
An effective decomposition approach and heuristics to generate

spanning trees with a small number of branch vertices

Rafael A. Melo∗ Phillippe Samer † Sebastián A. Urrutia ‡

November 9, 2018

Abstract

Given a graph G = (V,E), the minimum branch vertices problem consists in finding a
spanning tree T = (V,E′) of G minimizing the number of vertices with degree greater
than two. We consider a simple combinatorial lower bound for the problem, from which
we propose a decomposition approach. The motivation is to break down the problem
into several smaller subproblems which are more tractable computationally, and then re-
combine the obtained solutions to generate a solution to the original problem. We also
propose effective constructive heuristics to the problem which take into consideration the
problem’s structure in order to obtain good feasible solutions. Computational results
show that our decomposition approach is very fast and can drastically reduce the size
of the subproblems to be solved. This allows a branch and cut algorithm to perform
much better than when used over the full original problem. The results also show that
the proposed constructive heuristics are highly efficient and generate very good quality
solutions, outperforming other heuristics available in the literature in several situations.

Keywords: minimum branch vertices, spanning tree, graph decomposition, heuristics,
branch and cut, combinatorial optimization.

1 Introduction

Spanning tree problems with constraints and/or objective functions concerning the degrees
of the vertices in the tree arise very often in the context of communication networks. In
this paper we deal with the problem of finding spanning trees which minimize the number
of branch vertices (vertices with degree greater than two), known in the literature as the
minimum branch vertices problem (MBV).

The MBV was introduced in Gargano et al. [6, 7], motivated by the context of optical
networks using a technology which allows a specific type of switch to replicate a signal by
splitting light. Such a switch is required if a connection arrives at a given vertex of the network
and has to be multicasted to different vertices. Therefore, a branch vertex in a network tree

∗Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal da Bahia. Av.
Adhemar de Barros, s/n, Salvador, BA 40170-110, Brazil. (melo@dcc.ufba.br). Work of this author was
supported by the Brazilian National Council for Scientific and Technological Development (CNPq).
†Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Av. Antônio Carlos

6627 - Belo Horizonte, MG 31270-010, Brazil. (samer@dcc.ufmg.br)
‡Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Av. Antônio Carlos

6627 - Belo Horizonte, MG 31270-010, Brazil. (surrutia@dcc.ufmg.br)

1

ar
X

iv
:1

50
9.

06
56

2v
2

 [
cs

.D
M

]
 3

0
Ju

n
20

16

would imply the use of such a sophisticated switch. However, the availability of these switches
is usually limited due to their costs, and one is asked to minimize their need in a network
topology.

Several authors studied different theoretical properties concerning the number of branch
vertices in a graph. Gargano et al. [6, 7] showed the problem to be NP-Hard, besides some
additional complexity results. They also considered bounds on the number of branch vertices
and certain algorithmic and combinatorial aspects regarding the existence of structures such
as spanning spiders (trees with at most one branch vertex). Matsuda et al. [10] give bounds
on the number of branch vertices in claw-free graphs.

Chimani and Spoerhase [5] developed a 6/11-approximation algorithm for the complement
of the MBV, namely the maximum path-node spanning tree problem, which aims at finding
a spanning tree maximizing the number of vertices with degree at most two.

Different integer programming and heuristic approaches were proposed to the MBV.
Carrabs et al. [2] studied integer programming formulations and a Lagrangian relaxation
approach able to generate good feasible solutions. Cerrone et al. [3] showed the relation be-
tween three problems: the minimum branch vertices, the minimum degree sum problem and
the minimum leaves problem. They also presented an evolutionary algorithm which could
be applied to these problems. Cerulli et al. [4] proposed three heuristics to the problem,
exploiting vertex weighting, vertex coloring, and an approach combining the previous two.
Silva et al. [14] proposed an iterative refinement local search procedure. Almeida et al. [1]
used a constructive heuristic based on breadth-first search, together with some changes in the
procedure described in [14]. Öncan [12] proposed inequalities to improve the linear relaxation
bounds obtained with a polynomial size integer programming formulation to the problem.
Rossi et al. [13] implemented a hybrid approach, combining a branch and cut algorithm with
a tabu search heuristic, which could be applied to the MBV and to the minimum degree sum
problem. Computational experiments showed that their approach outperformed the other
integer programming techniques available in the literature. Very recently, Maŕın [9] proposed
a preprocessing technique, valid inequalities and a heuristic algorithm, which combined could
solve to optimality several instances used in the literature.

Our work aims at the development of an effective approach to solve the MBV. The remain-
der of the paper is organized as follows. Section 2 gives a formal statement of the problem
together with an integer programming formulation containing an exponential number of in-
equalities. In Section 3 we give a simple algorithm to derive a combinatorial lower bound,
which also determines important information that will be used in our graph decomposition
approach. In Section 4 we present the decomposition method, which aims at dividing the
problem into several smaller subproblems that are hopefully more manageable computation-
ally. Two constructive heuristics, which try to take advantage of the problem’s structure and
of what is expected of a good solution, are described in Section 5. In Section 6, we present
computational results considering the proposed approaches together with a branch and cut
algorithm using the formulation described in Section 2. Some final remarks are discussed in
Section 7.

2 Problem definition and formulation

Let G = (V,E) be a simple, connected, undirected graph with a set V of vertices and a set E
of edges. Denote dG(v) the degree of v ∈ V in G. A vertex v ∈ V is a branch vertex if it has

2

degree greater than two, i.e. dG(v) > 2. Given the graph G, the minimum branch vertices
problem (MBV) consists in finding a spanning tree T = (V,E′), with E′ ⊆ E, minimizing the
number of branch vertices.

We now present an integer programming formulation for the problem containing an ex-
ponential number of constraints. Consider the variables:

xuv =

{
1, if edge (u, v) ∈ E is part of the tree,
0, otherwise;

yv =

{
1, if vertex v ∈ V is a branch vertex,
0, otherwise.

