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Abstract One of the challenging problems in collaborative position localization arises when the
distance measurements contain Non-Line-Of-Sight (NLOS) biases. Convex optimization has played
a major role in modelling such problems and numerical algorithm developments. One of the suc-
cessful examples is the Semi-Definite Programming (SDP), which translates Euclidean distances
into the constraints of positive semidefinite matrices, leading to a large number of constraints in
the case of NLOS biases. In this paper, we propose a new convex optimization model that is built
upon the concept of Euclidean Distance Matrix (EDM). The resulting EDM optimization has an
advantage that its Lagrangian dual problem is well structured and hence is conducive to algorithm
developments. We apply a recently proposed 3-block alternating direction method of multipliers to
the dual problem and tested the algorithm on some real as well as simulated data of large scale. In
particular, the EDM model significantly outperforms the existing SDP model and several others.

Keywords Euclidean distance matrix - Collaborative localization - Non-Line of Sight (NLOS) -
Augmented Lagrangian - Alternating direction method of multipliers (ADMM)

1 Introduction

One of the challenging problems in source localization arises from the situation where some of
the distance measurements are the type of Non-Line-of-Sight (NLOS). The challenges come from
two fronts. One is that different localization models appear to be required for different scenarios
depending whether prior information is available of the NLOS measurements (e.g., percentage of
NLOS measurements and/or the corresponding source nodes). We refer to the excellent paper by
Chen et.al. [8] for diverse models in handling different scenarios. The second challenging front is on
developing efficient algorithms especially when the number of unknown sources grows bigger. This
is the algorithmic scale issue for many known algorithms. The purpose of this paper is to develop a
new convex optimization model using the Euclidean Distance Matrix (EDM) to deal with a general
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scenario where no prior information is assumed of NLOS measurements. We further develop an
efficient algorithm that is capable of handling thousands of unknown sources and its localization
accuracy on real and simulated data seemed to outperform all the important algorithms that we
have tested in the numerical part.

Needless to say that there exist a vast number of papers on source localization problems of
various kinds. We do not intend to conduct a survey on them, but rather focus on those that
are most relevant to this research and are of range-based localizations. We refer to the (survey)
papers by Patwari et. al. [28], Stoica and Li [37], and Guvenc and Chong [I8] (and references
therein) for detailed documentation on those problems. We are only interested in the situations
where there are usually two types of nodes: the anchors whose positions are known and the sensors
(or sources) whose positions are to be estimated based on range-based measurements by, such as
received signal strength, time-of-arrival or time-difference-of-arrival. Our framework is of the type
of the collaborative position localization (also known as cooperative position localization), which
determines the sensor positions collaboratively, using both sensors-to-anchors and sensors-to-sensors
measurements.

Distance measurements can largely be classified into two types. One is the type of Line-of-
Sight (LOS), which yields the Euclidean distances or small perturbation of them among the nodes.
The second type is of the NLOS, which refers to the case where the LOS path is blocked due
to environment limitations such as the indoor environment depicted in the example of locating
Motorola facilities in [27]. NLOS propagation often leads to range-based measurements much larger
than the true values. For localizations with all measurements being of LOS, the convex relaxation
method of Semi-Definite Programming (SDP) works very well and is probably the most popular
method, see Biswas and Ye [5] and some of its follow-up papers [4,47.26L29,[15]. The second-order
cone programming by Tseng [41] and the facial reduction SDP approach by Krislock and Wolkowicz
[24] can be regarded as variants of the SDP approach, which is capable of handling thousands of
sensors. However, without proper modifications, NLOS propagation can significantly degrade the
accuracy of the localizations by those SDP methods.

Nevertheless, SDP continues to be a major model for the case of NLOS, but with growing com-
plexity in terms of the constraints involved. For example, for the model that aims for a large number
of localizations in [8, (25)], there have as many as |E| of 2 X 2 positive semidefinite constraints, |£]
of 4 x 4 positive semidefinite constraints, and || of linear constraints. Here |£| denotes the number
of observed distances. Even for the case that there is just one unknown source, the SDP model in
[43], which aims to simultaneously locate one single source and the NLOS biases, has (m + 1) of
3 X 3 positive semidefinite constraints and m linear constraints, where m is the number of anchors
and it also equals the number of observed distances. When |€| grows beyond a few hundreds, the
complexity of those models would significantly slow down the state-of-art SDP solvers.

As expected, prior information about NLOS distances does help to propose different approaches.
In the literature, one approach to mitigate the NLOS propagation is to develop some methods to
distinguish NLOS links from LOS links. For example, for the single-source network problem, various
identification techniques such as the maximum-likelihood based estimation are proposed in [441[33].
After identifying NLOS connections, different optimization techniques can be employed to improve
the localization performance. For the single-source network, the linear programming method and
the weighted linear least squares method are proposed in [45] and [I7], respectively (see the nice
survey [I8] for the overview of various NLOS identification techniques and optimization methods).
For the collaborative localization, the convex SDP relaxation model and the distributed iterative
parallel projection method are proposed in [42] and [22], respectively.

However, for most applications, it is very difficult to distinguish NLOS links from LOS ones.
As pointed out by [18] that misidentification may significantly degrade the localization accuracy
of optimization methods. Even worse is that there is often scarce or no information at all about
the statistics of the NLOS errors to be used for identification. Consequently, the NLOS mitigation
which does not require a priori the NLOS connection status or NLOS error information is necessary
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in practical applications. The SDP models discussed above in [8l43] do not require any prior
information about NLOS. Some studies such as the recent one by Yousefi et. al. [49] show that
without NLOS information, the estimator based on the Huber function [2I] is more robust against
NLOS errors. However, due to the non-convexity of the resulting optimization problem, a good
initial point is essential to achieve a good estimation. In order to produce a faithful initial point,
different convex relaxations of the objective function are studied in [1,49]. Although their approach
can provide a good initial estimator if the number of NLOS links is small, it is not necessarily the
case when the number of NLOS links is large [49].

When the observed distances are all of LOS with/without noises, the classical Multi-Dimensional
Scaling (cMDS) and its sometime sophisticated variants have been widely used in source localization
as thoroughly demonstrated in the books [9,6]. Here, we only focus on a group of research that are
deeply related to cMDS, but are very different in its nature. The central concept in cMDS is the
squared EDM. Suppose D is a distance matrix, the cMDS and its associated optimization problems
all work with the doubly centralized matrix JDJ, where J is the centralizing matrix. The group
of research we are interested in work with the matrix D directly. This results in a class of EDM
optimization problems that require iterative methods for them. The key difference between cMDS
and EDM optimization as well as their respective benefits have been well documented in Chapter
7 of Dattorro [I0] (also see Section [2] (c)).

Interestingly, EDM optimization has long been studied in numerical linear algebra and numerical
optimization and further applied to molecular conformation, see [19,12][13]14130,31]. What makes
EDM optimization more interesting is that such problems can be reformulated as SDP as done in
[2[4[39]. More mathematical properties of EDM optimization are being revealed through various
formulations. For example, for a single source localization problem under LOS, the EDM localization
in [32] is equivalent to that obtained by a trust-region method studied in [3].

Despite its recent advances, the application of EDM optimization to the collaborative position
localization with NLOS propagation remains, to our knowledge, an open issue. This paper tries
to initiate such a study by proposing a convex EDM embedding model for NLOS mitigation. The
main contributions of the paper are summarized as follows.

(a) We develop an EDM model that is a convex conic matrix optimization with the cone being
the almost positive semidefinite cone (an interesting geometric subject itself). The model can
be regarded as a convex relaxation of the least-trimmed squares (LTS) estimation [35] when
applied to our EDM embedding. One of the several relaxation techniques used in this paper is
to replace the non-convex fp-norm regularization term by its closest convex approximation, the
¢1-norm. This technique is same as the one that is used in Forero and Giannakis [I1] to deal
with very few of large biases in distance measurements, which were treated as outliers. But our
model is convex and their robust MDS model is nonconvex.

(b) The EDM optimization has such a nice structure that its dual problem has 3 separable block-
variables, paving the way for developing an efficient algorithm of Alternating Direction Method
of Multipliers (ADMM). The algorithm is derived based on the recent results presented in [38]
for large scale SDP problems.

