean distance from the
solution f(‖z − z∗‖2ℓ2) = ‖z − z∗‖2

ℓN
2

. As pointed out above the fulfilling of the BCC and the USCC

depends on a small parameter ρ > 0, which is indicating the severity of the nonlinearity. We perform
experiments with ρ ∈ {0, 0.5, 1, 3, 5, 10, 20} to observe the influence of this parameter and how the
success rate may depend on the nonlinearity. For each of these parameter combinations we randomly
generate a set of 100 synthetic problems.
Since we work with synthetic problems, we already have the expected sparse minimizer z∗, which can
be used to determine the success of the recovery. In particular we claim successful reconstruction
when the error is within a 1% of the solution’s norm. Possible additional noise on the measurements
is here not yet considered in all examples. Let us mention that the greedy algorithm itself was allowed
to perform 3k steps (hence a larger amount of steps with respect to the expected dimension of the
solutions), to give it the opportunity to correct indices, which may have been wrongly added to the
support. Furthermore we choose the maximum number of iterations of NR-IRLS to be 50. As before,
for the execution of the locally convex minimization in each inner step we chose the MATLAB built-in
function fminunc with default settings and the origin as the starting point.

The plots in Figure 5 show the recovery rates or the empirical probability of successful sparse
vector recovery of [16, Algorithm 1] implementing Algorithm 1 of the present paper for performing
the ℓp-minimization for different values of p.
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Figure 5: Recovery rates for the greedy strategy developed in [16] used with the RIP matrix pertur-
bation measurements as above with N = 80,m = 30, A1 having i.i.d. Gaussian entries, A2 being
the matrix with ones everywhere, f(x) = ‖x− x0‖2ℓ2, and we use solutions x∗ with ‖x∗‖ℓ2 = 0.015 .
Reconstruction is repeated 50 times for each signal and k to derive stable recovery rates.

As expected, the recovery rates decrease with growing k, hence of the dimensionality of the ℓp-
minimization problem, and growing Lipschitz perturbation factor ρ > 0 of Aρ, representing the degree
of nonlinearity. We obtain better recovery results for p closer to 2 probably because the BCC condition
in this case has tighter constants α and β.

5.2.2 Phase Retrieval Problem

We consider here as in [16] a sequence of real Gaussian random vectors ai ∈ R
N , i = 1, . . . ,m and

the nonlinear measurement map

A(x) = (|〈a1, x〉|
2, . . . , |〈am, x〉|2)⊤. (30)

By [16, Theorem 3.12] and according to [16, Formula (3.14)] there are constants α, β > 0, such that
another BCC-like property, condition in [16, formula (3.8)], holds for p = 1 (with slight adaption
including the Hilbert-Schmidt norm instead of the ℓ2-norm on the left- and right hand side of the
inequality which does not influence significantly the results above). However, the first USCC is not
fulfilled in general for this kind of problem, thus we need to employ the convexified version of NR-
IRLS, Algorithm 2. We again fixed the dimension of the signal N = 80, the number of measurements
m = 30 and i.i.d. Gaussian random vectors ai, i = 1, . . . ,m. Moreover we created synthetic solu-
tions z∗ with ‖z∗‖ℓ2 = 1 and respective sparsity level k ∈ {1, 3, 6, 9, 12, 15, 18, 21}. The vectors were



30

constructed such that the nonincreasing rearrangement of the absolute value of their entries satisfies
the decay rates κ ∈ {1, 0.8, 0.6, 0.4}, see the vector class Dκ in [16] for a precise definition. Such
decay is required as a sufficient conditions in the convergence results of [16] and it was verified to be
crucial in the numerical experiments done with standard Matlab optimization routines. For each of
these parameter combinations we generate a set of 50 synthetic problems that do not consider the
occurrence of noise. As above we use the solution z∗, the expected sparse solution, to determine the
success of the recovery, and claim again successful reconstruction when the error is within a 1% of the
solution’s norm. The algorithmic settings are similar as above: 3k steps are performed by the greedy
algorithm [16, Algorithm 1], the maximum number iterations of NR-IRLS is allowed to reach 100.
The regularization parameter ω > 0 is set to 100 and for the execution of the convex minimization in
each inner step we choose the MATLAB built-in function fminunc with default settings and random
starting points with a norm smaller or equal to the solutions norm.

