
Noname manuscript No.
(will be inserted by the editor)

Modeling max-min fair bandwidth allocation in BitTorrent

communities

Elvira Antal · Tamás Vinkó

Abstract This paper gives an exact mathematical programming model and algorithm

of the max-min fairness bandwidth allocation problem in multi-swarm peer-to-peer

content sharing community. The proposed iterative method involves solution of LP

and MILP problems of large scale. Based on real-world data traces, numerical exper-

iments demonstrate that the new algorithm is computationally faster than an earlier

developed one for larger problem sizes, and it provides better numerical stability.

Moreover, even if its execution is stopped after some initial steps it still grants feasi-

ble solution with good approximation to max-min fairness.

Keywords BitTorrent communities · resource allocation · max-min fairness · MILP

1 Introduction

BitTorrent is one of the most popular content-sharing protocols used by millions of

Internet users [16]. It is based on peer-to-peer (P2P) technology which, in contrast

with centralized solutions, consists of nodes (peers) acting both as servers and clients

at the same time. This decentralized approach can lead to high efficiency and extreme

scalability. A BitTorrent network is basically a collection of swarms. A swarm is com-

prised of content and two types of users, namely seeders and leechers. The content

is the data file to be shared by the participating users. Seeders are those users who

have the complete copy of the content, being online and willing to share. Leechers are

E. Antal

University of Szeged, Institute of Informatics, and

Kecskemét College, Faculty of Mechanical Engineering and Automation

E-mail: antale@inf.u-szeged.hu

T. Vinkó

University of Szeged, Institute of Informatics

H-6701 Szeged, P.O. Box 652, Hungary

Tel.: +36-62-546-193

Fax: +36-62-546-397

E-mail: tvinko@inf.u-szeged.hu

2 Elvira Antal, Tamás Vinkó

those users who are actively downloading the content. By definition, the BitTorrent

protocol splits the content into smaller pieces. During the download the leechers are

obtaining the content piece-by-piece, following Rarest First piece selection policy.

Once a piece has been downloaded by a leecher, it can upload that to other leechers,

hence becoming an uploader.

An important detail of the BitTorrent protocol [5] is the built-in sharing incentive

mechanism, realized via the choking algorithm, which is a variant of tit-for-tat [6].

This mechanism ensures that while a peer p is in leeching mode it uploads pieces of

the shared content to a set of leeching peers in reciprocation to other pieces they pro-

vide for downloading to p. While this scheme works very well during the leeching

phase, there is no (widely spread) incentive mechanism in BitTorrent which works

for the seeders. Thus, in principle, once the whole content has been downloaded, the

peer can simply leave the system without further consequences. Among the possible

solutions to this problem, one of the most popular is the so-called private BitTorrent

community [25]. Although it breaks the decentralized principle of the P2P system

with a dedicated server, the idea is that each user has to register with an individual

account and follow some prescribed rules, e.g., sharing ratio enforcement. The shar-

ing ratio of a user is defined as the amount of data uploaded divided by the amount

of data downloaded. These values are then stored by the server (also called tracker)

and the users who do not follow the rules, e.g., their sharing ratio is below a certain

threshold for long time, are subject to access restrictions or even exclusion from the

community. According to measurement studies the private BitTorrent communities

provide higher download speed and better availability compared to the open BitTor-

rent networks [17].

Most of the BitTorrent clients allow users to participate in multiple swarms at

the same time, both as seeders and leechers. This fact motivates to investigate the

inter-swarm resource allocation problem (RAP) in BitTorrent, which is, in general,

a mixed-integer nonlinear optimization problem [4]. A particular instance of RAP

is the max-min fair bandwidth allocation problem. In this optimization problem, the

goal, essentially, is to find a bandwidth allocation which provides as many users as

possible with enough download speed. Although, BitTorrent was originally not de-

signed for P2P video-streaming, many researchers have investigated and proposed

modifications of the protocol (see, e.g., in [18,21,26]). In this context, the max-min

fair bandwidth allocation targets maximizing the number of users receiving sufficient

download speed for streaming, leading to the best possible quality of experience for

users. Moreover, it also enables the usage of multiple streaming rates of varying qual-

ities together with the minimization of the number of users experiencing low-quality

streams. This problem has been studied in [4], where an intricate iterative algorithm

was given. In this paper we revisit this interesting problem instance and aim at giv-

ing an exact mathematical programming formalism, and investigating its numerical

properties by means of computational tests using real-world measurement data.

The rest of the paper is structured as follows. In Section 2 an overview of related

works is given. Section 3 summarizes the definitions and notations of the graph model

we use. Then, in Section 4, after giving the formal definition of the max-min fair

bandwidth allocation, the proposed algorithmic approach is detailed, including math-

ematical analysis, re-formalism and proof of the correctness. Section 5 contains the

Modeling max-min fair bandwidth allocation 3

numerical experiments, including comparison with the previously proposed method

for the same problem.

2 Related works

Although the concept of fairness and in particular the max-min fairness have been

studied in the literature of computer networks in general (e.g., in [2,13,14,20]), one

finds considerably less papers in the context of peer-to-peer networks, and in partic-

ular in BitTorrent-like systems.