Using the variables just described, the MBV can be formulated as:

z = min
∑
v∈V

yv (1)

s.t. ∑
(u,v)∈E

xuv = |V | − 1, (2)

∑
(u,v)∈E:u,v∈S

xuv ≤ |S| − 1 for S ⊂ V, (3)

∑
u:(u,v)∈E

xuv ≤ 2 + (dG(v)− 2)yv for v ∈ V, (4)

x ∈ {0, 1}|E|, y ∈ {0, 1}|V |. (5)

The objective function (1) minimizes the number of branch vertices. Constraints (2) specify
that exactly |V | − 1 edges are selected. Constraints (3) are subtour elimination constraints;
note that we only need to consider subsets S such that |S| > 2. Constraints (4) set the branch
vertex variable associated to vertex v to one in case more than two edges are incident to v.
Constraints (5) are integrality requirements on the variables. It is worth mentioning that we
can fix the yv variable at zero for any vertex v ∈ V with degree lower or equal to two.

3 A combinatorial lower bound

In this section, we present an algorithm to calculate a combinatorial lower bound to the MBV
problem, which also determines some important data to be used in a graph decomposition
approach. Let s(G) be the minimum number of branch vertices in any spanning tree of G.
An articulation point (or cut vertex) is a vertex whose removal from the graph increases the
number of components in the graph. A straightforward lower bound s(G) on the value of s(G)
can be calculated based on a simple observation of Gargano et al. [7]: any articulation point
whose removal induces at least three connected components is necessarily a branch vertex in
any spanning tree of G. We denote such vertices obligatory branches and define Lo to be the
set of obligatory branches of G.

Let G − v be the subgraph of G obtained by removing the vertex v together with all its
incident edges. We denote by α(v) the number of connected components of G− v. Note that
α(v) ≥ 2 for an articulation point v, while α(v) ≥ 3 for any obligatory branch. Algorithm 1

3

Algorithm 1 Obligatory branches lower bound

1: Lo ← ∅
2: V ′ ← list of articulation points in G
3: for all v ∈ V ′ do
4: c← number of connected components of G− v
5: if c ≥ 3 then
6: Lo ← Lo + {v}
7: α(v)← c
8: end if
9: end for

10: s(G)← |Lo|

calculates the lower bound s(G) on the number of branch vertices, the set of obligatory
branches Lo and the value of α(v) for every obligatory branch v ∈ Lo.

Observation 1. Algorithm 1 runs in O(|V |+ |E|).

Proof. The list of articulation points V ′ can be obtained in step 2 using a depth-first search
(DFS) algorithm augmented with the opening time of each vertex, i.e. its visiting index in
the DFS tree. In particular, we identify an articulation at a given vertex u if, when the search
at a neighbor v returns, the oldest index (opened the earliest) reachable from v is no smaller
than the opening time of u. Finding i articulations at a vertex means that the search started
from it i times, and that i + 1 components are left after removing it, which is precisely the
information used later in step 4.

The DFS algorithm runs in O(|V | + |E|) when an adjacency list is used. The for loop
(lines 3-9) is executed |V ′| times, and all operations within it are performed in constant order
of complexity. Therefore the algorithm runs in O(|V |+ |E|) +O(|V ′|) = O(|V |+ |E|).

Given that the MBV problem is NP-Hard, one should note that the lower bound obtained
using Algorithm 1 is not necessarily tight. It is actually possible to find situations in which
this occurs even for very small graphs. For instance, consider the graph illustrated in Figure
1, which does not have any obligatory branch vertex. Nevertheless, it is not difficult to check
that either b or d should be a branch vertex in a spanning tree of the considered graph.

Figure 1: Example in which s(G) = 0 < s(G) = 1

4 Graph decomposition approach

In this section, we present a graph decomposition approach to the minimum branch vertices
problem based on two different properties of a graph. The first one is grounded on the ex-
istence of obligatory branch vertices. The second builds on the existence of cut edges (or

4

bridges): an edge whose removal increases the number of connected components of a graph.
This decomposition approach aims at dividing the original MBV problem into smaller sub-
problems, that can be solved separately and then recombined in order to generate a solution
to the original problem. We remark that Maŕın [9] proposed a preprocessing routine, which
included the identification of cut edges, but that information was not used in a decomposition
method by the author.

4.1 Obligatory branches based decomposition

This first decomposition is based on the fact that an obligatory branch v ∈ V (G) is going to
be a branch vertex in any spanning tree of a graph G. Starting from G = (V,E), we build a
new graph Go = (Vo, Eo) as follows. Initially, Vo = V and Eo = E, such that Go = (V,E).
Next, for each obligatory branch v ∈ Lo, create α(v) new vertices {v1, . . . , vα(v)} and add
them to Vo. Let Ni(v) be the set of vertices to which v is adjacent in the i − th connected
component of the subgraph G− v. For each i ∈ {1, . . . , α(v)}, create in Eo edges from vi to
every vertex in Ni(v). After that, remove v from Vo and all its adjacent edges from Eo.

The obligatory branches based decomposition is illustrated in Figure 2 for a graph with
two obligatory branches.

(a) Original graph with obligatory branches
c and g

(b) Applying decomposition for obligatory branches c
and g

Figure 2: Illustration of the obligatory branches based decomposition

4.2 Cut edges based decomposition

This decomposition is based on the fact that every cut edge must be in any spanning tree of
G. Starting from a graph G = (V,E), let B = {(u, v) ∈ E : (u, v) is a cut edge in G}.

A new graph G′ can be obtained from G by removing from E every edge (u, v) ∈ B. For
the sake of correctness of the formulation for each resulting subproblem defined over G′ (see
Section 4.3), we need the information of extra degree corresponding to both end vertices of
the cut edges removed in G′. Let γ(v) be the extra degree of a vertex v, which corresponds
to the number of cut edges (u, v) ∈ B incident to v in the initial graph G.

The cut edges based decomposition is illustrated in Figure 3 for a graph with two cut
edges.

5

(a) Original graph with cut edges (a, f) and
(c, d)

(b) Applying decomposition for cut edges
(a, f) and (c, d), which implies γ(a) = γ(f) =
γ(c) = γ(d) = 1

Figure 3: Illustration of the cut edges based decomposition

4.3 The decomposed problem

We now give an integer programming formulation aimed at solving each component of the
decomposed problem as an independent subproblem. Let G′o = (V ′o , E

′
o) be the resulting

graph after performing the obligatory branches and cut edges based decompositions. Observe
that G′o is disconnected in case at least one obligatory branch or one cut edge was found.