(¢) The numerical comparison on real as well as simulated data demonstrated that our model and
algorithm significantly outperform (both in terms of cpu time and solution quality) the best
methods available including the SDP method in [8] for NLOS mitigation. Moreover, our algo-
rithm is capable of handling thousands of unknown sources with millions of observed distances.
Hence, our model and algorithm are suitable for large network localization where the existing
methods have difficulties.

The rest of the paper is organized as follows. Section [2] provides necessary background on
Euclidean distance embedding. The proposed convex EDM model is described in Section [3| with
more detailed interpretation. Section [ contains a convergent 3-block ADMM algorithm for our
proposed convex EDM model. The performance of the proposed model is compared with some of
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the best algorithms in the literature through simulations and real data analysis, and is reported in
Section [f] We conclude the paper in Section [6]

2 Background on EDM and notation

In this section, we draw some basic facts from ¢cMDS and emphasize how they will be used in
our EDM optimization. There are three elements that have become basics in Euclidean distance
embedding. The first one is the definition of the squared Euclidean distance matrix (EDM). The
second includes various characterizations of EDMs. And the third one is the Procrustes analysis
that produces the actual embedding in a Euclidean space. We briefly describe them one by one.
Standard references are [91[6][10].

(a) Squared EDM. Let S™ denote the space of n x n symmetric matrices equipped with the
standard inner product (A, B) = trace(AB) for A, B € §". Let || - || denote the induced Frobenius
norm. Let S denote the cone of positive semidefinite matrices in S™ (often abbreviated as X > 0
for X € 87). The so-called hollow subspace S, is defined by (“:=” means define)

Sy ={AeS8": diag(A) =0},

where diag(A) is the vector formed by the diagonal elements of A. A matrix D is a (squared) EDM
if D € S}’ and there exist points p;,...,pn in IR” such that D;; = ||p; — p;||* for 4,5 = 1,...,n.
IR" is often referred to as the embedding space and r is the embedding dimension when it is the
smallest such 7. All vectors are treated as column vectors. x” is the transpose of the vector x,
hence it is a row vector. We note that D must belong to S if it is an EDM.

(b) Characterizations of EDM. It is well-known that a matrix D € S™ is an EDM if and
only if
DeSp and J(=D)J =0, with J :=1 —ee” /n, (1)

where [ is the identity matrix in 8™ and e is the vector of all ones in IR™. The origin of this result

can be traced back to Schoenberg [36] and an independent work [48] by Young and Householder.
It is noted that the matrix J, when treated as an operator, is the orthogonal projection onto

the subspace e® := {z € R™ : e’z = 0}. The characterization simply means that D is an

EDM if and only if D € S and D is negative semidefinite on the subspace e™:
—DE/Ci::{AESn: T Az >0, mEel}. (2)

I is known as the almost positive semidefinite cone. The orthogonal projection onto K is given
as follows:
H;CQ(A):A—f—HSI(—JAJ), vV AeS", (3)

where for a closed convex set C € R", II(x) is the orthogonal projection of x € IR™ onto C. The
polar cone of K7} is defined by

(/ci)O;:{Xes”)<X, A) <0, VAeici}.

(¢) Euclidean embedding. If D is an EDM with embedding dimension r, then —JDJ = 0.
Let
—JDJ/2=PPT (4)

where P € R™*". Let p; denote the ith column of PT. It is known [9] that {p1,...,pn} are the
embedding points of D in IR", i.e., D;; = ||pi — p;||*>. We also note that any rotation and shifting
of {p1,...,pn} would give the same D. In other words, there are infinitely many sets of embedding
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points. To find a desired set of embedding points that match positions of the existing anchors, one
needs to conduct the Procrustes analysis, which is a simple computational scheme, see [, Chp. 5].
We omit the details. B

cMDS makes use of the fact in the following way. Given a pre-distance matrix D, find an
EDM D such that it is the solution of

min %HJ(D D)% st —JDJ=0. (5)

In other words, the solution yields the closest distance between JD.J and JD.J (see [0 Sect. 2.2.3]).

In contrast, the EDM optimization aims to measure the distance directly between D and D
and find the best solution through the following optimization:

min %HD —D|?,  st.Dis EDM. (6)

The problem does not have a closed-form solution any more and iterative numerical methods are
often required. The reward is that one gets a closer (with respect to the Frobenius norm of matrices)
distance matrix to D than that obtained by cMDS. It is guaranteed by the optimality of problem
@. This paper will propose one of such EDM optimization problems for NLOS mitigation, which
is explained in the next section.

Additional notation: We let e; denote the vector whose ith element is 1 and zero elsewhere.
For a vector x, the £p norm ||x||o is the number of nonzero elements in x, whereas the ¢1; norm is
Ix|l1 = || Its £2 norm is ||x|| = (3 #2)*/2. For a positive vector w, the w-weighted f5 norm
|x||w is defined by ||x|lw := (3 wiz?)/2. For a close convex set C' C IR™, §¢(-) is its indicator
function and §5(-) is its conjugate function of d¢(-) defined by

6o (y) »= sup{(x, y) — dc(x)}.
xeC

In particular, when C is a closed convex cone, we have d¢&(y) = dce(y). For a linear operator
A:IR" — R™, A" denotes its adjoint.

3 The problem of NLOS mitigation and EDM model

In this section, we first formally describe the problem of NLOS mitigation. When the least square
criterion is applied to the problem, it naturally leads to an optimization problem, which we show
is equivalent to the well-known Least-Trimmed Squares (LTS) [35]. Hence, the formulation is in-
tractable even for problems of small scale. Finally, we propose a convex relaxation, which leads to
our convex EDM optimization.

3.1 Problem description

It is convenient to state the problem as a network localization problem. Suppose we have a network
in R" (e.g., r = 2 or 3), where there are ns unknown-position sensors and n, anchors, whose
positions are known. Denote p; € IR", ¢ = 1,...,ns, the coordinates of the unknown sensors
and p; € R", i = ns + 1,...,ns + ng, the coordinates of the given anchors, respectively. Denote
n 1= ns+nq. Let d;; be the Euclidean distance between the i-th sensor and the j-th sensor/anchor,
ie.,

dij = ||pz —ij Vi€ {1,...,n3}, je {1,...,n}.

In this paper, we assume that if the distance d;; is less than the physical communication range R,
then the i-th and the j-th nodes are able to communicate with each other (i.e., they are connected)
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and the (noisy) distance estimation Jij can be obtained based on the signal of time-of-arrival (TOA)
measurements. Let £ be the set of index pairs of the connected sensors-sensors/sensors-anchors.
We further assume that the distance estimations are symmetric, i.e., dj; = di; for all (i, j) € £. The
task is to estimate the sensor locations p;, i = 1,...,ns from the observation distance information.
We are mainly concerned with the case where some of the observed distances d;; are contam-
inated with NLOS errors. Let Exr0s denote the index pairs of NLOS observations and Eros =
E\ Enros be the index pairs of LOS observations, respectively. Therefore, we may assume that
the distance estimations take the form
dij = dij + &;j +mij,  (i,7) €E, (7)
where &;; are i.i.d. noise errors which follow the normal distribution N (0,0) and 7 is a vector
indexed by (7, ) and is defined as follows:

. JO0 if(i,j) € ELos
Mg = >0 if (i,j)GgNLos.

It is commonly assumed that each 7;; for (4,7) € Enros is significantly larger than the magnitude
of the corresponding noise error &;;.

We emphasize that, in most networks, it is difficult to distinguish NLOS connections from LOS
ones. This implies that we do not know the index set Eyr0s in advance. Thus, even all d;; are
available and there is no noise, i.e., &; = 0 for all (¢,5) € &, solving for d;; and 7;; from is
an under-determined problem. However, we believe that it is reasonable to assume that there are
only a small number (or percentage) of the edges that are NLOS connections (i.e., the cardinality
of Enros is small). For example, by employing a variety of communication techniques such as
increasing the number of LOS paths, the percentage of NLOS connections can be decreased.

3.2 Least square formulation and LTS

(a) Regularized least square formulation. We now apply the least-square criterion on @ to
get an optimization problem. It follows from that for each (i,7) € £, we have

dij = (dij — &5 —mij ) = dig + iz + 2015 (&5 — dig) — 2di;&ij + &ij
2 2 5 2
= dij + mij — 2Mi5(Mij + dij) — 2dij&ij + &3 (by (@)
~ ~
= di; — yij — 2di;&i5 + &5y,
where the new quantity y;; is defined by
yij = my + 2migdi; Y (i,) € €.
Since magnitude of §Zv2j is much smaller than the term involving &;;, we obtain that

&%+ yiy — d o
== Y 237_ L~ &, (i,5) €E. (8)
i

Because ;5 is noise and follows the normal distribution, it is natural to apply the least square to
to get an optimization formulation. We would like to point out that the argument led to Equation
(8) has been influenced by a similar argument in [43] Section IV] that led to [43} Eq. (10)], where
a single source localization under NLOS links was mainly studied.