Max-min fairness in P2P networks. Ma et al. [15] develop a resource bidding mech-

anism which provides max-min fairness. An important result of the paper is that the

mechanism is incentive based, so two competing nodes with the same value of bid-

ding would not obtain the same amount of resource if their actual contribution to the

P2P community differs. Our approach does not involve directly the already mentioned

built-in incentive mechanism of BitTorrent (tit-for-tat) because that is the piece-level

part of the protocol. We assume, though, that the participating peers are following

the rules dictated by the private BitTorrent community. It is worth mentioning here

that according to the earlier results in [4], standard BitTorrent provides suboptimal

bandwidth allocation compared to max-min fairness. Yan et al. [24] present a the-

oretic framework of optimal resource allocation and admission control for P2P net-

works. The proposed approach utilizes publicly observable and verifiable informa-

tion to achieve optimal resource allocation. Our paper differs in many ways. Firstly,

we focus on bandwidth allocation, which is the most important resource in content-

sharing systems. Secondly, our model works at the inter-swarm level, which is the

most complex level due to the behaviour of users, i.e., most of the users are partici-

pating in uploading and downloading multiple contents at the same time. Moreover,

our experiments are done on real-world measurements at large scale.

BitTorrent-like systems. Fan et al. [8] show that there is a fundamental trade-off be-

tween keeping fairness and providing good download rate in BitTorrent-like systems.

Measuring fairness is done using the so-called fairness index [14] which can express

how equal a given assignment is, where the assignment was the peers’ sharing ratio,

i.e., the uploading amount divided by the download amount of each peer. The paper

deals with the max-min fair allocation as rate assignment strategy. It considers such

a max-min model in which the overall downloading speed of peers are taken into

account. Similar approach was taken in the paper of Eger & Killat [7]. Our model

gives solution to the problem of optimizing individually the downloading sessions

of peers. This means, essentially, that we take into account more details motived

by measurement facts. The problem of channel-resource imbalance in multi-channel

P2P systems, which corresponds to the performance optimization of live streaming, is

considered by Wu et al. [22]. Our work definitely fits into the same context of multi-

channel P2P live streaming. While the provided solution in [22] is heuristic based,

we give an exact mathematical model based on theoretical analysis. The paper of Wu

et al. [23] gives a distributed algorithm to tune the P2P live video system towards the

4 Elvira Antal, Tamás Vinkó

optimal fairness while still maintaining the targeted universal streaming rate. Our pa-

per differs in the underlying model. They consider a dynamic P2P system with video

streaming servers, leading to a nonlinear optimization problem. We analyse a static

system without central component and more importantly, the flow network model we

use allows the usage of efficient linear programming techniques.

3 Notation

For modeling the state of a BitTorrent community at a certain instant, we use the

graph-theoretical model introduced in [4], which can be summarized as it follows.

A BitTorrent community consists of a set I of users and a set T of torrents. Note

that technically speaking there is a difference between torrent (a metafile describing

the details of the file subject to download) and swarm (collection of leechers and

seeders of the file); we can use these two terms interchangeably. Each user i ∈ I has

upload bandwidth µi and download bandwidth δi. The flow network representation of

a BitTorrent community is G = ({U,L,D} , E, f, c), which is a directed, bipartite,

weighted graph, where

U = { ui | i ∈I} : the upload nodes of G, where ui represents the upload (seeding

or leeching) potential of user i;

D = { di | i ∈I} : the download nodes of G, where di represents the download (leech-

ing) potential of user i;

L = { lti | i ∈ I, t ∈ T} : the leeching nodes of G, where the presence of lti , called

leeching session, denotes that user i leeches actually torrent t;

E: the set of edges E = EU ∪ ED, where EU =
⋃

i,j,t(ui, l
t
j) is the set of upload

edges, and ED =
⋃

j,t(l
t
j , dj) is the set of download edges;

c : U ∪ L ∪D → N: the capacity function represents the bandwidth constraints of

the peers:

c(ui) = µi, c(di) = δi, c(l
t
i) = ∞;

f : E → R
+: the flow function represents the bandwidth allocation on the edges sat-

isfying the flow conservation property:

∑

ui∈U

f(ui, l
t
j) = f(ltj , dj) (∀ltj ∈ L),

as well as the capacity constraints:

∑

t,j

f(ui, l
t
j) ≤ µi ∀(ui, l

t
j) ∈ EU ,

∑

t

f(ltj , dj) ≤ δj ∀(ltj , dj) ∈ ED.

Figure 1 contains a small example for the bipartite graph representation of a snap-

shot of a BitTorrent network with two torrents and three users. The rectangles rep-

resent two different torrent files. There are two active leeching sessions for torrent

t2. The second user downloads the second file from the third user, and the third user

Modeling max-min fair bandwidth allocation 5

Fig. 1 Bipartite graph of a two-torrent BitTorrent network. Although the graph model has three types of

nodes, strictly speaking the BitTorrent community graphs are bipartite.

downloads the first file from the first user and the second file from the first and the

second users. Note that every leeching node corresponds to exactly one download

edge.

4 Max-min fair bandwidth allocation

4.1 Problem definition

Using the flow network model from Section 3, a bandwidth allocation is max-min

fair if the flow value f(ltj , dj) on a download edge (ltj , dj) can only be increased by

decreasing the flow value f(lt
′

j′ , dj′) on another download edge (lt
′

j′ , dj′) for which

f(lt
′

j′ , dj′) < f(ltj , dj).
A max-min fair allocation assures that the highest possible downloading speed is

provided to each user, so that they perceive the best possible quality of experience.

