Skip to main content
Log in

A new approach for finding a basis for the splitting preconditioner for linear systems from interior point methods

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The class of splitting preconditioners for the iterative solution of linear systems arising from Mehrotra’s predictor-corrector method for large scale linear programming problems needs to find a basis through a sophisticated process based on the application of a rectangular LU factorization. This class of splitting preconditioners works better near a solution of the linear programming problem when the matrices are highly ill-conditioned. In this study, we develop and implement a new approach to find a basis for the splitting preconditioner, based on standard rectangular LU factorization with partial permutation of the scaled transpose linear programming constraint matrix. In most cases, this basis is better conditioned than the existing one. In addition, we include a penalty parameter in Mehrotra’s predictor-corrector method in order to reduce ill-conditioning of the normal equations matrix. Computational experiments show a reduction in the average number of iterations of the preconditioned conjugate gradient method. Also, the increased efficiency and robustness of the new approach become evident by the performance profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.netlib.org/lp/data/readme.

References

  1. Amestoy, P.R., Davis, T.A., Duff, I.S.: Algorithm 837: Amd, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. (TOMS) 30(3), 381–388 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28(2), 149–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bocanegra, S., Campos, F., Oliveira, A.R.: Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods. Comput. Optim. Appl. 36(2–3), 149–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campos, F.F., Rollet, J.S.: Controlled Cholesky Factorization for Preconditioning the Conjugate Gradient Method. Oxford University Computing Laboratory, Numerical Analysis Group (1995)

  5. Carolan, W.J., Hill, J.E., Kennington, J.L., Niemi, S., Wichmann, S.J.: An empirical evaluation of the korbx \(\textregistered \) algorithms for military airlift applications. Oper. Res. 38(2), 240–248 (1990)

    Article  Google Scholar 

  6. Chai, J., Toh, K.: Preconditioning and iterative solution of symmetric indefinite linear system arising from interior point methods for linear programming. Comput. Optim. Appl. 36, 221–247 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.: PCx an interior point code for linear programming. Optim. Methods Softw. 11–2(1–4), 397–430 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davis, T.A.: Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS) 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, T.A., Duff, I.S.: An unsymmetric-pattern multifrontal method for sparse lu factorization. SIAM J. Matrix Anal. Appl. 18(1), 140–158 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drazic, M.D., Lazovic, R.P., Kovacevic-Vujcic, V.V.: Sparsity preserving preconditioners for linear systems in interior-point methods. Comput. Optim. Appl. 61(3), 557–570 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duff, I.S.: Ma57–a code for the solution of sparse symmetric definite and indefinite systems. ACM Trans. Math. Softw. (TOMS) 30(2), 118–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duff, I.S., Pralet, S.: Towards stable mixed pivoting strategies for the sequential and parallel solution of sparse symmetric indefinite systems. SIAM J. Matrix Anal. Appl. 29(3), 1007–1024 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghidini, C.T.L.S., Oliveira, A.R.L., Silva, J., Velazco, M.I.: Combining a hybrid preconditioner and a optimal adjustment algorithm to accelerate the convergence of interior point methods. Linear Algebra Appl. 218, 1267–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghidini, C.T.L.S., Oliveira, A.R.L., Sorensen, D.C.: Computing a hybrid preconditioner approach to solve the linear systems arising from interior point methods for linear programming using the gradient conjugate method. Ann. Manag. Sci. 3, 45–66 (2014)

    Article  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2013)

    MATH  Google Scholar 

  17. Gondzio, J.: Interior point methods 25 years later. Eur. J. Oper. Res. 218(3), 587–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kershaw, D.S.: The incomplete cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 26(1), 43–65 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuzmin, A., Luisier, M., Schenk, O.: Fast methods for computing selected elements of the greens function in massively parallel nanoelectronic device simulations. In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013 Parallel Processing. Lecture Notes in Computer Science, vol. 8097, pp. 533–544. Springer, Berlin (2013). doi:10.1007/978-3-642-40047-6_54

    Chapter  Google Scholar 

  20. Luenberger, D.G.: Linear and Nonlinear Programming. Springer, New York (2003)

    MATH  Google Scholar 

  21. Lustig, I.J., Marsten, R.E., Shanno, D.F.: On implementing mehrotra’s predictor-corrector interior-point method for linear programming. SIAM J. Optim. 2(3), 435–449 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Markowitz, H.M.: The elimination form of the inverse and its application to linear programming. Manag. Sci. 3(3), 255–269 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oliveira, A.R., Sorensen, D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra Appl. 394, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schenk, O., Bollhöfer, M., Römer, R.A.: On large-scale diagonalization techniques for the Anderson model of localization. SIAM Rev. 50(1), 91–112 (2008). doi:10.1137/070707002

    Article  MathSciNet  MATH  Google Scholar 

  26. Schenk, O., Wächter, A., Hagemann, M.: Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput. Optim. Appl. 36(2–3), 321–341 (2007). doi:10.1007/s10589-006-9003-y

    Article  MathSciNet  MATH  Google Scholar 

  27. Velazco, M., Oliveira, A.R., Campos, F.: A note on hybrid preconditioners for large-scale normal equations arising from interior-point methods. Optim. Methods Softw. 25(2), 321–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wright, S.J.: Primal-Dual Interior-Point Methods, vol. 54. SIAM (1997)

  29. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discret. Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to CNPq, FAPESP and UMSA for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio R. L. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suñagua, P., Oliveira, A.R.L. A new approach for finding a basis for the splitting preconditioner for linear systems from interior point methods. Comput Optim Appl 67, 111–127 (2017). https://doi.org/10.1007/s10589-016-9887-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9887-0

Keywords

Navigation