We also note that for all (¢,5) € £, we have n;; > 0. This implies y;; > 0 for all (¢,5) € £ and
yi; > 0 if and only if 7;; > 0. Since the cardinality of Exr0s is presumably small, we may assume
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that the vector y = (yi;) is sparse. It has been a well-known strategy that adding ¢o norm of y
encourages the sparse recovery of y. Therefore, the natural least-square formulation of takes
the following form with the fp-norm regularization term:

. L 2 7212
Minp, 7y, D o (d3j +yij — diz)” + pllyllo
(1,5)€€ ~7ig

s.t. yi; =iy + 2nizdiz,  (i,5) €E ©)

where p > 0 is a given parameter. In the formulation, we included the embedding points p;, which
define the actual distance d;;.

(b) Equivalence to LTS. The following interpretation in terms of LTS will put off any attempt
to solve the problem @ directly.

We begin with a simple observation. For any given y;; > 0 and d;; > 0, we can easily find out
the corresponding 7;; > 0 such that y;; = 771‘23' + 2mi;dij, (i,7) € E. Therefore, for any given p;,
i=1,...,n, the optimization problem @D can be rewritten as the following optimization problem
with respect to y;; only (since ps, 4 = 1,...,n are assumed be fixed)

. 1 ~
min Y ?(d?j +yi; — diy)? + pllyllo
(iee 2%
st. yi; >0, (i,5) € €E.

(10)

It is easy to see (cf. e.g., [25] Proposition 2.2]) that the global optimal solution y;; of problem
has a close form given by

= { (ij - dzzj)-‘r if ((67123 - d?j)+)2 > 2/’&%, (11)
ij = L -
0 if ((d3; — dij)+)? < 2pd;,

R

where (éivf] — d?j).,_ = max{c??j — dfj,O}.
Let p;,i=1,...,ns and ¥}, (i,5) € £ be any local optimal solution of @[) Denote 7" := |ly™||o.
Then, we know from (11)) that pj,s = 1,...,ns are also the local optimal solutions with zero optimal

value of the following LTS problem with the trimmed constant ¢ := |E| — 77,
¢
min Zr;(p17...7pns), (12)
1=1

where rI(pl, ceyPny) <L < TIT‘EI (P1,.-.,Pn,) are the ordered elements of the following set

1 7= 2 N2, .

{Tij(plw--pn.J = ﬁ((dij —Ipi — pj| )+> | (i,5) € 5} :
iJ

To summarize, any local solution of @ is just the LTS estimate of the corresponding unknown
sensors. Similar to a point by Forero and Giannakis [I1] concerning the LTS, it is impractical to
find its global solution even for the small-scale problem due to the computational complexity of
the combinatorial nature of .
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3.3 Convex EDM model

A plausible approach to solving the problem @ is to propose a convex relaxation of it. There are
three parts to consider in order to achieve this purpose. One part is the £p-norm regularization term
llyllo- As widely adopted, it can be replaced by its convex surrogate function ||y||1. The second part
is the quadratic equation constraints on 7;; in @ We recall the fact that n;; > 0 implies y;; > 0.
We simply relax the quadratic equation constraints by

The remaining part is on the constraints between the embedding points {p;} and the resulting
distances d;;. A nice fact is that the squared distances dfj are sufficient in describing those con-
straints and those squared distances also appear in the objective function in @D In other words,
the third part can be completely characterized by the squared distances, leading to our convex
EDM optimization. We detail it below.

Let D be the EDM whose (i, j)-element is d?j, where d;; satisfies the constraints in @ Then
D has the embedding dimension . That is

rank(JDJ) = r. (14)
Moreover, the distances between anchors should be preserved. That is
Dij =|pi—p;l> =d5j, i, j=ns+1,...,n. (15)

It then follows from that a set of embedding points can be generated from this D and the
corresponding points to the anchors can be matched to the true positions of the anchors through

the Procrustes analysis.
For the matrix D to be an EDM, it follows from and that

DesSy and -DeKl. (16)

For the objective function in @D, we have the following representation. Define three symmetric
matrices H, D and Y respectively by

Hij:{1/c7ij if (4,5) € € ﬁij:{&?j it eE | Yij:{yij if (i,5) € &

0 otherwise, 0 otherwise 0 otherwise.

Then the quadratic term in the objective function of @ is
1 ~
SIlH o (D+Y = D)|*. (17)

where “o” denotes the Hadamard product (i.e., componentwise production) between two matrices
of same size, and H is the weight matrix.

We put , , and together, and ignore the rank constraint , we obtain the

following convex relaxation of @D:

minp, y 3|[H o (D+Y = D)|* + pllyllx
st. Dij=di, i,j=ns+1,....,n
DesS;, —DeKkh,
yi; >0, ¥V (i,7) €.

(18)

It has a convex quadratic objective function with an [; penalized term, nq(nq, — 1)/2 + n equality
constraints, |£| simple non-negativity constraints y;; > 0, and the cone constraint —D € K.
We will show that this type of problems can be efficiently solved by an alternating minimization
method. We end this section with a remark.
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Remark 1 Although we do not mainly focus on the single source problem, it is worth to note
that there are two major differences between our proposed convex EDM model and the SDP
model proposed by [43], which mainly focuses on the single source case. Firstly, our EDM model
has a clear statistical meaning, i.e., it is a convex relaxation of the LTS estimation by ignoring
the rank constraint and relaxing the quadratic constraint in @D to . Since the LTS is a well-
known robust estimation for random variables with large biases but is computationally intractable,
the proposed convex EDM model usually can provide high-quality estimation of unknown sensor
locations even for the single source problem (see Section (b) for more discussions). Secondly, the
proposed convex EDM model has a nice structure that its dual problem can be solved efficiently
by a convergent ADMM algorithm, which will be introduced in the following section. However, as
mentioned in Section [1} it seems not clear for us how to solve the SDP model proposed by [43]
efficiently in particular for large scale collaborative sensor network problems, since the complexity
of those models would significantly slow down the state-of-art SDP solvers.

4 A convergent 3-block ADMM algorithm

In this section, we develop an efficient numerical method for the problem (18). We note that the
weights in H corresponding to the indices not in £ are zero. They do not contribute to the objective
function value. Therefore, we squeeze them out by a simple vectorization reformulation.

4.1 Reformulation by vectorization

To simplify our notation, we assume that there are m pairs of indices (¢, 7) in &:

5 = {(ilhjl)? (i27j2)7 ttt (ZM7.]m)} .
For each (i, jr), we define the symmetric matrix Ay, the scalars yx and wy, respectively by

72
dikjk'

T T
Ap = S(eiej, +€j,€i), Yk = Yigje, Wk =

N

For a symmetric matrix X, we have (Ay, X) = Xj, ;.. That is, Ay simply selects the (i, ji)th
element of matrix X when applied to it. We put yx and wy in the respective vectors:

y = (yl,yg,...,ym)T and W= (wl,wg,...,wm)T.
We further define the selection operator A : 8™ — IR™ by
A(X) = ((A, X)), (A, XD, X e S™ (19)
Define the inverse w1 of the weight vector w to be its componentwise inverse:
w = (Ljwi, jwa, ..., 1 wm)”.

With the notation defined above, the quadratic term in the objective function in (18 becomes a

wL-weighted f2 norm of a vector:

1
2IAD) +y —wi .
Since the constraints in are all linear, they can be easily vectorized. Define the linear

operator B1 : 8™ — IR" by
B1(X) = diag(X).
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We denote the zero vector in IR™ by bj. We further define the linear operator Bz : 8"
R™("e=1)/2 and the vector by € IR™("«~1/2 gych that for any pair (4, 7) satisfying ns + 1 <
1 < j < n we have

Ba(X) = Xij,  (b2)ij = dij,

where those d;;’s are distances between the known anchors in . We finally arrive at the following
vectorized form of our problem (I8):

minp, y 3 A(D) +y — w|%- + ple, y)

st. B(D)=b, y>0 (20)
-D e K%,

where B : 8™ — IR™ x IR™+("«=1)/2 i5 the linear mapping defined by

B(D) := (B1(D); Bz2(D)), b := (b1; b2).