Remark that a leecher can have multiple leeching sessions representing multiple file

downloads at the same time. The problem formulation we are dealing with in this

work requests the max-min fairness for all download edges. As it was already stated

in [4], the problem is formulated on continuous and convex set, hence the max-min

fair allocation uniquely exists [2,19].

4.2 Algorithm outline

Our algorithm is an adapted version of the general Max-Min Programming Algo-

rithm [19], as it computes the max-min fair weights of the download edges with an

iterative manner, by fixing the coordinates with the smallest unfixed weight in every

iteration. In the subsequent description, sets are denoted by capital letters, the deci-

sion variables of the optimization problems by small letters and parameters (and fixed

values) by Greek letters. The following steps build up the algorithm:

1. Initialization. Let F := ∅, k := 1, E1 := ED, and ∀(ltj , dj) ∈ ED : ℓtj := 0.

The set F contains the identifiers of the actually fixed flows, k is the iterator. After the

last iteration, ℓtj contains the optimal flow values for every download edge (ltj , dj) ∈
ED.

6 Elvira Antal, Tamás Vinkó

2. Lower bound computation for the flows. Solve the following linear program-

ming (LP) problem, denoted by MM0:

max f,

s.t. f(ltj , dj) ≥ f ∀(ltj , dj) ∈ ED.

Save the minimal flow value. Let φ := f .

Note that MM0 is the same problem, as published as a detail of the MaxMin algo-

rithm of Capotă et al. [4]. Its optimal solution is calculated only once to achieve a

good lower bound for the flows in Step 3. By definition, ∀(ui, l
t
j), (l

t
j , dj) ∈ E :

f(ui, l
t
j), f(l

t
j , dj) ∈ R

+, and fk ∈ R
+ at every presence.

3. LP solving. Solve the following LP problem, denoted by mMM
(1)
k :

max fk +
∑

(lt
j
,dj)∈Ek

f(ltj , dj) +
∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ,

s.t. f(ltj , dj) ≥ fk ∀(ltj , dj) ∈ Ek,

fk ≥ φ.

Save the LP optimum. Let σk :=
∑

(lt
j
,dj)∈Ek

f(ltj , dj) +
∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ,

and φk := fk.

The LP problem mMM
(1)
k combines the maximum flow and the max-min fair objec-

tive. It computes the maximum throughput of the network, denoted by σk, restricted

by the fulfillment of the max-min fairness property. As it will be shown in Lemma 2,

this amount of data transfer is guaranteed in every iteration of the proposed algo-

rithm. The max-min fair allocation, which still guarantees the maximum throughput

σk, will be computed in the next step. The aim of this step is to compute σk, φk, and

to offer a good initial (feasible) solution for the following MINLP of special type.

4. MINLP solving. Solve the following mixed-integer bilinear programming prob-

lem, denoted by mMM
(2)
k :

max
∑

(lt
j
,dj)∈Ek

xt
j ,

s.t.
∑

(lt
j
,dj)∈Ek

f(ltj , dj) x
t
j + φk ·

∑

(lt
j
,dj)∈Ek

(1− xt
j) +

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj = σk,

f(ltj , dj) ≥ φk ∀(ltj , dj) ∈ Ek,

f(ltj , dj) > φk xt
j ∀(ltj , dj) ∈ Ek,

where xt
j ∈ {0, 1}.

Modeling max-min fair bandwidth allocation 7

The bilinear MINLP problem mMM
(2)
k guarantees that the max-min flow value φk

will be fixed for the least possible download edges in every iteration. In fact, this is

a combinatorial optimization problem. The strict inequality constraint sets the binary

xt
j variable to zero if f(ltj , dj) cannot be increased above φk in later iterations, so

f(ltj , dj) should be fixed to φk only if xt
j = 0. Lemma 4 of Subsection 4.3 warrants

at least one feasible solution for this problem.

In order to solve mMM
(2)
k efficiently, it will be reformulated using the McCormick

envelopes [12]. This results in an equivalent mixed-integer linear programming (MILP)

problem, in which the bilinear terms are substituted by new continuous variables

ptj := f(ltj , dj) · x
t
j ,

where ∀(ltj , dj) ∈ Ek : ptj ∈ R
+. Furthermore, the reformulation involves four

additional constraints for every new variable ptj :

ptj ≤ f(ltj , dj) ∀(ltj , dj) ∈ Ek,

ptj ≤ δj · x
t
j ∀(ltj , dj) ∈ Ek,

ptj ≥ f(ltj , dj)− δj · (1− xt
j) ∀(ltj , dj) ∈ Ek,

ptj ≥ 0 ∀(ltj , dj) ∈ Ek.

Although, the dimension of the problem is increased, an exact Branch and Bound

solver can be applied [3] to find the globally optimal solution of the resulting MILP.

We will refer to this problem as the McCormick reformulation of mMM
(2)
k .

5. Fixing. Find the binding constraints for φk, and fix the flow values of the adequate

download edges. In other words, collect the download edges, where the optimal

flow is equal to φk to a set Φk, add the elements of Φk to F , and subtract them

from Ek. Formally,

Φk :=
{

(ltj , dj) ∈ Ek | xt
j = 0

}

,

∀(ltj , dj) ∈ Ek for which xt
j = 0 : ℓtj := φk,

F := F ∪ Φk, Ek+1 := Ek \ Φk.