The plots in Figures 6-7 show the recovery rates of [16, Algorithm 1] of sparse vectors from mea-
surements of the type Proposition 5.1, implementing Algorithm 2 of the present paper for performing
the ℓp-minimization for different values of p. Surprisingly the decay rate of the nonincreasing re-
arrangement of the solution vector z∗ seems not to have notable influence on the recovery results
when using NR-IRLS, although we experienced this phenomenon in our earlier paper [16], where we
used the built-in MATLAB functions fminunc, fminsearch or lsqnonlin for solving the internal
ℓp-minimization problem. For comparison we give the corresponding results obtained from an imple-
mentation of the greedy algorithm using lsqnonlin for solving the internal ℓp-minimization problem
as well. Its results are obviously outperformed by NR-IRLS when the decay rate of the nonincreasing
rearrangement of the solution is not sufficiently pronounced.
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Figure 6: Recovery rates for the greedy strategy developed in [16] implemented with NR-IRLS used
on the phase retrieval problem with Gaussian measurement vectors as above with N = 80,m = 30,
and we use solutions x∗ with ‖x∗‖ = 1 . Reconstruction is repeated 50 times for each signal and k, κ.
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Figure 7: Recovery rates for the greedy strategy developed in [16] implemented with lsqnonlin used
on the phase retrieval problem with Gaussian measurement vectors as above with N = 80,m = 30,
and we use solutions x∗ with ‖x∗‖ = 1 . Reconstruction is repeated 50 times for each signal and k, κ.
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5.3 Recovery from Data with Impulsive Noise Perturbation

In the case of measurements y additionally corrupted by noise, the optimal type of loss function for the
nonlinear residual minimization has to be chosen depending on the particular kind of noise. The most
common type is so-called white noise with Gaussian distribution, a continuous smooth perturbation
of the original signal, where usual ℓ2-least squares methods are well suited and widely used. In con-
trast, impulsive noise are random occurrences of instantaneous signal perturbations taking the shape
of spikes or pulses having random amplitude. This means the appearance of measurement distortions
is sparse. For that ℓ1-minimization of the nonlinear residual is a better choice than ℓ2-minimization.
In the following we want to consider noisy measurements in the context of the phase retrieval prob-
lem as described above and adopt the numerical test setting in great parts with only slight adaption
mentioned below. The goal of this section is to examine the influence of the choice of 1 ≤ p ≤ 2 on
the recovery success rates for impulsive noise perturbations.
First of all we need to fix a possible statistical model for the impulsive noise. To this end we combine a
binary-valued random sequence model of the time of occurrence of impulsive noise with a continuous-
valued random process model of impulse amplitude.
An important statistical process for modeling impulsive noise as an amplitude modulated binary se-
quence is the Bernoulli-Gaussian process [38]. In a Bernoulli-Gaussian model of an impulsive noise
process, the random time of occurrence of the impulses is modeled by a binary Bernoulli process Bαp

with success probability αp and the amplitude of the impulses is modeled by a Gaussian process N(0,1)

with mean 0 and standard deviation 1. Having introduced a proper model for impulsive noise, we
apply the NR-IRLS Algorithm 2 on the noisy phase retrieval problem. We give a complete description
of the measurement setting as follows. As above we again fixed the dimension of the signal N = 80,
the number of measurements m = 30 and i.i.d. Gaussian random vectors ai, i = 1, . . . ,m. Moreover
we created synthetic solutions z∗ with ‖z∗‖ℓ2 = 1 and respective sparsity k ∈ {1, 2, 3, 5, 7, 9}. The vec-
tors were constructed such that the nonincreasing rearrangement of the absolute value of their entries
satisfies the decay rate κ = 0.5, see the vector class Dκ in [16] for a precise definition. We generated
impulsive Bernoulli-Gaussian noise with parameters αp ∈ {0.5, 0.4, 0.3, 0.2, 0.1, 0.0} respectively that
was scaled to the norm of the measurements and added it to the originally generated measurement
data itself. For each of these parameter combinations we generate a set of 100 synthetic problems. As
above we use the solution z∗, the expected sparse solution, to determine the success of the recovery
and claim again successful reconstruction when the error is within a 5% of the solution’s norm.
The algorithmic settings are similar to above: 3k steps are performed by the greedy algorithm [16,
Algorithm 1], the maximum number iterations of NR-IRLS itself is allowed to reach 50. The regular-
ization parameter ω is set to 100 and for the execution of the convex minimization in each inner step
we choose the MATLAB built-in function fminunc with default settings and random starting points
with a norm smaller or equal to the solutions norm.