4.2 Lagrangian dual problem

For the reasons that will become clear later, we will not solve the problem directly. Instead,
we will solve its Lagrangian dual problem and the solution of will be obtained automatically.
To derive the Lagrangian dual problem, we introduce the new variable t := A(D) +y — w so that
the problem is equivalent to

minp, ¢,y 5[|tl3%-1 + ple, ¥) + omr (y) + 6k (—D)
st. AD)+y-t=w
B(D) = b,

where dwr () and dxn (-) are indicator functions over the sets IRY" and K7}, respectively. Let the
Lagrangian function of the above problem be defined by

1
L(D,y,t;z1,22) := §||t||3v*1 + ple, y) + omrp (y) + o (—D)
+{A(D)+y —w —t, z1) + (B(D) — b, z2),

where z; € R™ and zy € IR" T« ("«=1)/2 ape the Lagrangian multipliers corresponding to the two
constraints. The Lagrangian dual problem is

max { min L(D,y,t;z1, zz)} . (21)
z1,z2 | D,t,y

The insider optimization problem has a simple representation:
E)ntlg L(D,y,t;z1,22)
= min {(A"(21) + B"(22), D)+ bxy (~D) } +min {ple, y) + (1, ¥) + omr (v)}
L2
+H1tln gHt”w*l - <Z1a t> - <W7 Z1> - <ba Z2>'

* * * * 1
= —0ky (A" (21) + B"(22)) — O (—pe — z1) — §||21||3v —(w, z1) — (b, z2)

* * 1
= —d(cy)e (A7(21) + B7(22)) — O (—pe —21) = S |lza|ls — (w, z1) — (b, 22).
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Introducing
Z = A%(z1) + B"(z2),

the Lagrangian dual problem of takes the form:

max —3z1[[% — (w, z1) — (b, 22)
st. —A%z; —B*z2 + Z =0, (22)
z1+pe>0, Ze(K})°.

4.3 An ADMM algorithm

Compared to the primal problem , the dual problem is well structured. It has three block-
variables z1, z2 and Z and they are separable (both in the objective and the constraints) and they
are only linked by one equation. A natural algorithm would be to minimize each block-variable in
turns until certain convergence is observed. One of the such algorithms is the recently proposed
Alternating Direction Method of Multipliers (ADMM) by Sun et. al. [38] in the context of SDP and
we found that its adaptation to the problem is numerically very satisfactory. This is the main
reason why we do not attempt to solve problem directly. We present this algorithm below.

The algorithm actually alternately minimizes the associated Augmented Lagrangian defined by
(note: here we cast as a minimization problem)

1 * *
Lg(z1, 22, Z; X) = §HZ1||\2N +(w, z1) + (b, 22) + (—A"z1 — B'z2 + Z, X)
6 * * 2
+§H—AZ1—BZ2+Z”,

where 8 > 0 is a given parameter and X € S" is the Lagrangian multiplier corresponding to
the equality constraint in . The algorithm generates a sequence {z’f7 z5, ZF, Xk} (index by
k) according to the following steps.

Algorithm 1 Let § > 0 and o > 0 be given. Choose the starting point 23 € R™ such that
29 +pe >0, Z° € (K7)°, and X° € S™ such that BX® = b. Set 23 = —(BB*)'B(A*z{ + 2°).
Let k = 0. Perform the k-th iteration as follows:

Step 1 Compute

it = argmin{Lg(zl,z§7Zk;Xk) Doz > —pe}.

1
Step 2 Compute so-called half step for z2 by ZSJFZ = arg min Lg(zlerl, z2, 2" XF).

Step 8 Compute

1
ZM1 = arg min {L zk+1,zk+5,Z;Xk }
gZG(Ki)O 5(21 2 )

Step 4 Compute the full step for z2 by zg"'l = arg min LB(ZIIH'l, Z2, ZkJrl;Xk).
Step 5 Update X by X*+1 = X* — aﬂ(A*z’f+1 + B*ngrl — ZFh,

The convergence analysis of Algorithm [I]as well as the necessity of having the half-step update
of z2 can be found in [38]. We omit the details here for simplicity. However, it is an important fact
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to note that the optimization problems from Step 1 and 4 are all projection problems and all have
close-form solutions. Actually, for each k > 0, it is easy to check that

it = max{w_lqk, —pe}, (23)

22t = _(BB*)TIB(AZE Y — 28, (24)
2N = My (1(X* )8 - ATaY T - B2

(25)

7ot = —(BB*)T'B(ATZ T — 28, (26)

Where W= Dlag )+ BI and ¢* := A (Xk +B(Z% — B*z k)) + w. We note that the derivation of
and (26) used the fact B* (Xk) = b for all iterates X" due to the initial choice of X°. The
formula (25) is due to 1 ) and the fact that for any A € S,

Hxny(A) = A= Iy (A) = —Isr (—JAJ).

Replacing A above by —(X*/8 — .A*zlfle — B*ZISH/Q) gets the solution for ZF+1,

4.4 Computational complexity and stopping criterion

We refer to Subsection for the following discussion. Since the matrices in defining the linear
operators A and B select certain elements X;; when they are applied to the matrix X, the operator
BB* is a dlagonal operator. The computatlonal complexity in the formulae of (23| ., ., and (26 . is
about O(n?). The major computation in is the spectral decomposition of a symmetric matrix.
Therefore, their implementations are fairly straightforward. The major purpose of this part is to
explain when we should terminate the algorithm.

We first note that the primal problem always has an optimal solution. To ensure the dual
problem has an optimal solution, we assume the generalized Slater condition holds for the primal
problem: there exist y > 0 and —D € ri(K%}) such that B(D) = b where ri(K7) is the relative
interior of the cone K%} . Then, since the optimization problem (20) is convex, we know from [34,
Corollary 28.2.2 and Corollary 28.3.1] that X is the correspondlng optimal solution of (| if and
only if the following KKT condition holds at some point (X, z1,Z2, Z) :

0€—AX)+ 0f(z1),
0e X +09(2),
B(X)—-b=0,
A*z1 + B¥z2 — Z =0,

(27)

where f(z1) := 1|z1||% + (W, z1) + Smr (21 + pe), g(Z) == 6(}Ci)o(Z), and 0f, dg are the subdif-
ferentials of the convex functions f and g, respectively, at the concerned points.

We would like to quantify the KKT condition (27)) at the kth iteration. Since we always have
B(Xk) — b = 0 for all X* generated by Algorithm [1| (its proof can be patterned after the same
result in [38]), the third condition in is automatically satisfied. The second condition is the
complementarity condition is equivalent with —X € K%, Z € (K})° and (X, Z) = 0. The first and
the last condition in are respectively the primal and dual feasibility. For the first (inclusion)
condition, we now quantify the distance from 0 to the set A(X)+df(z1) at (X*1,25T1). We note
that at the kth iteration, Z**! is the optimal solution of the following convex problem

min f(z) + (ACXS),21) + 2| A% + B'a — 2.
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Thus, we have 0 € df (5 T) + A(X") + BA(A 2z T + B*z5 — Z%), which implies
A (xk“ — XP - B(ATZE 4 Bl - z’“)) € AXFHY) L af(ah Y,
Therefore,
dist(0, AX* T 4 9f(24)) < HA (Xk+1 X% (AT 4 Bk z’“)) H .

For the k-th iteration, we define the measurements of the infeasibilities of the primal and dual
problems, and the violation of the complementary condition by

Ry i= [ (X541 = X - paral ™+ %25 - 7))
Ry := \|A*zlf+1 + ZS’*ZIQ€+1 -z, (28)
o k41 k41 k41 k41
Re :=max{ (X", Z"7)|, || = X*7° = Ien (=X"77)[[}.
We terminate the algorithm if the KKT condition are met, i.e.,
max{Rp, R4, Rc} < tol, (29)

where tol is the given tolerance.

5 Numerical experiments

In this section, we demonstrate the effectiveness of the proposed convex EDM model by testing
Algorithm [[]on both simulations and real-world examples. Note that, in all the tested problems, we
do not assume any prior knowledge about the noise error and the NLOS condition such as the noise
power, the NLOS status or distribution parameters. For comparison purpose, we aimed to select the
best methods available in the literature. Unfortunately, despite the large number of publications in
this area, there are few of the methods whose implementations are publicly available. In addition
to our own EDM method, we choose to implement 8 of such methods recently proposed in literature.
Their descriptions can be found in Table[l] It should be noted that we only use IPPM, ML and ML-EDM
as a benchmark for comparison, since we do not know any NLOS information a prior in practice.