6. Stopping criteria. If F = ED, then stop. Otherwise, k := k + 1 and go back to

Step 3 (new iteration).

4.3 Correctness

In the following it is proved that the proposed algorithm, called mMaxMin, conveys

the max-min fair bandwidth allocation.

Denote the optimal objective function value in mMM
(1)
k as follows:

Fk := φk + σk.

Lemma 1 Every feasible solution of mMM
(2)
k−1 can be mapped to a feasible solution

of mMM
(1)
k for k > 1.

8 Elvira Antal, Tamás Vinkó

Proof Let fk := φk−1 and

f
(1)
k (ltj , dj) := f

(2)
k−1(l

t
j , dj) ∀(ltj , dj) ∈ Ek,

after the fixing step of mMaxMin, where f
(y)
k (ltj , dj) denotes the flow values f(ltj , dj)

in a feasible solution of mMM
(y)
k . ⊓⊔

The mapping of the optimal solution of mMM
(2)
k−1 will be referred to as the initial

solution of mMM
(1)
k .

Lemma 2 For every iteration k of mMaxMin

σk = σ

holds, where σ denotes a constant, the maximum throughput of the network such that

∀(ltj , dj) ∈ ED : f(ltj , dj) ≥ φ.

Proof We apply mathematical induction. There are no fixed flow values in the first

step, so σ1 = σ. Now, let us assume that σk−1 = σ. The sum term of the objective

function, after Step 3 of mMaxMin can be written as

σk = c1φ1 + · · ·+ ck−1φk−1 + ckφk +Rk,

where φ1, . . . , φk−1 are the fixed flow values (the optimal values of fk in mMM
(1)
1 , . . . ,

mMM
(1)
k−1), φk is the minimal non-fixed flow value, ci is the multiplicity of φi (i.e. how

many downloading edges has flow value equal to φi), and Rk is the residual (the sum

of the non-fixed flow values minus the ones which will be fixed in the actual itera-

tion). Similarly,

σk−1 = c1φ1 + · · ·+ ck−1φk−1 +Rk−1,

and

σk−1 − σk = Rk−1 −Rk − ckφk.

If Rk−1 − Rk would be greater than ckφk, that would mean that the LP solver

reduced some non-fixed flow values of the initial solution, defined in the proof of

Lemma 1, without redistributing that flow to other edges in mMM
(1)
k . That would be

a suboptimal solution, and the solver would not terminate with such a result. Thus,

Rk−1 −Rk ≤ ckφk holds, and accordingly, σk−1 ≤ σk.

On the other hand, σk ≤ σ for any iteration k, as the upload capacities does not

change in the network in between the iterations of the algorithm. By assumption,

σk−1 = σ, thus σk = σ holds for every k. ⊓⊔

Lemma 3 Fk > Fk−1, for all iteration k > 1 of mMaxMin.

Proof In the initial solution of mMM
(1)
k , all f(ltj , dj) ≤ φk−1 flow values are fixed,

because of Step 5 of mMaxMin. Thus φk > φk−1, and σk = σk−1 = σ holds due to

Lemma 2. ⊓⊔

Modeling max-min fair bandwidth allocation 9

Corollary 1 |Φk| > 0 in every k iteration of mMaxMin.

Lemma 4 The optimal solution of mMM
(1)
k can be mapped to a feasible solution of

mMM
(2)
k .

Proof Let

f
(2)
k (ltj , dj) := f

(1)
k (ltj , dj),

and

xt
j :=

{

1 if f
(1)
k (ltj , dj) > φk and (ltj , dj) ∈ Ek,

0 if f
(1)
k (ltj , dj) = φk and (ltj , dj) ∈ Ek.

⊓⊔

The mapping of the optimal solution of mMM
(1)
k will be referred to as the initial

solution of mMM
(2)
k .

Lemma 5 The initial solution of the McCormick reformulation of mMM
(2)
k can be

constructed from the initial solution of mMM
(2)
k .

Proof The initial solution of mMM
(2)
k is extended with initial values for the p vari-

ables:

ptj :=

{

f
(1)
k (ltj , dj) if xt

j = 1 and (ltj , dj) ∈ Ek,

0 if xt
j = 0 and (ltj , dj) ∈ Ek.

⊓⊔

Theorem 1 mMaxMin terminates in finite iterations, and guarantees the max-min

fairness property for every download edge.

Proof The cardinality of set F is increasing in every iteration, provided by Lemma 3

and Corollary 1. As ED is a finite set, the algorithm will terminate in finite iterations.

Due to Lemma 1 and Lemma 4–5, at least one feasible solution exists for mMM
(1)
k

and mMM
(2)
k in any iteration k of mMaxMin. After the last iteration the set ℓ :=

{ℓtj | (ltj , dj) ∈ ED} contains the fixed flow values for the download edges. The

boundaries of the flow values constrain also the elements of ℓ, thus 0 ≤ ℓtj ≤
δj , ∀(l

t
j , dj) ∈ ED. Therefore, ℓ is a compact set. All the constraints for the flow

values are linear, hence ℓ is a convex set. Radunović and Le Boudec [19] proved that

there exists a max-min fair bandwidth allocation for convex and compact sets. Let us

denote the max-min fair bandwidth allocation for the download edges of the given

graph by ω:

ω := {ωt
j | (l

t
j , dj) ∈ ED and ω is max-min fair}.