Let K be the number of connected components in G′o, and G′ko = (V ′ko , E
′k
o) be the

k − th connected subgraph of G′o, with k ∈ {1, . . . ,K}. Define the set V
′k
o = {v ∈ V ′ko :

v was not artificially created based on Lo}. A formulation for each of the k connected com-
ponents can be obtained as:

zk = min
∑
v∈V ′ko

yv (6)

s.t. ∑
(u,v)∈E′ko

xuv = |V ′ko | − 1, (7)

∑
(u,v)∈E′ko :u,v∈S

xuv ≤ |S| − 1 for S ⊂ V ′ko , (8)

∑
u:(u,v)∈E′ko

xuv + γ(v) ≤ 2 + (dG(v)− 2)yv for v ∈ V ′
k

o , (9)

x ∈ {0, 1}|E′
k
o |, y ∈ {0, 1}|V ′

k
o |. (10)

Proposition 1. An optimal solution to the minimum branch vertices problem can be obtained
from the solutions of the K connected components of G′o and its optimal value is

z = |Lo|+
K∑
k=1

zk.

Proof. By definition, each obligatory branch should contribute with one unit to the objective
function z. Since they are not considered in the decomposed objective functions zk, the |Lo|
units have to be added to z.

6

Since every cut edge (u, v) ∈ B must be in the spanning tree, the values γ(u) and γ(v)
of its incident vertices will guarantee that the additional degree corresponding to these edges
will be taken into account in G′ko . Considering an obligatory branch v, there are no edges
linking vertices between two different components in the original graph without v, i.e. G− v.
Therefore the different components of G− v directly implied by the removal of v have to be
connected through the edges incident to v in G.

In every connected component G′ko , we obtain a spanning tree minimizing the number of
branch vertices, disregarding the obligatory branches implied by Lo. The different trees will
be connected to the other components in the original graph via either the obligatory branch
vertices or the cut edges. The resulting forest implies thus a spanning tree with minimum
number of branch vertices in the original graph G.

5 Heuristic algorithms

We noted that the heuristics available in the literature for the MBV do not take advantage of
the problem’s structure in order to generate good feasible solutions. Instead, they concentrate
into the improvement of available solutions. We present two simple constructive heuristic
algorithms to the MBV that take the structure of the problem into consideration in an attempt
to obtain high quality solutions.

The key observation is the fact that in an ideal situation (one in which no branch vertices
are necessary), the optimal spanning tree to the problem should be a branch vertex free
solution, i.e. a Hamiltonian path. Observe also that good solutions will tend to have paths
that are as long as possible connected to each other via some branch vertices. The two
constructive heuristics presented in this section take this into consideration.

5.1 Path expanding heuristic

The basic idea of the path expanding heuristic is to, starting from a tree T with a single
vertex, constructively turn T into a spanning tree by expanding paths already in T . The
algorithm has two main components, namely a start-restart in which a new vertex is selected
as source of a new path and a path expansion in which new vertices are added to the path
being expanded. The greedy criteria for the two components are:

• start-restart (enumerated in order of priority):

1. obligatory branch vertex;

2. vertex whose degree is already greater than two in the tree;

3. vertex with the largest number of neighbors which are still not in the tree;

• path expansion: vertex, adjacent to the latest one added to the tree, with the smallest
number of neighbors which are still not in the tree.

The heuristic is presented in Algorithm 2 and it works as follows. Start the tree with
a vertex selected according to the start-restart greedy criterion. Build a path starting at a
vertex already belonging to the partial tree, selecting the next vertices in this path according
to the path expansion criterion until it can no longer be expanded. If there are still vertices
not belonging to the tree, another vertex with unvisited neighbors in the partial tree is selected

7

Algorithm 2 Path-Expanding(G = (V,E))

1: V (T)← {u}, with u selected according to the start-restart criterion
2: while |T | < |V | − 1 do
3: select a vertex u ∈ V (T) with neighbors still not in V (T) and degree at most 1, if any

exists; otherwise, select the best vertex according to the start-restart criterion
4: while u has neighbors not belonging to V (T) do
5: v ← best neighbor of u according to the path expansion criterion such that v /∈ V (T)

6: V (T)← V (T) + {v}
7: T ← T + {(u, v)}
8: u← v
9: end while

10: end while
11: return T

and a new path is constructed starting from the current tree. The algorithm is illustrated in
Figure 4.

Observation 2. Algorithm 2 runs in O(|V |2).

Proof. A single evaluation of the start-restart or the path expansion criteria can be done in
time proportional to O(|V |), as it requires checking information available at each vertex. In
particular, note that checking the number of neighboring vertices which are still not in the
tree, e.g. the last start-restart criterion and the inner loop condition, can be kept at constant

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4: Illustration of the path expanding heuristic. The vertices and edges in bold are
those belonging to the tree being constructed.

8

asymptotic complexity, provided that we update this information when the tree is grown.
The number of iterations of the outer and the inner while loops depends on the particular

graph, but they sum to |V | − 1 since these correspond to the selection of edges in a spanning
tree. Therefore, the execution includes |V | − 1 steps, each requiring an O(|V |) evaluation
(either start-restart or path expansion) and O(|V |) operations to update the aforementioned
information on the remaining vertices. The algorithm thus runs in time proportional to
O(|V | − 1)× (O(|V |) +O(|V |)) = O(|V |2).

5.2 Multi-path expanding heuristic

The multi-path expanding heuristic differs from the path expanding heuristic in the fact that
it allows the expansion of any of the paths being expanded at a given moment. It also has a
start-restart component, which is the same for the path-expanding heuristic. The multi-path
expansion component uses the following greedy criterion:

• multi-path expansion: vertex, adjacent to any vertex belonging to the tree, with the
smallest number of neighbors which are still not in the tree.

The multi-path expanding heuristic is presented in Algorithm 3 and it works in the fol-
lowing way. Start the tree with a given vertex, selected according to the start-restart greedy
criterion, which forms the list of candidates for path expansion. Continue selecting a vertex
adjacent to one of the candidates for path expansion according to the multi-path expansion
greedy criterion, add the new vertex to the list of candidates and remove the current candi-
date from the list of candidates when appropriate. If there are no more vertices, which are
still not in the tree, adjacent to the candidates and if the tree is still not a spanning tree,
select another vertex to add to the list of candidates. The algorithm is illustrated in Figure 5.