Methods Description

Huber Huber estimation [20]

RDA-Stage I the 2-stage robust distributed algorithm [49]
RDA-Stage II
SDP the SDP based embedding [§]

with the state-of-art SDP solver SDPT3 [40]
SDP-single the SDP based embedding in [43]

for single source localization

IPPM the iterative parallel projection method in [22]
with EDM solution initialization for LOS links only
ML Maximum likelihood estimation [23] with true value
initialization for LOS links only
ML-EDM Maximum likelihood estimation

with EDM solution initialization for LOS links only

Table 1: Descriptions of the methods tested

As a performance metric, we adopt the commonly used criterion: the Root of Mean Square
Distance (RMSD) for the estimated sensor positions pi, ..., Pn,:

ne 1/2
1 N~ 2
RMSD (= —— ||pz - sz .
(&
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5.1 Parameters settings

All the algorithms are implemented in Matlab (R2014b) and all the numerical experiments were
run under a Windows 8.1 64-bit system on an Intel 4 Cores i7 2.4GHz CPU with 8GB memory. The
termination tolerance in is chosen to be tol = 10~% for our EDM method and the initial sensor
locations are set at the origin. In general, the penalty parameter p is inversely proportional to
the number of NLOS connections. For the SDP solver, we used the default parameters in SDPT3
(through the CVX toolbox [16]). For Huber, we set K = 20 (see [20]). For the 2-stage robust
distributed algorithm (RDA-Stage I & II), we used the parameters K1 = 20 and K» = 0.1o,
which are the same as in [49]. The gradient descent algorithm is employed to solve the corresponding
unconstrained optimization problems in Huber and RDA-Stage I & II. Instead of the fixed step
size used in [49], we used the Armijo backtracking line search method to compute the suitable
step size to ensure a sufficient decrease in the objective function value. The stopping criteria for
Huber and RDA-Stage I & II are the same as those in [49], i.e., the estimators of sensor positions
at two consecutive iterations are smaller than the termination tolerance tol = 10~%. However,
since the unconstrained optimization problems are non-convex, there is no theoretical convergence
guarantee for Huber and RDA-Stage II to obtain a global optimal solution. We also terminate the
algorithms when the maximum iterations (1000 in our implementation) are reached. As in [49], the
initial sensor positions for these three algorithms (Huber and RDA-Stage I & II) are selected as
Gaussian random variables with mean equal to the true sensor positions and standard deviation of
10 meters.

5.2 A toy example

In order to understand what our EDM method would achieve, we study an example of small net-
works, where there are n, = 8 anchors located at the boundary of the square [0, 10]m x [0, 10]m (i.e.,
(0,0)m, (5,0)m, (10,0)m, (0,5)m, (10,5)m, (0,10)m, (5,10)m and (10,10)m) and there is only one
source located randomly in the square. Assume that the source node can communicate with all the
anchors. The i.i.d. noise errors &;; in follow a zero-mean Gaussian distribution with standard
deviation o = 1m. We further assume that there are two sensor-anchor measurements containing
the NLOS errors, which are exponential random variables with parameter v = 10m. The RMSD
and empirical cumulative distribution function (CDF)E| of different methods are reported in Table
and Figure [1] respectively. It can be clearly seen that our EDM method (with p = 360) performs
well in terms of RMSD. Most importantly, it is worth to note that with high probability (80 out
of 100 MC simulation runs), the nonzero elements in the solution y* obtained by the EDM method
correctly identified the NLOS links. Moreover, if there is only one NLOS link, the probability went
up to 93% and RMSD reduces to 1.08m (with p = 180). However, other methods such as the
SDP-single failed to identify the NLOS links for this example. This may be the partial reason why
the proposed method outperforms other techniques in most cases. It can be observed from Table
that in both cases, the RMSD of IPPM and ML-EDM equal to ML, which indicates that the EDM
provides a good estimation. Note that our proposed method does not need any prior information
neither on the measurement noise nor on the NLOS errors.

I Let x1,...,2n be independent, identically distributed real random variables. The corresponding empirical
distribution function F},(t) is defined as Fy,(t) = % >4 14,<¢, where 1, <¢ is the indicator of event z; < ¢.
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NLOS links | EDM  SDP-single RDA-Stage I RDA-Stage II Huber IPPM ML-EDM ML
2 1.21 2.20 1.62 1.32 2.96 1.06 1.06 1.06
1 1.08 1.32 1.36 1.14 2.97 1.05 1.05 1.05

Table 2: Performance comparison for the toy example in terms of RMSD (in meters).
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] 1 2 3 4 5 6 7 8 3 4 6 7
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(a) NLOS links = 2 (b) NLOS links = 1

Fig. 1: Performance comparison for the toy example.

5.3 Test problems

We tested three types of problems. The first two examples have been commonly tested and are a
class of randomly generated problems. The last one is from real data. All problems are described
as follows for easy reference.

Ezample 1 (T1) This is a class of sensor network localization problems tested in [49] with ns, = 50
sensors and n, = 4 anchors. The sensors are randomly generated in the unit square [0, 10jm X
[0,10jm and the anchors are located at the four corners. The i.i.d. noise errors &;; in follow a
zero-mean Gaussian distribution with standard deviation varying from 0.5m to 3m and the NLOS
error 7;; in are modelled as an exponential random variable with parameter v = 10m. We let
the physical communication range R = 10m. Let Pnyros be the probability of a link being NLOS.
The bigger Pnros is, the more there are NLOS links.

Ezample 2 (T2) This is a class of sensor network localization problems tested in [8, Section IV-
C]. The ns = 40 sensors are randomly generated in the unit square [—20,20]m x [—20, 20jm and
the n, = 8 anchors are located at the boundary (20,20)m, (—20,20)m, (20, —20)m, (—20, —20)m,
(0,20)m, (20,0)m, (0, —20)m, (—20, 0)m. The i.i.d. noise errors &;; in @ follow a zero-mean Gaus-
sian distribution with standard deviation varying from 1m to 6m and the NLOS error 7;; in
are modelled as an exponential random variable with parameter v varying from 1m to 6m. The
physical communication range R = 25m and the NLOS probability Pnyros = 0.3 are same as those
used in [§].

Ezample 8 (T3) We use the real data obtained by the channel measurement experiment conducted
at the Motorola facility in Plantation, which is reported in ﬂZI}EI The experiment environment is an
office area which is partitioned by cubicle walls. Forty-four device locations are identified within a
14m x 13m area. Four of the devices (no = 4) are chosen to be anchors and remaining locations are

2 The data can be downloaded from http://web.eecs.umich.edu/~hero/localize/.
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T1 Pnros o EDM SDP RDA-Stage I  RDA-Stage II Huber IPPM ML-EDM ML
0.5 | 0.30 1.09 0.86 0.43 1.91 0.32 0.21 0.21

1 0.54 1.30 1.52 0.95 2.20 0.75 0.35 0.35

0.05 1.5 | 1.02 1.36 2.04 1.34 2.90 1.19 0.52 0.51

2 1.61 1.72 2.50 1.82 3.20 1.56 0.70 0.69

2.5 | 1.79 2.20 2.79 2.50 3.88 2.05 0.88 0.87

3 2.34  2.53 3.13 2.87 4.14 2.70 1.05 1.03

0.5 | 047  3.85 1.57 1.25 5.67 0.58 0.24 0.24

1 0.67  3.95 2.40 2.16 6.04 1.14 0.49 0.48

RMSD 0.5 1.5 | 1.14  4.07 2.72 2.68 6.25 1.77 0.76 0.74
(in m) 2 1.72  4.21 2.52 2.25 6.51 2.42 0.98 0.95
2.5 | 2.11 4.51 3.29 3.15 7.63 2.69 1.56 1.41