We prove by contradiction that mMaxMin guarantees the max-min fairness prop-

erty for every download edge. Suppose ℓ 6= ω. Then there exists the smallest index

k such that ∃j∃t :
(

ℓtj is fixed in iteration k and ℓtj 6= ωt
j

)

. It means that xt
j = 0 and

f(ltj , dj) 6= ωt
j in the optimal solution of mMM

(2)
k . Remark that f(ltj , dj) ≤ ωt

j , as ω

would not be max-min fair otherwise. The construction of mMM
(2)
k guarantees that

10 Elvira Antal, Tamás Vinkó

(

xt
j = 0 ∧ f(ltj , dj) = φk

)

∨
(

xt
j = 1 ∧ f(ltj , dj) > φk

)

holds for all (ltj , dj) ∈ ED,

and if f(ltj , dj) could be set to a greater value than φk, then xt
j will be set to 1. So

xt
j = 0 induces that f(ltj , dj) = φk. On the other hand, φk is the max-min non-fixed

flow value in iteration k from the solution of mMM
(1)
k . This contradicts the supposi-

tion that ℓtj 6= ωt
j . ⊓⊔

4.4 MaxMin-r

Some observations from Subsection 4.3 was made explicit in the implemented ver-

sion of the algorithm. Furthermore, we have inserted a presolve step, detailed here-

inafter. The resulting iterative algorithm, called MaxMin-r, is summarized in Algo-

rithm 4.1. MaxMin-r was implemented in the AMPL modeling language [10] and

some comparative tests were made to investigate its numerical properties – the de-

tails of these tests are given in the next section.

The main differences compared to mMaxMin are the following:

1. Step 2 was introduced, based on Lemma 2, to determine the constant σ. The LP

problem MMMaxFlow is solved only in the first iteration, and the revised mMM
(1)
k

uses σ in the first constraint.

2. In mMM
(1)
k , the lower bound “≥ (1 − ǫ) · σ” is used instead of a strict equation

constraint “= σ” in regard to possible numerical errors.

3. Step 5 of MaxMin-r introduces a presolve phase, based on a standard LP presolve

technique, which is implemented also in AMPL [9,11]. During the testing phase

of earlier implementation of the algorithm we noticed that the presolving mech-

anism of AMPL was able to reduce the number of real variables of the MILP

problem. Closer investigation revealed that the set

Ekf
:=

{

(ltj , dj) ∈ Ek |
c(dj)−

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj

deg−k (dj)
= φk

}

,

where deg−k (dj) denotes the number of non-fixed incoming edges of dj , contains

download edges, where the corresponding flow values f(ltj , dj) can be fixed by

Step 7 of MaxMin-r.

If any flow can be fixed in the presolve phase, MILP solving is skipped. The

reason is experimental: for our test cases, in a significant proportion of the itera-

tions, all the necessary fixations were found in this presolve phase. However, in

certain cases there are some downloading edges on which the optimal max-min

flow value is φk and they do not become elements of the set Ekf
. If this situation

occurs then the value of φk cannot be improved in Step 4 of the next iteration,

i.e. φk+1 = φk. Hence, the set Ekf
is empty, so in order to find downloading

edges on which the flow value must be fixed, the algorithm solves the MILP

problem.

Due to this modification, in worst-case, the algorithm takes 2 · |ED| iterations. As

it can be seen in Section 5, much less iterations are usually enough in practice.

Figure 2 contains a small illustration for dimension reduction without solving the

MILP. User 5 downloads five torrents at the same time, and the maximal flow

Modeling max-min fair bandwidth allocation 11

Fig. 2 Example of possible dimension reduction without MILP solving

for downloading the first two torrents was set to 1 and 2 in earlier iterations of

MaxMin-r. Assume that φk = 3. So f(lt5, d5) ≥ 3 for t = 3, 4, 5. The residual

download capacity of d5 in this iteration is 12 − (1 + 2) = 9, so 3 is also the

maximum value for these flow values. Therefore, for t = 3, 4, 5 the flow values

f(lt5, d5) can all be set to 3 without solving the MILP.

4. Step 6 of MaxMin-r uses the McCormick reformulation of mMM
(2)
k .

5 Numerical results

For the numerical tests the post-processed BitTorrent measurement traces of Andrade

et al. [1] were used. The same dataset was investigated in [4] in which the MM al-

gorithm was proposed and empirically tested. The post-processed dataset contains

actual statuses of a BitTorrent community called BitSoup.org using the graph format

discussed in Section 3. The graphs are implemented in AMPL data format. For our

current purposes we selected one graph G randomly and based on that four instances

(G500, G1000, G1500 and G2000) were derived containing 500, 1000, 1500 and 2000

torrents, respectively. More precisely, these subgraphs contain the corresponding U,L

and D nodes of G and their edges. The characteristics of the subgraphs are shown in

Table 1. Note that G1500 contains less edges than G1000, however, it contains much

more nodes, and more edges representing leeching sessions.

Table 1 Characteristics of the graphs used for the numerical tests

Graph |U ∪D ∪ L| |E| |ED|

G500 6 984 43 410 1 411

G1000 14 702 272 231 2 721

G1500 18 333 269 165 3 536

G2000 23 670 524 054 7 326

12 Elvira Antal, Tamás Vinkó

We compare the AMPL implementations of MM and MaxMin-r. The results were

obtained using MOSEK version 7.0.0.106 for the underlying LPs and Gurobi version

5.6.3 for the underlying MILPs.