Algorithm 3 Multi-Path-Expanding(G = (V,E))

1: V (T)← {u}, with u selected according to the start-restart criterion
2: Cand← ∅
3: while |T | < |V | − 1 do
4: Cand← Cand ∪ {u}, u ∈ V (T) according to the start-restart criterion
5: while ∃(u, v) such that u ∈ Cand and v /∈ V (T) do
6: select such (u, v) optimizing the multi-path expansion criterion
7: T ← T + {(u, v)}
8: V (T)← V (T) + {v}
9: if dT (u) = 2 and u /∈ L0 then

10: Cand← Cand− {u}
11: end if
12: Cand← Cand+ {v}
13: end while
14: end while
15: return T

Observation 3. Algorithm 3 runs in O(|V |2).

Proof. The analysis is analogous to that for Algorithm 2. The main difference is that, to keep
the multi-path expansion test in O(|V |) time, we need to store the additional information of

9

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 5: Illustration of the multi-path expanding heuristic. The vertices and edges in bold
are those belonging to the tree being constructed.

whether a given unvisited vertex is adjacent to one in the tree. This can be included in the
structure update without increasing its asymptotic complexity. The operations introduced
due to the candidates set are done in constant order of complexity.

Again, there is a total of |V | − 1 iterations considering both while loops, each selecting
a new edge in the tree. When needed, choosing a vertex to enter the set of candidates is
done following the same start-restart criterion, in time O(|V |). In the inner loop, both the
multi-path expansion and the updating step require O(|V |) time. Therefore, the algorithm
requires computational time proportional to O(|V | − 1)× (O(|V |) +O(|V |)) = O(|V |2).

6 Computational experiments

The main goal of our computational experiments is to assess the effectiveness of the methods
proposed in this paper. The branch and cut algorithm presented by Rossi et al. [13] is
based on the formulation (1)–(5), and it is a state-of-the-art among exact approaches to solve
the MBV 1. We implemented our own branch and cut algorithm using the formulation (1)–
(5), and refer to it as the plain algorithm. Our main results compare it against one variant
developed on top of the decomposition and primal heuristics we proposed in previous sections:
henceforth, the enhanced algorithm, using formulation (6)–(10).

The algorithms are implemented in C++, using the callback mechanism in the Concert

1A very recent paper by Maŕın [9] might also be considered as a state-of-the-art. In that article Rossi et
al. [13] is not cited and consequently no comparison is done. While the approach in Maŕın [9] seems to be
better for some instances of Carrabs et al. [2], it fails in finding optimal solutions for several instances of Silva
et al. [14] within one hour of computation with parallel execution. Those instances are solved to optimality in
this work with the same time limit and with a single thread of execution.

10

API of CPLEX 12.6. Since the objective function is integer-valued for all the available
instances, we set the parameter regarding the absolute MIP gap tolerance to 0.9999; all
remaining options are used as default. Also, the best solution among the path-expanding and
the multi-path-expanding heuristics is given as a MIP start to the solver. Experiments were
carried out on a machine with an Intel Core i7-4790K (4.00GHz) CPU, with 16GB of RAM.
A time limit of one hour (3600s wall clock) was imposed for every execution.

We remark that the whole procedure consisting of the decomposition and the constructive
methods runs immediately for all the available benchmark instances. Considering any of
those instances, the decomposed integer programming (IP) models and heuristic solutions
were created in less than 0.02 seconds.

Most papers on the MBV use the large benchmark set of Carrabs et al. [2], which includes
525 instances. Section 6.1 reports results using that benchmark. Nevertheless, Silva et al. [14]
introduced different sets of instances; for the sake of completeness, we discuss in Section 6.2
the effectiveness of the procedures using those problem sets as well.

6.1 Instances from Carrabs et al. [2]

We describe next our computational results using the standard benchmark of Carrabs et
al. [2], which was also used in [12, 13]. The instances are identified as Spd RF2 n m r, in
which n stands for the number of vertices, m for the number of edges, and r the seed used to
randomly generate the edges of the graph.

We start by describing the effect of the decomposition and comparing the plain and
enhanced algorithms. Table 1 presents the results for all instances for which an optimal
solution was not found by the plain algorithm within the one hour time limit. The second
and third columns indicate the number of obligatory branches (OB) and cut edges (CE)
removed using the decomposition algorithm. The next three columns concern the enhanced
algorithm, and show the best lower and upper bounds and the remaining open gap (in %)
between them at the end of the execution. The last three columns give the same information
for the plain algorithm. We also show the time taken for the enhanced algorithm to solve the
instances to optimality (the value 3600 is shown in case the instance remained unsolved at
the end of the time limit). The arithmetic mean is used for average values.

In the comparison, we argue in favor of the enhanced algorithm for two main reasons. First,
it is consistently superior in finding better solutions for the MBV. Note that the enhanced
algorithm yields a smaller duality gap in 48 out of 50 instances (96%). In fact, it is able to
close the gap of 39 among these instances (78%).

Table 1: Results regarding instances for which the plain branch and cut algorithm cannot prove optimality within one
hour of computation. For the starred instances, the enhanced algorithm is worse than the plain version.

Instance
Reduction Enhanced Algorithm Plain Algorithm

OB CE LB UB Gap (%) Time (s) LB UB Gap (%)

Spd RF2 400 519 4731 52 155 70 70 0 227.9 67.66 70 3.3
Spd RF2 450 548 4915 68 205 89 89 0 324.4 88.00 89 1.1
Spd RF2 450 581 4947 59 178 76.38 80 4.5 3600.0 75.86 80 5.2
Spd RF2 450 581 4963 61 178 77 77 0 125.8 75.81 78 2.8
Spd RF2 450 614 4979* 45 149 64.35 67 4.0 3600.0 64.34 66 2.5
Spd RF2 450 614 5003 44 153 67 67 0 901.8 64.55 68 5.1
Spd RF2 500 603 5091 90 264 109 109 0 176.1 107.37 109 1.5
Spd RF2 500 672 5171 58 180 79.72 82 2.8 3600.0 78.24 81 3.4
Spd RF2 500 672 5179 52 171 75.45 77 2.0 3600.0 73.83 78 5.3
Spd RF2 500 672 5187* 47 155 69.51 72 3.5 3600.0 69.53 71 2.1

11

Table 1: (continued) Results regarding instances for which the plain branch and cut algorithm cannot
prove optimality within one hour of computation. For the starred instances, the enhanced algorithm
is worse than the plain version.