3 2.63  4.73 3.58 3.48 7.01 3.66 1.61 1.47

0.5 | 1.35 5.85 3.86 4.04 9.35 1.64 1.34 0.93

1 2.70 5.96 3.96 4.61 9.40 3.06 2.56 1.59

0.95 1.5 | 2.80 5.79 3.95 5.27 9.59 3.38 2.96 2.07

2 2.91 5.85 4.16 4.93 9.46 3.70 2.97 2.36

2.5 | 2.52 5.92 4.09 5.47 9.71 3.90 3.41 2.61

3 2.92 6.13 4.19 5.61 9.91 4.47 3.77 2.70

0.5 | 0.14 11.39 0.33 0.62 0.61 0.97 0.01 0.01

1 0.43 12.88 0.42 0.65 0.64 1.26 0.03 0.03

0.05 1.5 | 0.65 12.59 0.40 0.64 0.64 1.39 0.05 0.03

2 0.83  12.29 0.39 0.62 0.51 1.64 0.05 0.04

25 | 014 12.29 0.39 0.60 0.67 2.10 0.05 0.05

3 0.16 11.80 0.38 0.53 0.49 2.44 0.06 0.07

0.5 | 0.09 12.38 0.40 0.62 0.64 1.15 0.02 0.01

1 0.18 12.49 0.43 0.65 0.65 1.43 0.03 0.02

CPU 0.5 1.5 | 029 1261 0.41 0.65 0.65 1.70 0.04 0.03
(in s) 2 0.39 12.22 0.40 0.62 0.64 1.97 0.05 0.05
2.5 | 040 13.21 0.50 0.57 0.60 2.21 0.15 0.16

3 0.52  11.60 0.48 0.56 0.50 2.10 0.06 0.05

0.5 | 0.11 1211 0.45 0.65 0.65 0.31 0.04 0.04

1 0.19 12.46 0.42 0.66 0.66 0.34 0.05 0.05

0.95 1.5 | 0.22 12.36 0.41 0.66 0.66 0.33 0.05 0.04

2 0.27  12.40 0.43 0.65 0.65 0.33 0.05 0.05

25 | 021 11.94 0.48 0.63 0.63 0.35 0.06 0.05

3 0.26 12.34 0.39 0.61 0.61 0.36 0.06 0.05

Table 3: Performance comparison for Example [1| with different NLOS probability Pyros and
different noise standard deviation o.

unknown. In this experiment, each node can communicate with all other nodes. We use the original
time-of-arrival (TOA) to obtain the pairwise range measurements. This means that almost all of the
measurements have large positive NLOS errors due to the environment limitation. For comparison,
we consider three scenarios tested in [49], i.e., (i) the raw measurements; (ii) the moderate NLOS
propagation; (iii) the small NLOS propagation.

5.3.1 Performance comparison.

In this part, we make detailed comparison between all the algorithms that we have tested based
on our extensive numerical experiments on the three test problems. We describe them below.

Comparison on T1. We set ng = 4 and ns = 50 in Example [I] The penalty parameter p in the
EDM method is chosen as follows: p =9 x 10 for Pyros = 0.05, p =2 x 10* for Pyros = 0.5 and
p = 10* for Pnros = 0.95, The performance in terms of RMSD and CPU for all the methods
is summarized in Table [3] and Figure As can be observed from Table [3] and Figure 2] the
EDM method works best in terms of RMSD. It is worth to notice that the distributed techniques
such as the RDA-Stage I, RDA-Stage II, IPPM and Huber methods have an important feature that
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Fig. 2: Performance comparison for Example |1| with different o in terms of RMSD (in meters).

they can be implemented in a parallel manner, which means that the computational complexity of
those methods should be roughly the total time divided by the number of sensors plus the total
communication time. As would have been expected, RMSD of all methods gets worse as the NLOS
contamination level and the noise standard deviation increase. It is interesting to note from Table
that if the NLOS probability Py ros is small, the ML-EDM and ML have very similar RMSD, which
indicates that the proposed EDM method can provide a good estimator. An amazing observation
is that this nice property still holds at 50% level of contamination, and even at 95% of NLOS
contamination, our EDM still returns a reasonable RMSD = 1.35m (vs 5.85m by SDP) when the noise
o is small (= 0.5), which means that it can remove those NLOS biases across nearly all the NLOS
measurements. This is rather surprising (and indeed a welcoming feature) as our model is based
on the assumption that only a small percentage of the measurements are of NLOS.

As observed by [43], the second stage of RDA might not improve the localization performance for
the high NLOS contamination. This is confirmed in our test. For example, in the cases Pnros =
0.95 and ¢ = 0.5m (the same case considered in [43]), we see from Table 3| that RMSD respectively
increased from 3.86m to 4.04m. The CDF of different methods in this case are also plotted in
Figure [3] We also tested Example [T] with different physical communication range R. In particular,
for the case that ¢ = 0.5m and Pnyros = 0.5, we let R decease from 10m to 2m, while the average
node connectivity deceases from 26.4% to 2.1%. The average RMSD of different methods after 100
MC simulation runs are reported in Table[d] It can be observed that the RMSD of all methods gets
worse as the node connectivity deceases. The EDM still outperforms other methods even for the low
connectivity case.

Finally, we consider the following modifications of Example[l] Let the anchors be located in the
middle of the square, i.e., (3,3)m, (7,3)m, (7,7)m and (3,7)m with 0 = 1m, v = 10m, R = 10m
and Pyros = 0.05. Consider Case (1): some sensors are outside the convex hull of anchors (see
Figure ; and Case (2): all sensors are outside the convex hull of anchors (see Figure . The
RMSD of different methods for these two examples are summarized in Table[5]and CDF of different
methods can be found from Figure [Ab] and Figure [Id] respectively. By comparing with the RMSD
of Example [I] listed in Table [3] we can see that unlike other methods, our proposed EDM method
seems not effected by the geometric conditions of the problem. For both cases, EDM works well just
like the original Example [I| Overall, it can be clearly observed that, in all scenarios with different
NLOS contamination levels and different noise levels, the estimation errors of our convex EDM
method are much smaller than the others.

Comparison on T2. The main purpose of testing Example [2] is to see if we can reproduce the
best results reported by other methods so as to ensure that our implementations of those methods
are up to a high standard. Therefore, we tested the same scenarios as in [§]. we first fix the NLOS
error mean v = 4m but let the standard deviation of measurement noise ¢ vary from 1lm to 6m
(see Table |§| and Figure . It can be observed that we are able to reproduce the results similar
to that reported in |8 Fig. 9]. We also observe that the performances of SDP, RDA-Stage II and
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Fig. 3: CDF of different methods for Example |1| with o = 0.5m.
R | connectivity (%) | EDM  SDP  RDA-Stage I RDA-Stage II Huber IPPM ML-EDM ML
10 26.4 0.47 3.85 1.57 1.25 5.67 0.58 0.24 0.24
8 20.9 0.88 4.37 3.30 3.20 6.73 0.90 0.30 0.29
6 14.4 1.07 4.82 3.95 3.95 6.69 1.16 0.48 0.37
4 8.0 2.13  5.52 4.97 5.01 7.47 2.24 1.54 0.63
2 2.1 6.29 9.04 9.40 9.42 10.32 6.28 6.14 0.54

Table 4: Performance comparison for Example [1{ with different communication range R (in meters)
in terms of RMSD (in meters).

Problem T1 | EDM SDP  RDA-Stage I RDA-Stage II  Huber IPPM ML-EDM ML
Case (1) 0.57 1.61 2.47 1.64 3.40 0.89 0.37 0.37
Case (2) 0.59 1.71 3.16 2.13 3.88 0.91 0.37 0.37

Table 5: Performance comparison for the two cases in Figure |4/ in terms of RMSD (in meters).

o EDM SDP RDA-Stage I  RDA-Stage II Huber IPPM ML-EDM ML

1| 087 1.54 2.06 1.65 2.28 1.04 0.52 0.51
2 | 141  2.06 2.87 2.20 3.79 2.02 1.03 1.03
3| 217 273 3.51 2.69 5.13 2.93 1.56 1.55
4 | 288 3.53 4.39 3.44 6.44 4.14 2.12 2.10
5 | 3.87 4.34 4.86 3.99 7.55 5.12 2.61 2.59
6 | 491 5.15 5.64 5.37 8.84 6.10 3.19 3.10

Table 6: Performance comparison for Example |2| with different o (in meters) in terms of RMSD (in
meters) .

IPPM are at a same level for this case and our EDM (with p = 8 x 10%) produced better results than
them. Obviously, ML and ML-EDM produced the best results as they used the information of which
links being of NLOS.