The plots in Figure 8 show the recovery rates of [16, Algorithm 1] for sparse vectors from mea-
surements of the type Proposition 5.1 affected by impulsive noise, implementing Algorithm 2 for
performing the ℓp-minimization for different values of p. As a short synthesis from the visual analysis
of the phase transition diagrams, we can state that smaller values of p and thus less smooth loss func-
tions for residual minimization should clearly be preferred to standard ℓ2-least squares, as expected
from the specific noise model. Moreover we note that for p close to 1 and a small number of vector
entries recovery is still very robust also for strong perturbations with impulsive noise.
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Figure 8: Recovery rates for the greedy strategy developed in [16] implemented with NR-IRLS used
on the phase retrieval problem with Gaussian measurement vectors as above with N = 80,m = 30,
and we use solutions x∗ with ‖x∗‖ = 1 . Reconstruction is repeated 50 times for each signal with
sparsity k and the particular noise perturbation as given above.
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7 Appendix

7.1 Minimization of the functional J for a linear map A

Let ǫ > 0, w, y ∈ R
m with w > 0 be fixed. Moreover we first consider a general map A ∈ C2(Rk,Rm)

and bounded not explicitly requiring the linearity of A. (For the sake of an intuitive presentation we
do not consider weaker assumptions on A here.)
We examine the minimization of the functional J (·, ǫ, w) in general first and then comment on the
difference between the linear and nonlinear case. As we assume that the problem is smooth enough
the minimizer xs of J (·, ǫ, w) has to fulfill the necessary and sufficient conditions of a zero gradient

∇J (xs, ǫ, w) = p

m
∑

i=1

wi(A(x
s)i − yi)∇A(xs)i = 0,

and a positive definite Hessian

∇2J (xs, ǫ, w) = p
m
∑

i=1

wi

[

∇A(xs)i∇A(xs)Ti + (A(xs)i − yi)∇
2A(xs)i

]

> 0.

In the linear case, where A(x) = A, ∇2J (x, ǫ, w) > 0 for every x and ǫ, w fixed as soon as∇A(x) = AT

has full rank k. This is due to the fact that in this special case ∇2A(x)i = 0 for i = 1, . . . ,m and
∑m

i=1 wi∇A(x)i∇A(x)Ti > 0 for k linear independent vectors ∇A(x)i.
For the sake of completeness we prove the latter property in more generality here.

Lemma 7.1 If ai ∈ R
k, i = 1, . . . ,m and A = [a1| . . . , |ai| . . . |am] has full rank k ≤ m, then for all

w = (w1, . . . , wi, . . . , wm) with wi > 0 for i = 1, . . . ,m it holds that

m
∑

i=1

wiaia
T
i > 0

is a positive definite matrix.

Proof: First observe that
m
∑

i=1

wiaia
T
i ≥ 0 is obvious because

0 ≤ hT

(

m
∑

i=1

wiaia
T
i

)

h =

m
∑

i=1

wi(a
T
i h)

2 for all h ∈ R
k.

Such a quantity is vanishing 0 =
m
∑

i=1

wi(a
T
i h)

2 iff aTi h = 0 for all i = 1, . . . ,m.

But as A has full rank there exist ai1 , . . . , aik linear independent vectors in R
k for which aTilh = 0 for

all l = 1, . . . , k and this implies h ≡ 0. �

Hence in the linear case the functional of Definition 2.4 is strictly convex in the variable x. This
implies that every stationary point is a global minimizer and this optimization problem can be solved
efficiently.
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