Figure 3 shows fMaxMin-r(e) − fMM(e), the difference between the optimal flow

value of MaxMin-r and the optimal flow value of MM for download edge e ∈ ED

in the 1000-torrents instance (related data series are similar for all examples). The

values are ordered ascending by the optimal solution of MM. Thus positive numbers

on the left side of the figure and negative ones on the right side means that MaxMin-r

provides better flow values than MM for some “weak” downloader at the expense of a

few “stronger” users. In other words, the new algorithm results in “fairer” allocation

than MM despite of the similar precision and tolerance settings. How is that possible?

0 500 1000 1500 2000 2500 3000 3500

−2000

−1000

0

1000

2000

flow id (e)

f M
a
x
M

in
−

r(e
)

−
 f

M
M

(e
)

Fig. 3 Effect of the numerical approximation for G1000

Unfortunately, computer implementation turns the continuous optimization prob-

lem into a discrete problem, because of the floating point representation of the real

variables. The precision and tolerance settings of the numeric solver definitely influ-

ence the quality of the produced allocation. Because of that, earlier theoretical results

(optimal max-min fair allocation is unique in the continuous case [2]) could not be

applied in the numerical tests. Remark that working with symbolic representation

would solve this issue, however, for real-world problem instances, even numerical

methods are quite slow. On the other hand, the cumulative distribution of the output

flow values of MM and MaxMin-r are identical for the same problems, and more than

85% of the download edges get identical resources from the two algorithm. Therefore

we regard the two solutions equally good hereinafter.

Figure 4 summarizes two aspects of the behaviour of MM and MaxMin-r for the

above introduced 500-torrents, 1000-torrents, 1500-torrents, and 2000-torrents prob-

lems. The first column shows the total absolute deviance from the optimal solution:

abs(k) =
∑

(lt
j
,dj)∈ED

∣

∣fk(l
t
j , dj)− fopt(l

t
j , dj)

∣

∣ ,

where fk(l
t
j , dj) is the flow value on the download edge (ltj , dj) in iteration k, and

fopt(l
t
j , dj) is the optimal flow value on the same edge, i.e., the result of the last

iteration of the relevant algorithm.

Modeling max-min fair bandwidth allocation 13

100 200 300 400
0

1

2

3

4

5

6

7

x 10
5

iterations (k)

a
b
s
(k

)

100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

iterations (k)

re
l(
k
)

MM (362 iterations)

MaxMin−r (410 iterations)

G500

100 200 300 400 500 600 700
0

5

10

15

x 10
5

iterations (k)

a
b
s
(k

)

100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

iterations (k)

re
l(
k
)

MM (698 iterations)

MaxMin−r (774 iterations)

G1000

200 400 600 800
0

0.5

1

1.5

2

x 10
6

iterations (k)

a
b
s
(k

)

200 400 600 800
0

0.2

0.4

0.6

0.8

iterations (k)

re
l(
k
)

MM (838 iterations)

MaxMin−r (964 iterations)

G1500

200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

x 10
6

iterations (k)

a
b
s
(k

)

200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

iterations (k)

re
l(
k
)

MM (1077 iterations)

MaxMin−r (1250 iterations)

G2000

Fig. 4 Quality of results of MM (dash-dotted lines), and MaxMin-r (solid lines) for the test cases.

14 Elvira Antal, Tamás Vinkó

100 200 300 400

50

100

150

200

250

iterations

ti
m

e
 i
n
 s

e
c
o
n
d
s

MM (362 iterations)

MaxMin−r (410 iterations)

100 200 300 400 500 600 700

500

1000

1500

2000

2500

3000

3500

iterations

ti
m

e
 i
n
 s

e
c
o
n
d
s

MM (698 iterations)

MaxMin−r (774 iterations)

G500 G1000

200 400 600 800

1000

2000

3000

4000

5000

6000

7000

iterations

ti
m

e
 i
n
 s

e
c
o
n
d
s

MM (838 iterations)

MaxMin−r (964 iterations)

200 400 600 800 1000 1200

0.5

1

1.5

2

2.5

3
x 10

4

iterations

ti
m

e
 i
n
 s

e
c
o
n
d
s

MM (1077 iterations)

MaxMin−r (1250 iterations)

G1500 G2000

Fig. 5 Running times of MM (dash-dotted lines), and MaxMin-r (solid lines) for the test cases

The second column shows the proportion of the download edges, for which the

relative deviance of the allocated flow values from the optimal solution is less than

five percent:

rel(k) =

∑

(lt
j
,dj)∈ED

r
(

k, (ltj , dj)
)

|ED|
,

where

r
(

k, (ltj , dj)
)

:=







1 if
|fk(ltj ,dj)−fopt(l

t
j ,dj)|

fopt(ltj ,dj)
> 0.05,

0 otherwise.

The running times for the same tests are pictured in Figure 5.

It seems that the exact formulation in MaxMin-r produces very good solutions

from the first iteration. Comparing total absolute deviance, the output of the new

algorithm after the first iteration is the same quality as the output of MM after 85%
of its iterations. The second column of Figure 4 shows that MaxMin-r sets the flow

values close to the optimum on much more edges than MM does. For example, 46%

of the download edges in G2000 get almost optimal allocated flow values after the

first iteration, compared to the 2.4% near-optimal flow given by MM. Furthermore,

the first iteration of MaxMin-r took 46 seconds for G2000 compared to the more than

eight-hour running time for the first 910 iterations of MM.