We further compared different methods by fixing the standard deviation of measurement noise
o = 4m but varying the mean of NLOS error from 1m to 6m (see Table [7| and Figure . It is
interesting to notice that for all methods, the localization accuracy does not change linearly with
the change of 7, which is also reported in [8, Section IV-C].
Comparison on T3. For Example [3] we compare our proposed EDM method with the SDP and
RDA-Stage I & II under different NLOS propagation levels. Firstly, the performance comparison
for Example [3] with the raw measurements can be seen from the localization plots in Figure [f]
Since the different choices of initial sensor positions may lead to different estimation results for
RDA-Stage I & II, the MC simulations are implemented under 100 runs. The corresponding CDF
of the estimation error of all the methods are plotted in Figure [Ta] From the results, we observe
that both the proposed convex EDM method (with p = 10*) and the SDP based method [§] are
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Fig. 4: Performance comparison for the modifications of Example [1| with the 4 anchors in blue
insider the square [0, 10]m x [0, 10]m.

v | EDM SDP  RDA-Stage I RDA-Stage II  Huber IPPM ML-EDM ML
1| 278 3.57 4.04 3.06 6.36 4.10 2.09 2.08
2|27 3.51 4.11 3.18 6.36 4.15 2.08 2.06
3 | 286 351 4.21 3.32 6.41 4.05 2.10 2.09
4 | 2.88 3.53 4.39 3.44 6.44 4.14 2.12 2.10
51289 3.62 4.37 3.55 6.56 4.04 2.10 2.07
6 | 292 3.71 4.37 3.56 6.63 4.01 2.09 2.07

Table 7: Performance comparison for Example With different « (in meters) in terms of RMSD (in
meters) .
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Fig. 5: Performance comparison for Example [2[in terms of RMSD (in meters) .

NLOS level | EDM SDP  RDA-Stage I  RDA-Stage II

raw (large) | 1.38 1.54 1.95 1.90

moderate 1.35 1.36 1.79 1.44
small 0.94 1.07 1.75 1.14

Table 8: Performance comparison for Example [3| with different NLOS propagation levels in terms
of RMSD (in meters).

able to obtain high-quality estimation of the unknown sensor locations. Moreover, the localization
quality obtained by the proposed method (EDM) is better than that obtained by SDP in terms of the
estimation errors and is among the best for this widely tested problem.

We further tested the other two scenarios (the moderate and small NLOS propagations), which
were also tested by [49]. We plot the CDF of all methods for the two cases in Figure [7b|and The
corresponding RMSD are listed in Table [8] From Figure [6] and Table [8 we can see that EDM and
SDP returned similar results with EDM (with p = 3 x 10? for the moderate NLOS propagation case
and p = 9 x 10* for the small NLOS propagation case) being slightly better, and both returned
better results than RDA-Stage II and RDA-Stage I. However, RDA-Stage II improved RDA-Stage
I in all three scenarios (large, moderate and small NLOS propagations).

5.3.2 Performance on large scale networks.

This final part is to test the capability of our model on large scale problems that are beyond those
methods tested before. Such large networks are generated from Example [1| with growing number of
unknown sensors. The large number of links presents a great deal of challenge for the SDP model
and SDPT3 solver simply run out of memory for such tested problems.

In the test, we consider 5 different scenarios where the sensor number is chosen to be 100, 500,
1000, 1500 and 2000. The probability of a link being NLOS is 0.05 and the physical communication
range R = 10m. For example, when ns = 2000, the number of edges |£| is nearly 2 millions. The
numerical performance of the proposed EDM is reported in Table [9] We also include two plots of
localizations of 500 and 1000 sensors in Figure [8] We note that for such large scale problems, the
primal and dual feasibility violations are very small at 10~° and the RMSD is also very reasonable.
Such features have been well reflected in the two plots in Figure |8 where the true locations (indi-
cated as o) match well with the computed locations (indicated by *). Furthermore, the computing
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Fig. 6: Performance comparison for Example |3| using the raw measurements with the 4 anchors in

blue.

Ng ng €] R, Ry R. RMSD  cpu(s)
100 5145 7.95e-05  9.27e-05  9.90e-05  0.2106 0.71

500 122820 9.98e-05  7.02e-05  9.28e-05  0.0985 15.53

4 1000 488481 9.99e-05  9.46e-05  8.05e-05  0.0695 91.41

1500 1100475 | 9.94e-05 9.53e-05 6.91e-05 0.0606  242.11

2000 1949639 | 9.95e-05 7.95e-05 6.49e-05 0.0578  504.31

Table 9: Numerical performance of EDM for large-scale problems.

time is very promising. For example, for the largest problem ns = 2000, it took less than 9 minutes
to reach the required stopping accuracy.

If the communication range R decease, then the performance of EDM gets worse as the node
connectivity deceases. The detailed numerical results for the case that ns = 1000 with different
communication range R (from 10m to 2m) are reported in Table Similar with Example [1] (see
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Fig. 7: CDF of different methods for Example |3 with different NLOS propagation levels.

(a) n =500 and |£] = 122820

(b) n = 1000 and || = 488481

Fig. 8: Performance comparison for large scale networks with Pyros = 5% with the 4 anchors in

blue at the 4 corners.

Ng ng R connectivity (%) €] RMSD  cpu(s)
10 48.5 488481 | 0.0695 91.41
8 42.6 429820 | 0.0742 95.42
4 1000 6 31.2 314756 | 0.0862  100.89
4 16.8 168813 | 0.1785 124.64
2 5.3 53078 0.8046  196.27

Table 10: Performance of EDM for large scale networks with different communication range R (in

meters).

Table , the average RMSD of EDM increases from 0.0695m to 0.8046m, while the average node
connectivity deceases from 48.5% to 5.3%.

To conclude our numerical section, we would like to emphasize the three reasons which may
have contributed to the strong performance of our method. The first is that our model is robust
in handling NLOS links in the sense that it seems less sensitive to the number of NLOS links. For
example, our EDM model can still produce a reasonably good solution even when the probability
of NLOS links grows to 95% in the test problem T1 (see Table [3]). The second reason is that our
model does not rely on the graph rigidity theory for the underlying networks. It merely uses all
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the distances information to find the best networks, which yield the least error from the observed
distances, See Remark 1 at the end of Section II for our model being a convex relaxation of the
LTS. The third reason is that the stopping criterion used in our implementation is the true KKT
condition of the problem. However, we noticed that other methods used other stopping criteria
that may lead to terminations at undesirable points. Without using the KKT condition (or its
equivalence) as stopping criterion, one would never know whether the constrained optimization
problem is truly solved or not.

6 Conclusions

This paper aimed to tackle a challenging problem in source localization where the distance measure-
ments may contain biases of NLOS-type. The least-square formulation of such problem is equivalent
to the well-known least-trimmed squares and hence is extremely difficult to solve. Convex relaxation
seems to be a sensible approach as demonstrated by the existing SDP relaxations, which often have
a large number of conic constraints.

With the awareness of the shortcomings of the SDP approach, we proposed a new convex opti-
mization relaxation for the problem and our approach relies on the concept of EDM. In particular,
we employ the almost positive semidefinite cone K7}. This results in the convex optimization model
(18), whose dual problem has a nice structure. We apply the recently developed 3-block ADMM to
the dual problem and tested it on some real as well as simulated data. The numerical comparison
with several popular methods including the SDP demonstrates the efficiency of our method and
the localization quality is also very satisfactory even for some large-scale networks. We hope that
the strong performance of our model and its algorithm will motivate other researchers to apply the
EDM tool to various localization problems with large measurement errors.

One commonly used technique, which is also included in the real data [27], is to remove a
common bias (a constant distance) from all NLOS measurements. This involves two issues here.
One is to detect the NLOS links and the other is to accurately estimate the common bias. This
remains a challenge for all existing models and thus will be our future research regarding the EDM
optimization models. Another interesting topic is to see whether the EDM tool can be used in a
recently investigated robust convex approximation for the localization under NLOS conditions by
Wang, So and Li [46], where only one unknown source is studied.

Finally we note that algorithms in the form of ADMM can often be put in a distributed fashion
so as for them to be applied to problems of very large size [7]. However, for our ADMM algorithm,
the bottleneck lies with the solution of where it is hard to distribute the calculation of the
matrix projection. This issue is certainly worth exploring in future.

Acknowledgement. We would like to thank the two referees for their constructive comments
that have helped to improve the quality of the paper.

References

1. A. Abramo, F. Blanchini, L. Geretti, and C. Savorgnan, A mixed convex/nonconvex distributed localization
approach for the deployment of indoor positioning services, IEEE Trans. on Mobile Comput., 7 (2008), pp.
1325-1337.