Instance
Reduction Enhanced Algorithm Plain Algorithm

OB CE LB UB Gap (%) Time (s) LB UB Gap (%)

Spd RF2 500 672 5195 57 171 77 77 0 2128.6 75.69 78 3.0
Spd RF2 500 672 5203 57 173 74.58 76 1.9 3600.0 73.47 78 5.8
Spd RF2 600 749 5355 136 370 143 143 0 462.7 142.00 143 0.7
Spd RF2 700 821 5523 164 467 182 182 0 12.6 180.71 183 1.3
Spd RF2 700 861 5563 151 437 159.67 161 0.8 3600.0 159.72 161 0.8
Spd RF2 700 902 5579 143 408 152 152 0 1106.3 150.73 153 1.5
Spd RF2 700 902 5595 143 401 153 153 0 130.7 151.86 154 1.4
Spd RF2 800 886 5659 212 601 227 227 0 10.5 225.67 228 1.0
Spd RF2 800 930 5715 200 549 212 212 0 49.0 209.42 213 1.7
Spd RF2 800 973 5747 183 506 197 197 0 3461.6 194.36 198 1.8
Spd RF2 800 973 5763 179 504 195 195 0 1057.0 191.11 197 3.0
Spd RF2 800 1017 5771 164 470 176 176 0 1208.5 173.50 178 2.5
Spd RF2 800 1017 5779 158 467 173 173 0 2375.2 171.25 173 1.0
Spd RF2 800 1017 5787 165 468 178 178 0 108.6 175.71 181 2.9
Spd RF2 900 989 5859 238 688 259 259 0 63.7 254.08 259 1.9
Spd RF2 900 1034 5891 228 640 242 242 0 23.9 238.78 243 1.7
Spd RF2 900 1034 5907 220 621 239 239 0 1411.3 236.19 240 1.6
Spd RF2 900 1034 5915 228 642 242 242 0 466.1 238.99 243 1.7
Spd RF2 900 1079 5931 206 579 222 222 0 332.6 218.77 223 1.9
Spd RF2 900 1079 5939 207 580 224 224 0 349.5 220.67 226 2.4
Spd RF2 900 1079 5947 210 582 226 226 0 888.0 220.81 230 4.0
Spd RF2 900 1079 5963 205 588 222 222 0 27.9 218.52 223 2.0
Spd RF2 900 1124 5971 198 543 210 210 0 836.7 207.86 210 1.0
Spd RF2 900 1124 5979 198 549 210 210 0 167.9 207.16 210 1.4
Spd RF2 900 1124 5987 190 546 203 203 0 340.6 201.54 204 1.2
Spd RF2 900 1124 6003 189 549 202 202 0 3120.8 199.06 203 1.9
Spd RF2 1000 1143 6091 252 704 272 272 0 2334.6 268.02 274 2.2
Spd RF2 1000 1143 6099 254 711 271 271 0 9.5 268.24 272 1.4
Spd RF2 1000 1143 6107 251 698 272 272 0 108.1 267.17 273 2.1
Spd RF2 1000 1143 6115 253 700 272 272 0 314.5 269.87 272 0.8
Spd RF2 1000 1143 6123 251 712 269 269 0 906.0 268.40 270 0.6
Spd RF2 1000 1191 6131 228 662 247.67 249 0.5 3600.0 243.83 250 2.5
Spd RF2 1000 1191 6139 235 659 251 251 0 362.4 248.11 252 1.5
Spd RF2 1000 1191 6147 233 656 250 250 0 945.6 246.47 251 1.8
Spd RF2 1000 1191 6155 235 655 253 253 0 193.9 251.54 253 0.6
Spd RF2 1000 1239 6171 218 608 232 232 0 90.9 230.11 232 0.8
Spd RF2 1000 1239 6179 222 605 236 237 0.4 3600.0 231.26 239 3.2
Spd RF2 1000 1239 6187 217 611 229.81 233 1.4 3600.0 225.33 237 4.9
Spd RF2 1000 1239 6195 222 616 238.01 241 1.2 3600.0 229.71 243 5.5
Spd RF2 1000 1239 6203 218 609 236 236 0 2850.6 230.84 237 2.6

Average 20.4% 48.1% 0.46 2.3

For all the 475 remaining cases in this benchmark, the enhanced algorithm makes finding
optimal solutions for the MBV a much faster task, as we present in Table 2. Given the large
number of instances, we present the arithmetic mean after aggregating the results for instances
with the same number of vertices (n) and edges (m). Regarding the smaller instances set
(up to 500 vertices), the decomposition approach is able to reduce 15.9% of the vertices and
38.6% of the edges, on average, thus yielding the optimal solution in a smaller amount of
time. As for the larger instances set (from 600 to 1,000 vertices), the average reduction is of
24.8% of the vertices and 61.3% of the edges, achieving a solution much faster.

12

Table 2: Results regarding instances for which both the plain branch and cut algorithm and the enhanced one are able
to prove optimality within one hour of computation. The enhanced algorithm features the decomposition and heuristic
methods. Columns OB and CE indicate the number of obligatory branches and cut edges removed, respectively.

Instances Reduction Avg. Time Avg. (s) Instances Reduction Avg. Time Avg. (s)
n m OB CE Enhanced Plain n m OB CE Enhanced Plain