Modeling max-min fair bandwidth allocation 15

Figure 5 shows, that MaxMin-r produces shorter running times than MM for

the bigger test cases, however, it is still impossible to run real-time calculations

for complete BitTorrent networks with this technique. Therefore we suggest to stop

MaxMin-r after the very first iteration to obtain a good feasible approximation for the

max-min fair allocation of large problem instances in reasonable time.

6 Conclusions

It was shown by Capotă et al. [4] that using the standard BitTorrent protocol’s band-

width allocation, the average performance of a BitTorrent community is suboptimal

in terms of max-min fairness. This fairness measure corresponds to the case of video-

streaming service – an emerging application of P2P networks. Our motivation here

was to give an exact mathematical programming formulation and algorithm which

provides details about the particular instance of this interesting optimization prob-

lem.

The model involves the McCormick reformulation of the related MINLP. Our

observations show that this reformulation, together with presolve techniques, helps

the Gurobi solver to achieve shorter running times, and MaxMin-r can be faster than

the earlier proposed MM algorithm on larger problem instances. Moreover, the results

from the first iterations of MaxMin-r could be used as a very good approximation for

the max-min fair allocation. This approximation, which is a feasible solution, can be

achieved in fraction of the time of the adequate precession of MM.

There are two possible directions for further work. Due to the unavoidable in-

volvement of solving several large scale MILPs to obtain exact solution to the prob-

lem including millions of nodes and edges, it is desired to develop very quick heuris-

tics. Furthermore, as the application field of the max-min fairness problem we inves-

tigated lies in peer-to-peer systems, a distributed version of the exact algorithm or

even distributed heuristics would be preferred. We believe that the results achieved in

this paper provide useful insights towards these goals.

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable com-

ments and suggestions to improve the quality of the paper. This work was partially supported by the

European Union and the European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013). T. Vinkó was supported by the Bolyai Scholarship of the Hungarian Academy of

Sciences.

References

1. Andrade, N., Santos-Neto, E., Brasileiro, F., Ripeanu, M.: Resource demand and supply in bittorrent

content-sharing communities. Comput. Netw. 53(4), 515–527 (2009)

2. Bertsekas, D.P., Gallager, R.G.: Data Networks, 2nd edn. Prentice Hall (1992)

3. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and Software for Convex Mixed Integer Nonlinear

Programs, The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 1–39. Springer (2012)

4. Capotă, M., Andrade, N., Vinkó, T., Santos, F., Pouwelse, J., Epema, D.: Inter-swarm resource allo-

cation in BitTorrent communities. In: Proceedings of IEEE International Conference on Peer-to-Peer

Computing (P2P 2011), pp. 300–309 (2011)

16 Elvira Antal, Tamás Vinkó

5. Cohen, B.: The BitTorrent protocol specification. http://bittorrent.org/beps/bep_

0003.html. Accessed: 19-Aug-2014

6. Cohen, B.: Incentives build robustness in BitTorrent. In: Workshop on Economics of Peer-to-Peer

systems, vol. 6, pp. 68–72 (2003)

7. Eger, K., Killat, U.: Fair resource allocation in peer-to-peer networks (extended version). Comput.

Commun. 30(16), 3046–3054 (2007)

8. Fan, B., Lui, J.S., Chiu, D.M.: The design trade-offs of BitTorrent-like file sharing protocols.

IEEE/ACM Transactions on Networking 17(2), 365–376 (2009)

9. Fourer, R., Gay, D.M.: Experience with a Primal Presolve Algorithm, In: Hager, W.W., Hearn, D.W.,

and Pardalos, P.M. (eds), Large Scale Optimization: State of the Art, Kluwer Academic Publishers,

Dordrecht, p. 135-154 (1994)

10. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL. Boyd & Fraser (1993)

11. Gay, D.M.: Symbolic-Algebraic Computations in a Modeling Language for Mathematical Program-

ming, In: Alefeld, G., Rohn, J., Rump, S. and Yamamoto, T. (eds), Symbolic Algebraic Methods and

Verification Methods, Springer-Verlag, pp. 99–106, (2001)

12. Gupte, A., Ahmed, S., Cheon, M., Dey, S.: Solving mixed integer bilinear problems using MILP

formulations. SIAM J. Optim. 23(2), 721–744 (2013)

13. Hahne, E.L.: Round-robin scheduling for max-min fairness in data networks, IEEE Journal on Se-

lected Areas in Communications, 9(7), 1024–1039 (1991)

14. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design,

Measurement, Simulation, and Modeling. Wiley–Interscience, New York, NY (1991)

15. Ma, Richard T. B. and Lee, Sam C. M. and Lui, John C. S. and Yau, David K. Y. A game theoretic

approach to provide incentive and service differentiation in P2P networks. SIGMETRICS Perform.