2. A. Y. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance matrix completion problems via
semidefinite programming, Comput Optim Appl, 12 (1999), pp. 13-30.

3. A. Beck, P. Stoica, and J. Li, Exact and approximate solutions of source localization problems, IEEE Tran.
Sign. Proces., 56 (2008), pp. 1770-1778.

4. P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, Semidefinite programming based algorithms for sensor network
localization, ACM Transactions on Sensor Networks (TOSN), 2 (2006), pp. 188-220.

5. P. Biswas and Y. Ye, Semidefinite programming for ad hoc wireless sensor network localization, Information
Processing in Sensor Networks, 2004, pp. 46-54.



24 Chao Ding and Hou-Duo Qi

6. I. Borg and P.J.F. Groenen, Modern Multidimensional Scaling: Theory and Applications (2nd ed.) Springer
Series in Statistics, Springer, 2005.

7. S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via
the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), pp.
1-122.

8. H. Chen, G. Wang, Z. Wang, H. C. So, and H. V. Poor, Non-Line-of-Sight node localization based on semi-
definite programming in wireless sensor networks, IEEE Trans. Wireless Commun., 11 (2012), pp. 108-116.

9. T.F. Cox and M.A.A. Cox, Multidimensional Scaling, 2nd Ed, Chapman and Hall/CRC, 2001.

10. J. Dattorro, Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA 2005.

11. P.A. Forero and G.B. Giannakis, Sparsity-exploiting robust multidimensional scaling. IEEE Tran. Signal
Processing, 60 (2012), 4118-4134.

12. N. Gaffke and R. Mathar, A cyclic projection algorithm via duality, Metrika, 36 (1989), pp. 29-54.

13. W. Glunt, T. L. Hayden, S. Hong, and J. Wells, An alternating projection algorithm for computing the nearest
Euclidean distance matrix, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 589-600.

14. W. Glunt, T.L. Hayden, and R. Raydan, Molecular conformations from distance matrices, J. Comput. Chem.,
14 (1993), pp. 114-120.

15. J. Gouveia and T.K. Pong, Comparing SOS and SDP relaxations of sensor network localization, Comput.
Optim. Appl., 52 (2012), pp. 609627.

16. M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, Version 2.1, http://cvxr.
com/cvx, January 2015.

17. I. Guvenc, C.-C. Chong, F. Watanabe, and H. Inamura, NLOS identification and weighted least-squares
localization for UWB systems using multipath channel statistics, EURASIP J Adv Signal Process, volume
2008, pp. 271984-14.

18. I. Guvenc and C.-C. Chong, A survey on TOA based wireless localization and NLOS mitigation techniques,
IEEE Commun. Surv. Tutorials, 11 (2009), pp. 107-124.

19. T. L. Hayden and J. Wells, Approximation by matrices positive semidefinite on a subspace, Linear Algebra
and its Applications, 109 (1988), pp. 115-130.

20. P. J. Huber, Robust estimation of a location parameter, The Annals of Mathematical Statistics, 35 (1964),
pp. 73-101.

21. P. J. Huber and E. M. Ronchetti, Robust Statistics. John Wiley & Sons, 2011.

22. T. Jia and R. M. Buehrer, Collaborative position location with NLOS mitigation, Personal, Indoor and Mobile
Radio Communications Workshops (PIMRC Workshops), 2010, pp. 267-271.

23. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ:
Prentice-Hall, 1993.

24. N. Krislock and H. Wolkowicz, Explicit sensor network localization using semidefinite representations and
facial reductions, SIAM J. Optim. 20 (2010), pp. 2679-2708.

25. Z.-S. Lu and Y. Zhang, Penalty decomposition methods for [p-norm minimization, Technical Report, http:
//wwu.optimization-online.org/DB_FILE/2010/08/2719.pdf, (2010).

26. J.W. Nie, Sum of squares method for sensor network localization, Comput. Optim. Appl., 43 (2009), pp.
151-179.

27. N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J. O’Dea, Relative location estimation in wireless
sensor networks, IEEE Tran. Signal Processing, 51 (2003), pp. 2137-2148.

28. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, Locating the nodes:
cooperative localization in wireless sensor networks, IEEE Signal Processing Magazine, 22 (2005), pp. 5469.
29. T.K. Pong, Edge-based semidefinite programming relaxation of sensor network localization with lower bound

constraints, Comput. Optim. Appl., 53 (2012), pp. 2344.

30. H.-D. Qi, A semismooth Newton method for the nearest Euclidean distance matrix problem, STAM J. Matrix
Anal. Appl., 34 (2013), pp. 67-93.

31. H.-D. Qi and X. Yuan, Computing the nearest Euclidean distance matrix with low embedding dimensions,
Mathematical programming, 147 (2014), pp. 351-389.

32. H.-D. Qi, N.H. Xiu, and X.M. Yuan, A Lagrangian dual approach to the single source localization problem,
IEEE Tran. Signal Processing, 61 (2013), 3815-3826.

33. J. Riba and A. Urruela, A non-line-of-sight mitigation technique based on ML-detectionm, ICASSP, 2 (2004),
pp. 153-156.

34. R. Rockafellar, Convex Analysis. Princeton University Press, 1970.

35. P.J. Rousseeuw and A.M. Leroy, Robust regression and outlier detection. John Wiley & Sons, Inc., New York,
Hoboken, NJ, USA (1987).

36. I.J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace
distanciés vectoriellement applicable sur I’espace de Hilbert”. Ann. of Math. (2). 36 (1935), pp. 724-732.

37. P. Stoica and J. Li, Source localization from range-difference measurements, IEEE Signal Processing Mag.,
23 (2006), pp. 63-69.

38. D. Sun, K.-C. Toh, and L. Yang, A convergent proximal alternating direction method of multipliers for conic
programming with 4-Block constraints. To appear in STAM J. Optimization.


http://cvxr.com/cvx
http://cvxr.com/cvx
http://www.optimization-online.org/DB_FILE/2010/08/2719.pdf
http://www.optimization-online.org/DB_FILE/2010/08/2719.pdf

Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation 25

39. K.-C. Toh, An inexact primal-dual path following algorithm for convex quadratic SDP, Math. Program., 112
(2008), pp. 221-254.

40. K.-C. Toh, M. J. Todd, and R. H. THtiincii, SDPT3 A Matlab software package for semidefinite programming,
Version 1.3, Optimization Methods and Software, 11 (1999), pp. 545581.

41. P. Tseng, Secondorder cone programming relaxation of sensor network localization, SIAM J. Optim., 18
(2007), pp. 156185.

42. R.M. Vaghefi and R.M. Buehrer, Cooperative sensor localization with NLOS mitigation using semidefinite
programming, WPNC (2012), pp. 13-18.

43. R.M. Vaghefi, J. Schloemann, and R.M. Buehrer, NLOS mitigation in TOA-based localization using semidef-
inite programming, Positioning Navigation and Communication (WPNC), 2013, pp. 1-6.

44. S. Venkatesh and R. M. Buehrer, Non-line-of-sight identification in ultra-wideband systems based on received
signal statistics, IET Microw. Antennas Propag., 1 (2007), pp. 1120-11.

45. S. Venkatesh and R. M. Buehrer, NLOS mitigation using linear programming in ultrawideband location-aware
networks, IEEE Trans. Veh. Technol., 56 (2007), pp. 3182-3198.

46. G. Wang, A. M-C. So and Y. Li, Robust convex approximation methods for TDOA-based localization under
NLOS conditions, Technical report, Department of Systems Engineering and Engineering Management, The
Chinese University of Hong Kong, 2014.

47. 7Z. Wang, S. Zheng, Y. Ye and S. Boyd, Further relaxations of the semidefinite programming approach to
sensor network localization. SIAM J. Optim. 19 (2008), 655-673.

48. G. Young and A.S. Householder, Discussion of a set of points in terms of their mutual distances. Psychome-
trika. 3, 19-22 (1938).

49. S. Yousefi, X.-W. Chang, and B. Champagne, Distributed cooperative localization in wireless sensor networks
without NLOS identification, Positioning, Navigation and Communication (WPNC), March 2014, pp. 1-6.



	Introduction
	Background on EDM and notation
	The problem of NLOS mitigation and EDM model
	A convergent 3-block ADMM algorithm
	Numerical experiments
	Conclusions