200 222 45.8 127.8 0.1 1.5 600 637 173.0 493.6 0.8 26.7
200 244 32.2 92.4 1.1 4.4 600 674 156.2 437.4 5.3 131.9
200 267 23.4 69.0 1.6 10.0 600 712 139.6 394.4 143.0 406.6
200 289 15.4 56.8 78.5 77.2 600 749 129.8 361.8 55.9 837.8
200 312 11.0 42.2 11.5 15.2 600 787 119.4 333.6 202.9 849.3
250 273 60.0 164.4 0.1 2.8 700 740 203.0 576.8 0.7 52.0
250 297 43.2 120.8 3.0 14.9 700 780 185.2 518.4 9.3 242.5
250 321 34.2 101.8 3.2 14.5 700 821 167.3 471.0 54.8 1285.6
250 345 24.4 76.2 42.9 76.5 700 861 154.8 436.5 758.4 241.9
250 369 16.8 60.0 63.6 59.2 700 902 147.0 402.3 25.0 773.5
300 326 73.2 203.0 0.3 5.3 800 1017 167.0 468.0 222.2 325.2
300 353 57.8 160.2 3.8 17.8 800 843 232.0 666.8 1.2 69.4
300 380 43.0 124.8 20.1 57.4 800 886 213.8 599.0 5.4 503.8
300 407 34.4 104.6 60.0 117.2 800 930 193.5 546.0 8.4 343.1
300 434 25.6 86.4 279.0 146.2 800 973 180.0 506.3 1183.7 2598.0
350 378 85.4 238.8 0.6 7.9 900 1034 222.5 631.0 54.4 616.9
350 406 67.4 190.0 12.3 48.2 900 1079 207.0 589.0 171.9 775.6
350 435 50.4 151.0 359.2 402.0 900 1124 197.0 551.0 76.0 870.5
350 463 40.2 124.2 514.6 1059.5 900 944 262.2 756.4 1.7 111.5
350 492 29.0 103.5 73.3 262.5 900 989 242.0 685.0 36.6 941.7
400 429 102.4 282.6 0.8 39.4 1000 1047 296.2 849.6 3.8 222.3
400 459 78.6 226.4 11.1 53.2 1000 1095 268.8 767.0 32.8 820.0
400 489 62.2 184.8 44.0 228.4 1000 1191 233.0 656.0 634.6 1524.8
400 519 51.0 154.0 322.6 1198.5
400 549 41.8 131.2 700.5 1058.8
450 482 115.0 318.6 0.9 44.5
450 515 91.6 250.6 17.4 308.5
450 548 74.0 209.8 44.3 442.5
450 581 62.0 177.5 452.8 594.3
450 614 47.7 152.3 909.5 1278.0
500 534 131.8 361.0 1.5 46.7
500 568 106.0 294.2 26.8 256.4
500 603 86.0 241.5 318.5 1404.5
500 637 71.8 210.6 556.6 2103.1

Average: 15.9% 38.6% 145.2 337.0 Average: 24.8% 61.3% 160.4 633.5

Finally, we compare the performance of our heuristics with the best primal feasible solution
cost obtained by the Lagrangian heuristics of Carrabs et al. [2]. The authors compiled their
best bounds on a set of 175 problem instances. Table 3 compares those values with the
ones provided by our heuristics; we report the best value among the path-expanding and the
multi-path expanding algorithms.

We highlight that our proposed constructive algorithms provide better warm starts. In
fact, they provide better primal bounds to 103 instances. On the other hand, the best result
presented by Carrabs et al. [2] is better in 54 instances, and is equal to the solution obtained
with our constructive algorithms in 18 instances.

13

Table 3: Best primal solution constructed by our proposed algorithms and by the Lagrangian heuristic
of Carrabs et al. [2]. Values in bold indicate the 103 instances (out of 175) in which our heuristics
provide a better solution.

Instance
Best constructed Best result

Instance
Best constructed Best result

solution by [2] solution by [2]

Spd RF2 200 222 3811 55 54 Spd RF2 350 435 4515 81 77
Spd RF2 200 222 3819 55 54 Spd RF2 350 435 4523 75 74
Spd RF2 200 222 3827 53 51 Spd RF2 350 463 4531 69 70
Spd RF2 200 222 3835 54 52 Spd RF2 350 463 4539 70 70
Spd RF2 200 222 3843 55 54 Spd RF2 350 463 4547 67 71
Spd RF2 200 244 3851 43 46 Spd RF2 350 463 4555 68 70
Spd RF2 200 244 3859 46 49 Spd RF2 350 463 4563 66 73
Spd RF2 200 244 3867 45 43 Spd RF2 350 492 4571 55 62
Spd RF2 200 244 3875 42 43 Spd RF2 350 492 4579 62 64
Spd RF2 200 244 3883 45 45 Spd RF2 350 492 4587 59 60
Spd RF2 200 267 3891 36 37 Spd RF2 350 492 4595 59 57
Spd RF2 200 267 3899 37 39 Spd RF2 350 492 4603 59 63
Spd RF2 200 267 3907 37 37 Spd RF2 400 429 4611 118 118
Spd RF2 200 267 3915 36 39 Spd RF2 400 429 4619 118 116
Spd RF2 200 267 3923 36 41 Spd RF2 400 429 4627 115 116
Spd RF2 200 289 3931 28 30 Spd RF2 400 429 4635 117 115
Spd RF2 200 289 3939 29 35 Spd RF2 400 429 4643 118 117
Spd RF2 200 289 3947 31 35 Spd RF2 400 459 4651 106 105
Spd RF2 200 289 3955 31 34 Spd RF2 400 459 4659 101 100
Spd RF2 200 289 3963 30 32 Spd RF2 400 459 4667 102 106
Spd RF2 200 312 3971 24 23 Spd RF2 400 459 4675 104 106
Spd RF2 200 312 3979 23 27 Spd RF2 400 459 4683 103 103
Spd RF2 200 312 3987 26 29 Spd RF2 400 489 4691 87 87
Spd RF2 200 312 3995 23 26 Spd RF2 400 489 4699 92 98
Spd RF2 200 312 4003 28 30 Spd RF2 400 489 4707 90 95
Spd RF2 250 273 4011 71 71 Spd RF2 400 489 4715 91 88
Spd RF2 250 273 4019 70 66 Spd RF2 400 489 4723 92 92
Spd RF2 250 273 4027 70 69 Spd RF2 400 519 4731 79 83
Spd RF2 250 273 4035 71 69 Spd RF2 400 519 4739 77 85
Spd RF2 250 273 4043 67 70 Spd RF2 400 519 4747 79 82
Spd RF2 250 297 4051 60 60 Spd RF2 400 519 4755 80 85
Spd RF2 250 297 4059 61 63 Spd RF2 400 519 4763 78 84
Spd RF2 250 297 4067 57 56 Spd RF2 400 549 4771 68 77
Spd RF2 250 297 4075 59 63 Spd RF2 400 549 4779 66 73
Spd RF2 250 297 4083 61 60 Spd RF2 400 549 4787 72 71
Spd RF2 250 321 4091 52 57 Spd RF2 400 549 4795 71 69
Spd RF2 250 321 4099 50 53 Spd RF2 400 549 4803 73 75
Spd RF2 250 321 4107 49 51 Spd RF2 450 482 4811 131 128
Spd RF2 250 321 4115 48 54 Spd RF2 450 482 4819 130 130
Spd RF2 250 321 4123 50 54 Spd RF2 450 482 4827 133 133
Spd RF2 250 345 4131 39 41 Spd RF2 450 482 4835 132 133
Spd RF2 250 345 4139 48 47 Spd RF2 450 482 4843 132 130
Spd RF2 250 345 4147 45 44 Spd RF2 450 515 4851 116 118
Spd RF2 250 345 4155 44 45 Spd RF2 450 515 4859 118 118
Spd RF2 250 345 4163 41 47 Spd RF2 450 515 4867 112 120
Spd RF2 250 369 4171 38 38 Spd RF2 450 515 4875 118 118
Spd RF2 250 369 4179 33 35 Spd RF2 450 515 4883 117 114
Spd RF2 250 369 4187 35 37 Spd RF2 450 548 4891 109 105
Spd RF2 250 369 4195 35 38 Spd RF2 450 548 4899 101 105
Spd RF2 250 369 4203 36 40 Spd RF2 450 548 4907 100 101
Spd RF2 300 326 4211 86 85 Spd RF2 450 548 4915 101 106
Spd RF2 300 326 4219 87 83 Spd RF2 450 548 4923 105 107
Spd RF2 300 326 4227 87 85 Spd RF2 450 581 4931 93 93
Spd RF2 300 326 4235 85 85 Spd RF2 450 581 4939 90 93
Spd RF2 300 326 4243 85 84 Spd RF2 450 581 4947 95 99
Spd RF2 300 353 4251 75 73 Spd RF2 450 581 4955 91 97
Spd RF2 300 353 4259 73 72 Spd RF2 450 581 4963 90 96
Spd RF2 300 353 4267 77 77 Spd RF2 450 614 4971 82 90
Spd RF2 300 353 4275 77 76 Spd RF2 450 614 4979 80 88