Eval. Rev., 32 pp. 189–198 (2004)

16. Maier, G., Feldmann, A., Paxson, V., Allman, M.: On dominant characteristics of residential broad-

band Internet traffic. In Proceedings of the 9th ACM SIGCOMM Internet Measurement Conference,

ACM, pp. 90–102 (2009)

17. Meulpolder, M., D’Acunto, L., Capotă, M., Wojciechowski, M., Pouwelse, J.A., Epema, D.H., Sips,

H.J.: Public and private Bittorrent communities: a measurement study. In: Proceedings of the 9th

International Workshop on Peer-to-Peer Systems (IPTPS) (2010)

18. Mol, J.J.D., Bakker, A., Pouwelse, J., Epema, D., Sips H.: The design and deployment of a Bittor-

rent live video streaming solution. In: Proceedings of the 11th IEEE International Symposium on

Multimedia, pp. 342–349 (2009)

19. Radunović, B., Le Boudec, J.Y.: A unified framework for max-min and min-max fairness with appli-

cations. IEEE/ACM Transactions on Networking 15(5), 1073–1083 (2007)

20. Tschorsch, F., Scheuermann, B.: Tor is unfair – and what to do about it. In: The Proceedings of the

IEEE 36th Conference on Local Computer Networks (LCN), 2011, pp. 432–440 (2011)

21. Vlavianos A, Iliofotou M, Faloutsos M.: BiToS: Enhancing BitTorrent for supporting streaming ap-

plications. In: Proceedings of the 25th IEEE INFOCOM, pp. 1–6 (2006)

22. Wu, D., Liang, C., Liu, Y., Ross, K.: View-upload decoupling: A redesign of multi-channel p2p video

systems. In: Proceedings of the IEEE INFOCOM 2009, pp. 2726 – 2730 (2009)

23. Wu, D., Liang, Y., He, J., Hei, X.: Balancing performance and fairness in p2p live video systems.

IEEE Transactions on Circuits and Systems for Video Technology 23(6), 1029–1039 (2013)

24. Yan, Yonghe and El-Atawy, Adel and Al-Shaer, Ehab, Ranking-based optimal resource allocation in

peer-to-peer networks. In Proceedings of the 26th IEEE INFOCOM, pp. 1100–1108 (2007)

25. Zhang, C., Dhungel, P., Wu, D., Liu, Z., Ross, K.: Bittorrent darknets. In: Proceedings of the IEEE

INFOCOM 2010, pp. 1–9 (2010)

26. Zhang, X, Liu, J, Li, B, Yum, T.S.: CoolStreaming/DONet: a data-driven overlay network for peer-to-

peer live media streaming. In: Proceedings of the IEEE INFOCOM 2005, pp. 2102–2111 (2005)

Modeling max-min fair bandwidth allocation 17

Algorithm 4.1 MaxMin-r

1. Lower bound computation for the flows. Solve MM0:

max f,

s.t. f(ltj , dj) ≥ f ∀(ltj , dj) ∈ ED.

Save the minimal flow value. Let φ := f .

2. Maximal throughput computation. Solve the following LP problem, denoted by MMMaxFlow:

max
∑

(lt
j
,dj)∈ED

f(ltj , dj),

s.t. f(ltj , dj) ≥ φ ∀(ltj , dj) ∈ ED.

Save the LP optimum. Let σ :=
∑

(lt
j
,dj)∈ED

f(ltj , dj).

3. Initialization. Let F := ∅, k := 1, E1 := ED , ∀(ltj , dj) ∈ ED : ℓtj := 0, φ0 = 0.

4. LP solving. Solve the revised version of mMM
(1)
k

:

max fk,

s.t.
∑

(lt
j
,dj)∈Ek

f(ltj , dj) +
∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ≥ (1− ǫ) · σ

f(ltj , dj) ≥ fk ∀(ltj , dj) ∈ Ek,

fk ≥ φ,

Save the LP optimum. Let φk := fk .

5. Presolve.

Ekf
:=







(ltj , dj) ∈ Ek |
c(dj)−

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj

deg−
k
(dj)

= φk







,

xt
j := 0, ∀(ltj , dj) ∈ Ekf

.

If |Ekf
| 6= 0, go to Step 7.

6. MILP solving. Solve the McCormick reformulation of mMM
(2)
k

:

max
∑

(lt
j
,dj)∈Ek

xt
j ,

s.t.
∑

(lt
j
,dj)∈Ek

ptj + φk

∑

(lt
j
,dj)∈Ek

(1− xt
j) +

∑

(lt
j
,dj)∈(ED\Ek)

ℓtj ≥ (1− ǫ) · σ,

f(ltj , dj) ≥ φk ∀(ltj , dj) ∈ Ek,

f(ltj , dj) > φk xt
j ∀(ltj , dj) ∈ Ek,

min
(

δj xt
j , f(l

t
j , dj)

)

≥ ptj ∀(ltj , dj) ∈ Ek,

max
(

0, f(ltj , dj)− δj (1− xt
j)
)

≤ ptj ∀(ltj , dj) ∈ Ek,

where xt
j ∈ {0, 1} and ptj = f(ltj , dj) x

t
j .

7. Fixing. Find the binding constraints for φk , and fix the flow values of the adequate download edges:

Φk :=
{

(ltj , dj) ∈ Ek | xt
j = 0

}

,

ℓtj := φk, ∀(l
t
j , dj) ∈ Ek where xt

j = 0,

F := F ∪ Φk, Ek+1 := Ek \ Φk.

8. Stopping criteria. If F = ED , then stop. Otherwise, k := k + 1 and go back to Step 4.