14

Table 3: (continued) Best primal solution constructed by our proposed algorithms and by the Lagrangian
heuristic of Carrabs et al. [2]. Values in bold indicate the 103 instances (out of 175) in which our
heuristics provide a better solution.

Instance
Best constructed Best result

Instance
Best constructed Best result

solution by [2] solution by [2]

Spd RF2 300 353 4283 75 76 Spd RF2 450 614 4987 79 85
Spd RF2 300 380 4291 65 69 Spd RF2 450 614 4995 79 86
Spd RF2 300 380 4299 66 66 Spd RF2 450 614 5003 83 87
Spd RF2 300 380 4307 62 64 Spd RF2 500 534 5011 147 145
Spd RF2 300 380 4315 58 63 Spd RF2 500 534 5019 148 147
Spd RF2 300 380 4323 62 66 Spd RF2 500 534 5027 150 146
Spd RF2 300 407 4331 56 60 Spd RF2 500 534 5035 150 148
Spd RF2 300 407 4339 60 58 Spd RF2 500 534 5043 147 145
Spd RF2 300 407 4347 53 63 Spd RF2 500 568 5051 129 128
Spd RF2 300 407 4355 53 56 Spd RF2 500 568 5059 129 132
Spd RF2 300 407 4363 56 59 Spd RF2 500 568 5067 131 132
Spd RF2 300 434 4371 46 50 Spd RF2 500 568 5075 133 131
Spd RF2 300 434 4379 45 47 Spd RF2 500 568 5083 130 132
Spd RF2 300 434 4387 46 47 Spd RF2 500 603 5091 118 125
Spd RF2 300 434 4395 48 53 Spd RF2 500 603 5099 116 115
Spd RF2 300 434 4403 49 56 Spd RF2 500 603 5107 122 121
Spd RF2 350 378 4411 100 99 Spd RF2 500 603 5115 116 123
Spd RF2 350 378 4419 99 96 Spd RF2 500 603 5123 116 117
Spd RF2 350 378 4427 102 100 Spd RF2 500 637 5131 106 112
Spd RF2 350 378 4435 99 97 Spd RF2 500 637 5139 105 108
Spd RF2 350 378 4443 100 98 Spd RF2 500 637 5147 102 107
Spd RF2 350 406 4451 89 91 Spd RF2 500 637 5155 101 106
Spd RF2 350 406 4459 89 87 Spd RF2 500 637 5163 97 98
Spd RF2 350 406 4467 88 91 Spd RF2 500 672 5171 93 105
Spd RF2 350 406 4475 87 85 Spd RF2 500 672 5179 90 98
Spd RF2 350 406 4483 87 90 Spd RF2 500 672 5187 89 92
Spd RF2 350 435 4491 75 77 Spd RF2 500 672 5195 91 103
Spd RF2 350 435 4499 75 74 Spd RF2 500 672 5203 89 97
Spd RF2 350 435 4507 71 76

6.2 Instances from Silva et al. [14]

The computational results of Silva et al. [14] include six classes of benchmark instances.
We remark that only three of those sets, which we describe next, were available for our
experiments.

Set III: includes four instances adapted from the TSPLIB, ranging from 1,000 to 4,000
vertices and from 1,998 to 7,997 edges.

Set V: includes five instances adapted from the OR-Library, all with 1,000 vertices and 5,000
edges.

Set VI: includes twelve instances proposed by Leighton [8], all with 450 vertices and an edge
count varying from 5,714 to 17,425.

Although these are relatively large instances, all of them have optimal solutions with
no branch vertices that could be obtained with our enhanced algorithm. Table 4 indicates
the execution time (in seconds) to solve those instances with the enhanced algorithm, and
also compare the heuristic solution values achieved with the best results presented by Silva et
al. [14]. Note that the latter is a randomized algorithm, and the authors report the minimum,

15

maximum and average solution values over 100 executions. Nevertheless, we present in the
table only their results with minimum number of branch vertices.

The path expanding and multi-path expanding heuristics were able to construct much
superior solutions. In fact, they are able to find provably optimal (i.e. branch-free) solutions
in many cases. Note that, for all instances not optimally solved by [14], both our solutions
improve their results.

Finally, since all the instances in these benchmark sets have optimal solutions with no
branch vertices, the obligatory branches lower bound has no effect. As for the cut edges
decomposition, only one of the instances (VI/le450 15b) has two bridges.

Table 4: Results regarding the available instances used by Silva et al. [14]. All these instances admit a branch-free
solution, which could be obtained using the enhanced algorithm in the time indicated in the fourth column.

Instance Exact solution Path Multi-Path Best result
id n m time (s) Expanding Expanding by [14]

Set III

alb1000 1000 1998 30.13 15 16 54
alb2000 2000 3996 180.18 26 28 121
alb3000a 3000 5999 74.70 50 43 191
alb4000 4000 7997 1778.87 65 58 247

Set V

steind11 1000 5000 0.32 0 0 33
steind12 1000 5000 30.13 1 1 26
steind13 1000 5000 0.34 1 0 28
steind14 1000 5000 41.09 1 1 28
steind15 1000 5000 57.71 2 1 27

Set VI

le450 5a 450 5714 2.25 0 0 1
le450 5b 450 5734 2.15 0 0 1
le450 5c 450 9803 0.23 0 0 0
le450 5d 450 9757 4.64 0 0 0
le450 15a 450 8186 0.27 0 0 4
le450 15b 450 8169 2.23 1 1 3
le450 15c 450 16680 0.47 0 0 0
le450 15d 450 16750 0.82 0 0 0
le450 25a 450 8160 0.94 0 0 8
le450 25b 450 8263 0.88 0 0 4
le450 25c 450 17343 1.53 0 0 0
le450 25d 450 17425 0.53 0 0 0

7 Final remarks

This paper introduces an effective decomposition method and two constructive heuristics for
the minimum branch vertices problem. Since most benchmark instances for the problem
(535 out of 546) could be solved to optimality by a branch and cut algorithm, we stress
the relevance of the algorithms introduced here as preprocessing methods: a phase between
formulation and solution for improving the algorithmic solvability of the problem [11]. We
highlight the computational efficiency of the algorithms we present, whose implementations
run in less than a second for all available instances.

We compared a standard branch and cut algorithm with its application on the remaining
subproblems after running our decomposition and heuristic methods. Not only does the
enhanced version provide a better duality gap in 96% of the instances with no optimality
certificate, as it makes the algorithm consistently faster in all cases.

The decomposition method is fast and effectively reduces problem instances: we present

16

average results ranging from 15.9% to 24.8% of removed vertices, and from 38.6% to 61.3%
of removed edges.

Finally, the heuristics provided better MIP starts in most cases: it is better than the ones
presented by Silva et al. [14] in all of the 21 available instances, among those used in their
experiments. Our heuristics also provide better primal bounds for 103 out of 175 instances,
for which Carrabs et al. [2] describe extended results. We remark that our proposed heuristics
could be used to rapidly provide very good quality solutions for more advanced local search
procedures, such as the one recently proposed by Maŕın [9].

References

[1] A.S. Almeida, L.T. Nogueira, and V.G. Pereira de Sá. Minimizando ramificações em
árvores geradoras. In Anais do XLVI Simpósio Brasileiro de Pesquisa Operacional,
SBPO’14, pages 2977–2985, Salvador, 2014.

[2] F. Carrabs, R. Cerulli, M. Gaudioso, and M. Gentili. Lower and upper bounds for the
spanning tree with minimum branch vertices. Computational Optimization and Applica-
tions, 56(2):405–438, 2013.

[3] C. Cerrone, R. Cerulli, and A. Raiconi. Relations, models and a memetic approach
for three degree-dependent spanning tree problems. European Journal of Operational
Research, 232(3):442 – 453, 2014.

[4] R. Cerulli, M. Gentili, and A. Iossa. Bounded-degree spanning tree problems: models
and new algorithms. Computational Optimization and Applications, 42(3):353–370, 2009.

[5] M. Chimani and J. Spoerhase. Approximating Spanning Trees with Few Branches. In
T. Erlebach and G. Persiano, editors, Approximation and Online Algorithms, volume
7846 of Lecture Notes in Computer Science, pages 30–41. Springer Berlin Heidelberg,
2013.

[6] L. Gargano, M. Hammar, P. Hell, L. Stacho, and U. Vaccaro. Spanning spiders and
light-splitting switches. Discrete Mathematics, 285(1-3):83–95, 2004.

[7] L. Gargano, P. Hell, L. Stacho, and U. Vaccaro. Spanning Trees with Bounded Number of
Branch Vertices. In P. Widmayer, S. Eidenbenz, F. Triguero, R. Morales, R. Conejo, and
M. Hennessy, editors, Automata, Languages and Programming, volume 2380 of Lecture
Notes in Computer Science, pages 355–365. Springer Berlin Heidelberg, 2002.

[8] F.T. Leighton. A graph coloring algorithm for large scheduling problems. Journal of
research of the national bureau of standards, 84(6):489–506, 1979.

[9] A. Maŕın. Exact and heuristic solutions for the Minimum Number of Branch Vertices
Spanning Tree Problem. European Journal of Operational Research, 245(3):680 – 689,
2015.

[10] H. Matsuda, K. Ozeki, and T. Yamashita. Spanning Trees with a Bounded Number of
Branch Vertices in a Claw-Free Graph. Graphs and Combinatorics, 30(2):429–437, 2014.

17

[11] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley-
Interscience, New York, NY, USA, 1988.

[12] T. Öncan. New formulations for the Minimum Branch Vertices Problem. In Proceedings
of the World Congress on Engineering and Computer Science, volume 2, 2014.

[13] A. Rossi, A. Singh, and S. Shyam. Cutting-plane-based algorithms for two branch vertices
related spanning tree problems. Optimization and Engineering, 15(4):855–887, 2014.

[14] R.M.A. Silva, D.M. Silva, M.G.C. Resende, G.R. Mateus, J.F. Gonalves, and P. Festa.
An edge-swap heuristic for generating spanning trees with minimum number of branch
vertices. Optimization Letters, 8(4):1225–1243, 2014.

18

	1 Introduction
	2 Problem definition and formulation
	3 A combinatorial lower bound
	4 Graph decomposition approach
	4.1 Obligatory branches based decomposition
	4.2 Cut edges based decomposition
	4.3 The decomposed problem

	5 Heuristic algorithms
	5.1 Path expanding heuristic
	5.2 Multi-path expanding heuristic

	6 Computational experiments
	6.1 Instances from Carrabs et al. Caretal13
	6.2 Instances from Silva et al. Siletal14

	7 Final remarks

